Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Preparation, Characterization, and Release Profile Study of Vincristine Sulfate-loaded Polycaprolactone Nanoparticles

Author(s): Walaa Fawaz*, Jameela Hasian and Ibrahim Alghoraibi

Volume 15, Issue 4, 2023

Published on: 05 December, 2023

Page: [300 - 307] Pages: 8

DOI: 10.2174/0118764029271070231117041624

Price: $65

Abstract

Background: Vincristine sulfate is commonly used to treat different types of cancers. However, its effectiveness is hindered by undesirable side effects, which significantly limit its applications in medicine.

Objective: This study aims to prepare vincristine nanoparticles, in order to develop a promising approach for cancer therapy.

Methods: Vincristine nanoparticles were prepared by utilizing polycaprolactone as a carrier through the double emulsion method. The morphological characteristics and particle size of the vincristine nanoparticles were examined. The surface charge and average dynamic size, encapsulation efficiency in addition to release profile study were also evaluated.

Results: Dynamic Light Scattering confirmed the small size of nanoparticles (~200 nm). SEM showed spherical-shaped nanoparticles with smooth surfaces, and the polydispersity index values of the prepared nanoparticles were below 0.5 in all preparations. The zeta potential of the nanoparticles was found to be negative, which can be attributed to the presence of carboxylic groups in the PCL polymer, The encapsulation efficiency of Vincristine-loaded nanoparticles (NPs) varied from 36% to 57% for all the prepared NPs with varying amounts of PCL. The release profile demonstrated a prolonged release of Vincristine from the nanoparticles compared to the Vincristine solution.

Conclusion: The double emulsion solvent evaporation method was used successfully to prepare vincristine- loaded PCL nanoparticles, which suggests that nanoscale carriers hold promise as effective vehicles for delivering chemotherapeutic agents in the treatment of cancer.

Graphical Abstract

[1]
Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71, 555-564.
[2]
Triarico, S.; Romano, A.; Attinà, G.; Capozza, M.A.; Maurizi, P.; Mastrangelo, S.; Ruggiero, A. Vincristine-induced peripheral neuropathy (Vipn) in pediatric tumors: Mechanisms, risk factors, strategies of prevention and treatment. Int. J. Mol. Sci., 2021, 22(8), 4112.
[http://dx.doi.org/10.3390/ijms22084112] [PMID: 33923421]
[3]
Jordan, M.A.; Thrower, D.; Wilson, L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res., 1991, 51(8), 2212-2222.
[PMID: 2009540]
[4]
Martino, E.; Casamassima, G.; Castiglione, S.; Cellupica, E.; Pantalone, S.; Papagni, F.; Rui, M.; Siciliano, A.M.; Collina, S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett., 2018, 28(17), 2816-2826.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.044] [PMID: 30122223]
[5]
Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; Mitra, S.; Dhama, K.; Habiballah, M.M.; Haque, S.; Islam, A.; Hassan, M.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol., 2022, 12(June), 891652.
[http://dx.doi.org/10.3389/fonc.2022.891652] [PMID: 35814435]
[6]
Al-Musawi, S.; Ibraheem, S.; Mahdi, S.A. Smart nanoformulation based on polymeric magnetic nanoparticles and vincristine drug: A novel therapy for apoptotic gene expression in tumors. Life, 2021, 11(1), 71.
[http://dx.doi.org/10.3390/life11010071]
[7]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[8]
Liu, S.; Khan, A.R.; Yang, X.; Dong, B.; Ji, J.; Zhai, G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J. Control. Release, 2021, 335, 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.012] [PMID: 33991600]
[9]
Wang, Y.; Dou, L.; He, H.; Zhang, Y.; Shen, Q. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol. Pharm., 2014, 11(3), 885-894.
[http://dx.doi.org/10.1021/mp400547u]
[10]
Yu, W.; Shevtsov, M.; Chen, X.; Gao, H. Advances in aggregatable nanoparticles for tumor-targeted drug delivery. Chin. Chem. Lett., 2020, 31(6), 1366-1374.
[http://dx.doi.org/10.1016/j.cclet.2020.02.036]
[11]
Jia-Gen, W.E.N.; Tingting, G.U.O.; Hong-Yuan, Z.H.U. Preparation and Optimization of PEG-PLGA loaded with vincristine sulfate and its in vitro release. J. Bioequivalence Bioavailab., 2011, 3(9), 211-214.
[http://dx.doi.org/10.4172/jbb.1000088]
[12]
Liu, Y. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes : A light-responsive nanocarrier with enhanced anti-tumor efficiency. 2015, 3081-3095.
[13]
Bakmaz, D.; Ulu, A.; Koytepe, S.; Ates, B. Preparation, characterization, and in vitro release study of vincristine sulfate-loaded chitosan–polyethylene glycol–oleic acid composites. IJPAC Int. J. Polym. Anal. Charact., 2021, 26(4), 291-308.
[http://dx.doi.org/10.1080/1023666X.2021.1887624]
[14]
Aboutaleb, E.; Atyabi, F.; Khoshayand, M.R.; Vatanara, A.R.; Ostad, S.N.; Kobarfard, F.; Dinarvand, R. Improved brain delivery of vin-cristine using dextran sulfate complex solid lipid nanoparticles: Optimization and in vivo evaluation. J. Biomed. Mater. Res. A, 2014, 102(7), 2125-2136.
[http://dx.doi.org/10.1002/jbm.a.34890] [PMID: 23893939]
[15]
Mehrabi, M.R.; Norouzian, D.; Shokrgozar, M.A. Pegylated niosomal nanoparticles loaded with vincristine: Characterization and in vitro evaluation. Tropical J. Pharm. Res., 2017, 16, 975-980.
[16]
Mehrabi, M.R.; Shokrgozar, M.A.; Toliyat, T.; Shirzad, M.; Izadyari, A.; Zoghi Mofrad, L.; Chiani, M.; Akbarzadeh, A. Enhanced Thera-peutic Efficacy of Vincristine Sulfate for Lymphoma Using Niosome-Based Drug Delivery. Jundishapur J. Nat. Pharm. Prod., 2020, 15(3)
[http://dx.doi.org/10.5812/jjnpp.82793]
[17]
Jeswani, G.; Das, S.; Deshmukh, R. Design of vincristine sulfate loaded poloxamer in situ nanogel : Formulation and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2021, 61, 102246.
[18]
Ling, G.; Zhang, P.; Zhang, W.; Sun, J.; Meng, X.; Qin, Y.; Deng, Y.; He, Z. Development of novel self-assembled DS-PLGA hybrid nano-particles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J. Control. Release, 2010, 148(2), 241-248.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.010] [PMID: 20727928]
[19]
Pulingam, T.; Foroozandeh, P.; Chuah, J.A.; Sudesh, K. Exploring various techniques for the chemical and biological synthesis of poly-meric nanoparticles. Nanomaterials, 2022, 12(3), 576.
[http://dx.doi.org/10.3390/nano12030576] [PMID: 35159921]
[20]
Łukasiewicz, S.; Mikołajczyk, A.; Błasiak, E.; Fic, E.; Dziedzicka-Wasylewska, M. Polycaprolactone nanoparticles as promising candi-dates for nanocarriers in novel nanomedicines. Pharmaceutics, 2021, 13(2), 191.
[http://dx.doi.org/10.3390/pharmaceutics13020191] [PMID: 33535563]
[21]
Pan, Q.; Tian, J.; Zhu, H.; Hong, L.; Mao, Z.; Oliveira, J.M.; Reis, R.L.; Li, X. Tumor-targeting polycaprolactone nanoparticles with codelivery of paclitaxel and ir780 for combinational therapy of drug-resistant ovarian cancer. ACS Biomater. Sci. Eng., 2020, 6(4), 2175-2185.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00163] [PMID: 33455308]
[22]
Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm., 2015, 496(2), 173-190.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.057] [PMID: 26522982]
[23]
Panigrahi, D Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. 2021, 3, 638.
[24]
Wang, J.; Hahn, S.; Amstad, E.; Vogel, N. Tailored double emulsions made simple. Adv. Mater., 2022, 34(5), 2107338.
[http://dx.doi.org/10.1002/adma.202107338] [PMID: 34706112]
[25]
Lee, Y.; Lee, D.; Park, E.; Jang, S.; Cheon, S.Y.; Han, S.; Koo, H. Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. J. Nanobiotechnology, 2021, 19(1), 411.
[http://dx.doi.org/10.1186/s12951-021-01160-4] [PMID: 34876140]
[26]
Kerimoğlu, O; Özer-önder, S; Alarçin, E; Karsli, S Formulation and evaluation of vascular endothelial growth factor loaded polycaprolactone nanoparticles.Brazilan J. Pharm. Sci., 2013, 1-11.
[27]
Paci, A.; Mercier, L.; Bourget, P. Identification and quantitation of antineoplastic compounds in chemotherapeutic infusion bags by use of HPTLC: Application to the vinca-alkaloids. J. Pharm. Biomed. Analysis, 2003, 30, 1603-1610.
[http://dx.doi.org/10.1016/S0731-7085(02)00541-1]
[28]
McNeil, S.E. Challenges for nanoparticle characterization. Methods in Molecular Biology, 2011, 697, 9-15.
[http://dx.doi.org/10.1007/978-1-60327-198-1_2]
[29]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[30]
Yousfan, A.; Rubio, N.; Natouf, A.H. RSC Advances Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain. RSC Adv., 2020, 10(48), 28992-29229.
[31]
Hema, S.K.; Karmakar, A.; Das, R.K.; Srivastava, P. Simple formulation and characterization of double emulsion variant designed to carry three bioactive agents. Heliyon, 2022, 8(9), e10397.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10397] [PMID: 36097481]
[32]
Vauthier, C.; Ponchel, G. Polymer nanoparticles for nanomedicines; Springer, 2017.
[33]
Saffarionpour, S. One-step preparation of double emulsions stabilized with amphiphilic and stimuli-responsive block copolymers and nanoparticles for nutraceuticals and drug delivery. JCIS Open, 2021, 3, 100020.
[http://dx.doi.org/10.1016/j.jciso.2021.100020]
[34]
Mahmoudi, M.; Saeidian, H.; Mirjafary, Z.; Mokhtari, J. Preparation and characterization of memantine loaded polycaprolactone nanocap-sules for Alzheimer’s disease. J. Porous Mater., 2021, 28(1), 205-212.
[http://dx.doi.org/10.1007/s10934-020-00981-2]
[35]
Lince, F.; Marchisio, D.L.; Barresi, A.A. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for phar-maceutical applications. J. Colloid Interface Sci., 2008, 322(2), 505-515.
[http://dx.doi.org/10.1016/j.jcis.2008.03.033] [PMID: 18402975]
[36]
Shnoudeh, A.J.; Hamad, I.; Abdo, R.W. Synthesis, characterization, and applications of metal nanoparticles. In: Biomaterials and Bi-onanotechnology; Elsevier Inc, 2019; pp. 527-612.
[http://dx.doi.org/10.1016/B978-0-12-814427-5.00015-9]
[37]
Barhoum, A. García-Betancourt, M.L.; Rahier, H.; Van Assche, G. Physicochemical characterization of nanomaterials: Polymorph, com-position, wettability, and thermal stability. In: Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends; Elsevier Inc, 2018; pp. 255-278.
[38]
Kamel, A.O.; Awad, G.A.S.; Geneidi, A.S.; Mortada, N.D. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech, 2009, 10(4), 1427-1436.
[http://dx.doi.org/10.1208/s12249-009-9342-y] [PMID: 19949904]
[39]
Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[40]
Ebadi, M.; Bullo, S.; Buskara, K.; Hussein, M.Z.; Fakurazi, S.; Pastorin, G. Release of a liver anticancer drug, sorafenib from its PVA/LDH- and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications. Sci. Rep., 2020, 10(1), 21521.
[http://dx.doi.org/10.1038/s41598-020-76504-5] [PMID: 33298980]
[41]
Yagublu, V.; Karimova, A.; Hajibabazadeh, J.; Reissfelder, C.; Muradov, M.; Bellucci, S.; Allahverdiyev, A. Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy. J. Funct. Biomater., 2022, 13(4), 196.
[http://dx.doi.org/10.3390/jfb13040196] [PMID: 36278665]
[42]
Tănase, M.A.; Raducan, A.; Oancea, P.; Diţu, L.M.; Stan, M.; Petcu, C.; Scomoroşcenco, C.; Ninciuleanu, C.M.; Nistor, C.L.; Cinteza, L.O. Mixed pluronic—cremophor polymeric micelles as nanocarriers for poorly soluble antibiotics—the influence on the antibacterial activity. Pharmaceutics, 2021, 13(4), 435.
[http://dx.doi.org/10.3390/pharmaceutics13040435] [PMID: 33804932]
[43]
Zambito, Y.; Pedreschi, E.; Di Colo, G. Is dialysis a reliable method for studying drug release from nanoparticulate systems?—A case study. Int. J. Pharm., 2012, 434(1-2), 28-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.020] [PMID: 22617795]
[44]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon, 2022, 8(1), e08674.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08674] [PMID: 35028457]
[45]
Irshad, S. Cefotaxime Loaded Polycaprolactone Based Polymeric Nanoparticles with Antifouling Properties for In-Vitro Drug Release Ap-plications. Polymers, 2021, 13(13), 2180.
[46]
Yoo, J.; Won, Y.Y. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater. Sci. Eng., 2020, 6(11), 6053-6062.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01228] [PMID: 33449671]
[47]
Singh, P.; Gupta, A.; Jaiswal, A.; Dube, A.; Mishra, S.; Chaurasia, M. Design and development of Amphotericin B bearing polycaprolac-tone microparticles for macrophage targeting. J. Biomed. Nanotechnol., 2011, 7(1), 50-51.
[http://dx.doi.org/10.1166/jbn.2011.1196] [PMID: 21485798]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy