Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

The Role of TRIM Proteins in Vascular Disease

Author(s): Xinxin Chen and Xiaolong Chen*

Volume 22, Issue 1, 2024

Published on: 22 November, 2023

Page: [11 - 18] Pages: 8

DOI: 10.2174/0115701611241848231114111618

Price: $65

Abstract

There are more than 80 different tripartite motifs (TRIM) proteins within the E3 ubiquitin ligase subfamily, including proteins that regulate intracellular signaling, apoptosis, autophagy, proliferation, inflammation, and immunity through the ubiquitination of target proteins. Studies conducted in recent years have unraveled the importance of TRIM proteins in the pathophysiology of vascular diseases. In this review, we describe the effects of TRIM proteins on vascular endothelial cells, smooth muscle cells, heart, and lungs. In particular, we discuss the potential mechanisms by which TRIMs regulate diseases and shed light on the potential therapeutic applications of TRIMs.

Graphical Abstract

[1]
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67(1): 425-79.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.425] [PMID: 9759494]
[2]
Damgaard RB. The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. 2021; 423-6.
[3]
Zhao B, Tsai YC, Jin B, et al. Protein engineering in the ubiquitin system: Tools for discovery and beyond. Pharmacol Rev 2020; 72(2): 380-413.
[http://dx.doi.org/10.1124/pr.118.015651] [PMID: 32107274]
[4]
Zhang XH, Zhao HY, Wang Y, et al. Zenglv Fumai Granule protects cardiomyocytes against hypoxia/reoxygenation-induced apoptosis via inhibiting TRIM28 expression. Mol Med Rep 2020; 23(3): 171.
[http://dx.doi.org/10.3892/mmr.2020.11810] [PMID: 33398366]
[5]
Grootaert MOJ, Finigan A, Figg NL, Uryga AK, Bennett MR. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ Res 2021; 128(4): 474-91.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.318353] [PMID: 33353368]
[6]
Liu J, Li W, Deng KQ, et al. The E3 ligase TRIM16 is a key suppressor of pathological cardiac hypertrophy. Circ Res 2022; 130(10): 1586-600.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318866] [PMID: 35437018]
[7]
Humphreys LM, Smith P, Chen Z, Fouad S, D’Angiolella V. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28(2): 522-37.
[http://dx.doi.org/10.1038/s41418-020-00696-6] [PMID: 33432111]
[8]
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40(5): 1920-49.
[http://dx.doi.org/10.1002/med.21675] [PMID: 32391596]
[9]
Meroni G, Desagher S. Cellular function of TRIM E3 ubiquitin ligases in health and disease. Cells 2022; 11(2): 250.
[http://dx.doi.org/10.3390/cells11020250]
[10]
Goyani S, Roy M, Singh R. TRIM-NHL as RNA Binding Ubiquitin E3 Ligase (RBUL): Implication in development and disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867(7): 166066.
[http://dx.doi.org/10.1016/j.bbadis.2020.166066] [PMID: 33418035]
[11]
Marzano F, Guerrini L, Pesole G, Sbisà E, Tullo A. Emerging roles of TRIM8 in health and disease. Cells 2021; 10(3): 561.
[http://dx.doi.org/10.3390/cells10030561] [PMID: 33807506]
[12]
Yang L, Xia H. TRIM proteins in inflammation: From expression to emerging regulatory mechanisms. Inflammation 2021; 44(3): 811-20.
[http://dx.doi.org/10.1007/s10753-020-01394-8] [PMID: 33415537]
[13]
Zhang J, Li X, Hu W, Li C. Emerging role of TRIM family proteins in cardiovascular disease. Cardiology 2020; 145(6): 390-400.
[http://dx.doi.org/10.1159/000506150] [PMID: 32305978]
[14]
Hatakeyama S. TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 2017; 42(4): 297-311.
[http://dx.doi.org/10.1016/j.tibs.2017.01.002] [PMID: 28118948]
[15]
Borden KL. RING fingers and B-boxes: Zinc-binding protein-protein interaction domains. 1998; 351-8.
[16]
Reddy BA, Etkin LD, Freemont PS. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 1992; 17(9): 344-5.
[http://dx.doi.org/10.1016/0968-0004(92)90308-V] [PMID: 1412709]
[17]
Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res 2007; 100(6): 782-94.
[http://dx.doi.org/10.1161/01.RES.0000259593.07661.1e] [PMID: 17395884]
[18]
Zhou C, Francis CM, Xu N, Stevens T. The role of endothelial leak in pulmonary hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8(4): 1-9.
[http://dx.doi.org/10.1177/2045894018798569] [PMID: 30124139]
[19]
Liew H, Roberts MA, MacGinley R, McMahon LP. Endothelial glycocalyx in health and kidney disease: Rising star or false Dawn? Nephrology 2017; 22(12): 940-6.
[http://dx.doi.org/10.1111/nep.13161] [PMID: 28846193]
[20]
Kolářová H, Ambrůzová B, Švihálková Šindlerová L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 2014; 2014: 1-17.
[http://dx.doi.org/10.1155/2014/694312] [PMID: 24803742]
[21]
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: Mechanisms and challenges. Environ Sci Pollut Res Int 2021; 28(26): 34121-53.
[http://dx.doi.org/10.1007/s11356-021-14109-9] [PMID: 33963999]
[22]
Tsai CY, Li KJ, Shen CY, et al. Decipher the immunopathological mechanisms and set up potential therapeutic strategies for patients with lupus nephritis. Int J Mol Sci 2023; 24(12): 10066.
[http://dx.doi.org/10.3390/ijms241210066] [PMID: 37373215]
[23]
Liu J, Feng X, Tian Y, et al. Knockdown of TRIM27 expression suppresses the dysfunction of mesangial cells in lupus nephritis by FoxO1 pathway. J Cell Physiol 2019; 234(7): 11555-66.
[http://dx.doi.org/10.1002/jcp.27810] [PMID: 30648253]
[24]
Liu J, Xu J, Huang J, et al. TRIM27 contributes to glomerular endothelial cell injury in lupus nephritis by mediating the FoxO1 signaling pathway. Lab Invest 2021; 101(8): 983-97.
[http://dx.doi.org/10.1038/s41374-021-00591-9] [PMID: 33854173]
[25]
Wang Y, Singh AR, Zhao Y, et al. TRIM28 regulates sprouting angiogenesis through VEGFR-DLL4-Notch signaling circuit. FASEB J 2020; 34(11): 14710-24.
[http://dx.doi.org/10.1096/fj.202000186RRR] [PMID: 32918765]
[26]
Jin Z, Li H, Hong X, et al. TRIM14 promotes colorectal cancer cell migration and invasion through the SPHK1/STAT3 pathway. Cancer Cell Int 2018; 18(1): 202.
[http://dx.doi.org/10.1186/s12935-018-0701-1] [PMID: 30555277]
[27]
Jin J, Meng X, Huo Y, Deng H. Induced TRIM21 ISGylation by IFN-β enhances p62 ubiquitination to prevent its autophagosome targeting. Cell Death Dis 2021; 12(7): 697.
[http://dx.doi.org/10.1038/s41419-021-03989-x] [PMID: 34257278]
[28]
Huang X, Li Y, Li X, Fan D, Xin HB, Fu M. TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J Mol Cell Biol 2020; 12(3): 176-89.
[http://dx.doi.org/10.1093/jmcb/mjz040] [PMID: 31070748]
[29]
Zhang J, Hanig JP, De Felice AF. Biomarkers of endothelial cell activation: Candidate markers for drug-induced vasculitis in patients or drug-induced vascular injury in animals. Vascul Pharmacol 2012; 56(1-2): 14-25.
[http://dx.doi.org/10.1016/j.vph.2011.09.002] [PMID: 21968053]
[30]
Kjærgaard AG, Dige A, Krog J, Tønnesen E, Wogensen L. Soluble adhesion molecules correlate with surface expression in an in vitro model of endothelial activation. Basic Clin Pharmacol Toxicol 2013; 113(4): 273-9.
[http://dx.doi.org/10.1111/bcpt.12091] [PMID: 23724832]
[31]
Lau S, Gossen M, Lendlein A, Jung F. Venous and arterial endothelial cells from human umbilical cords: Potential cell sources for cardiovascular research. Int J Mol Sci 2021; 22(2): 978.
[http://dx.doi.org/10.3390/ijms22020978] [PMID: 33478148]
[32]
Ko D, Preis SR, Johnson AD, et al. Relations of arterial stiffness and endothelial dysfunction with incident venous thromboembolism. Thromb Res 2021; 204: 108-13.
[http://dx.doi.org/10.1016/j.thromres.2021.06.012] [PMID: 34175748]
[33]
Liu F, Gao B, Wang Y. CircIRAK1 aggravates ox-LDL-induced endothelial cell injury in atherosclerosis via TRIM14 upregulation by binding to miR-330-5p1. Clin Hemorheol Microcirc 2022; 1-15.
[http://dx.doi.org/10.3233/CH-221551] [PMID: 36336926]
[34]
Zhang C, Wang L, Shen Y. Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc Disord 2021; 21(1): 207-7.
[http://dx.doi.org/10.1186/s12872-021-02012-7] [PMID: 33892646]
[35]
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021; 22(8): 3850.
[http://dx.doi.org/10.3390/ijms22083850] [PMID: 33917744]
[36]
Zhou L, Xu Z, Oh Y, et al. Myeloid cell modulation by a GLP-1 receptor agonist regulates retinal angiogenesis in ischemic retinopathy. JCI Insight 2021; 6(23): e93382.
[http://dx.doi.org/10.1172/jci.insight.93382] [PMID: 34673570]
[37]
Liu M, Iosef C, Rao S, et al. Transforming growth factor–induced protein promotes NF-κB–mediated angiogenesis during postnatal lung development. Am J Respir Cell Mol Biol 2021; 64(3): 318-30.
[http://dx.doi.org/10.1165/rcmb.2020-0153OC] [PMID: 33264084]
[38]
Fiil BK, Gyrd-Hansen M. The Met1-linked ubiquitin machinery in inflammation and infection. Cell Death Differ 2021; 28(2): 557-69.
[http://dx.doi.org/10.1038/s41418-020-00702-x] [PMID: 33473179]
[39]
Li Y, Deng L, Zhao X, et al. Tripartite motif-containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway. J Pathol 2018; 246(3): 366-78.
[http://dx.doi.org/10.1002/path.5144] [PMID: 30043491]
[40]
Goru SK, Pandey A, Gaikwad AB. E3 ubiquitin ligases as novel targets for inflammatory diseases. Pharmacol Res 2016; 106: 1-9.
[http://dx.doi.org/10.1016/j.phrs.2016.02.006] [PMID: 26875639]
[41]
Ji J, Ding K, Luo T, et al. TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell Death Differ 2021; 28(1): 367-81.
[http://dx.doi.org/10.1038/s41418-020-00606-w] [PMID: 32814880]
[42]
Fan W, Liu X, Zhang J, et al. TRIM67 suppresses TNFalpha-Triggered NF-kB activation by competitively binding beta-TrCP to IkBa. Front Immunol 2022; 13: 793147.
[http://dx.doi.org/10.3389/fimmu.2022.793147] [PMID: 35273593]
[43]
Tian B, Nowak DE, Brasier AR. A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genomics 2005; 6(1): 137.
[http://dx.doi.org/10.1186/1471-2164-6-137] [PMID: 16191192]
[44]
Hsu K-S, Guan B-J, Cheng X, et al. Translational control of PML contributes to TNFα-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs. Cell Death Differ 2016; 23(3): 469-83.
[http://dx.doi.org/10.1038/cdd.2015.114] [PMID: 26383972]
[45]
Fan W, Liu T, Li X, et al. TRIM52: A nuclear TRIM protein that positively regulates the nuclear factor-kappa B signaling pathway. Mol Immunol 2017; 82: 114-22.
[http://dx.doi.org/10.1016/j.molimm.2017.01.003] [PMID: 28073078]
[46]
Papin S, Cazeneuve C, Duquesnoy P, Jéru I, Sahali D, Amselem S. The tumor necrosis factor alpha-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between C/EBP beta and NF kappaB p65. J Biol Chem 2003; 278(49): 48839-47.
[http://dx.doi.org/10.1074/jbc.M305166200] [PMID: 14514692]
[47]
Chen Q, Gao C, Wang M, Fei X, Zhao N. TRIM18-regulated STAT3 signaling pathway via PTP1B promotes renal epithelial–mesenchymal transition, inflammation, and fibrosis in diabetic kidney disease. Front Physiol 2021; 12: 709506.
[http://dx.doi.org/10.3389/fphys.2021.709506] [PMID: 34434118]
[48]
Bakshi HA, Quinn GA, Nasef MM, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways. Cells 2022; 11(9): 1502.
[http://dx.doi.org/10.3390/cells11091502] [PMID: 35563808]
[49]
Zhou D, Liu T, Wang S, He W, Qian W, Luo G. Effects of IL-1β and TNF-α on the expression of P311 in vascular endothelial cells and wound healing in mice. Front Physiol 2020; 11: 545008.
[http://dx.doi.org/10.3389/fphys.2020.545008] [PMID: 33329015]
[50]
Jeong JH, Ojha U, Lee YM. Pathological angiogenesis and inflammation in tissues. Arch Pharm Res 2021; 44(1): 1-15.
[http://dx.doi.org/10.1007/s12272-020-01287-2] [PMID: 33230600]
[51]
Chen ZL, Chen YX, Zhou J, Li Y, Gong CY, Wang XB. LncRNA HULC alleviates HUVEC inflammation and improves angiogenesis after myocardial infarction through down-regulating miR-29b. Eur Rev Med Pharmacol Sci 2020; 24(11): 6288-98.
[PMID: 32572926]
[52]
Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells. Biomed Pharmacother 2020; 124: 109699.
[http://dx.doi.org/10.1016/j.biopha.2019.109699]
[53]
Elkazzaz SK, Khodeer DM, El Fayoumi HM, Moustafa YM. Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis. Life Sci 2021; 280: 119018.
[http://dx.doi.org/10.1016/j.lfs.2021.119018] [PMID: 33549594]
[54]
Koo BK, Lim HS, Song R, et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 2005; 132(15): 3459-70.
[http://dx.doi.org/10.1242/dev.01922] [PMID: 16000382]
[55]
Nie J, McGill MA, Dermer M, Dho SE, Wolting CD, McGlade CJ. LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J 2002; 21(1): 93-102.
[http://dx.doi.org/10.1093/emboj/21.1.93] [PMID: 11782429]
[56]
Izumi N, Helker C, Ehling M, Behrens A, Herzog W, Adams RH. Fbxw7 controls angiogenesis by regulating endothelial Notch activity. PLoS One 2012; 7(7): e41116.
[http://dx.doi.org/10.1371/journal.pone.0041116] [PMID: 22848434]
[57]
Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 deficiency leads to myopathy and heart failure in zebrafish. Int J Mol Sci 2016; 17(2): 187.
[http://dx.doi.org/10.3390/ijms17020187] [PMID: 26840306]
[58]
Shen B, Gao L, Hsu YT, et al. Kallistatin attenuates endothelial apoptosis through inhibition of oxidative stress and activation of Akt-eNOS signaling. Am J Physiol Heart Circ Physiol 2010; 299(5): H1419-27.
[http://dx.doi.org/10.1152/ajpheart.00591.2010] [PMID: 20729399]
[59]
Bertin FR, Lemarié CA, Robins RS, Blostein MD. Growth arrest-specific 6 regulates thrombin-induced expression of vascular cell adhesion molecule-1 through forkhead box O1 in endothelial cells. J Thromb Haemost 2015; 13(12): 2260-72.
[http://dx.doi.org/10.1111/jth.13156] [PMID: 26414399]
[60]
Tsuruma R, Ohbayashi N, Kamitani S, et al. Physical and functional interactions between STAT3 and KAP1. Oncogene 2008; 27(21): 3054-9.
[http://dx.doi.org/10.1038/sj.onc.1210952] [PMID: 18037959]
[61]
Kamitani S. Krüppel-associated box-associated protein 1 negatively regulates TNF-α-induced NF-κB transcriptional activity by influencing the interactions among STAT3, p300, and NF-κB/p65. J Immunol 2011; 187(5): 2476-83.
[62]
Eames HL, Saliba DG, Krausgruber T, Lanfrancotti A, Ryzhakov G, Udalova IA. KAP1/TRIM28: An inhibitor of IRF5 function in inflammatory macrophages. Immunobiology 2012; 217(12): 1315-24.
[http://dx.doi.org/10.1016/j.imbio.2012.07.026] [PMID: 22995936]
[63]
Wang Y, Li J, Huang Y, et al. Tripartite motif–containing 28 bridges endothelial inflammation and angiogenic activity by retaining expression of TNFR-1 and -2 and VEGFR2 in endothelial cells. FASEB J 2017; 31(5): 2026-36.
[http://dx.doi.org/10.1096/fj.201600988RR] [PMID: 28159803]
[64]
Tang HY, Chen AQ, Zhang H, Gao XF, Kong XQ, Zhang JJ. Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells 2022; 11(24): 4060.
[http://dx.doi.org/10.3390/cells11244060] [PMID: 36552822]
[65]
Du X, Sun Z, Cao Z, et al. Atorvastatin regulates vascular smooth muscle cell phenotypic transformation by epigenetically modulating contractile proteins and mediating Akt/FOXO4 axis. Mol Med Rep 2022; 25(5): 167.
[http://dx.doi.org/10.3892/mmr.2022.12683] [PMID: 35475577]
[66]
Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: Proteomics point of view. Int Rev Cell Mol Biol 2011; 288: 43-99.
[http://dx.doi.org/10.1016/B978-0-12-386041-5.00002-9] [PMID: 21482410]
[67]
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118(4): 692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306361] [PMID: 26892967]
[68]
Hu Z, Song Q, Ma H, et al. TRIM32 inhibits the proliferation and migration of pulmonary artery smooth muscle cells through the inactivation of PI3K/Akt pathway in pulmonary arterial hypertension. J Bioenerg Biomembr 2021; 53(3): 309-20.
[http://dx.doi.org/10.1007/s10863-021-09880-w] [PMID: 33694017]
[69]
Dai Y. TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother 2018; 101: 24-9.
[70]
Liu Z, Hu L, Zhang T, et al. PKCβ increases ROS levels leading to vascular endothelial injury in diabetic foot ulcers. Am J Transl Res 2020; 12(10): 6409-21.
[PMID: 33194039]
[71]
Bhaduri U, Merla G. Rise of TRIM8: A molecule of duality. Mol Ther Nucleic Acids 2020; 22: 434-44.
[http://dx.doi.org/10.1016/j.omtn.2020.08.034] [PMID: 33230447]
[72]
Zhao W, Zhang X, Chen Y, Shao Y, Feng Y. Downregulation of TRIM8 protects neurons from oxygen–glucose deprivation/re-oxygenation-induced injury through reinforcement of the AMPK/Nrf2/ARE antioxidant signaling pathway. Brain Res 2020; 1728: 146590.
[http://dx.doi.org/10.1016/j.brainres.2019.146590] [PMID: 31862654]
[73]
Dang X, Qin Y, Gu C, Sun J, Zhang R, Peng Z. Knockdown of tripartite motif 8 protects H9C2 cells against hypoxia/reoxygenation-induced injury through the activation of PI3K/Akt signaling pathway. Cell Transplant 2020; 29.
[http://dx.doi.org/10.1177/0963689720949247] [PMID: 32841049]
[74]
Zhang BH, Liu H, Yuan Y, et al. Knockdown of TRIM8 protects HK-2 cells against hypoxia/reoxygenation-induced injury by inhibiting oxidative stress-mediated apoptosis and pyroptosis via PI3K/Akt signal pathway. Drug Des Devel Ther 2021; 15: 4973-83.
[http://dx.doi.org/10.2147/DDDT.S333372] [PMID: 34916780]
[75]
Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21(4): 422-33.
[PMID: 33357211]
[76]
Huang Q, Zhu X, Xu M. Silencing of TRIM10 alleviates apoptosis in cellular model of Parkinson’s disease. Biochem Biophys Res Commun 2019; 518(3): 451-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.041] [PMID: 31472958]
[77]
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest 2013; 123(1): 92-100.
[http://dx.doi.org/10.1172/JCI62874] [PMID: 23281415]
[78]
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review. J Pineal Res 2018; 65(1): e12490.
[http://dx.doi.org/10.1111/jpi.12490] [PMID: 29570845]
[79]
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 2017; 57(1): 535-65.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103335] [PMID: 27860548]
[80]
Wang F, Zhang Y, Shen J, et al. The ubiquitin E3 ligase TRIM21 promotes hepatocarcinogenesis by suppressing the p62-Keap1-Nrf2 antioxidant pathway. Cell Mol Gastroenterol Hepatol 2021; 11(5): 1369-85.
[http://dx.doi.org/10.1016/j.jcmgh.2021.01.007] [PMID: 33482392]
[81]
Song Y, Li M, Wang Y, Zhang H, Wei L, Xu W. E3 ubiquitin ligase TRIM21 restricts hepatitis B virus replication by targeting HBx for proteasomal degradation. Antiviral Res 2021; 192: 105107.
[http://dx.doi.org/10.1016/j.antiviral.2021.105107] [PMID: 34097931]
[82]
Lee HJ. The role of tripartite motif family proteins in TGF-β signaling pathway and cancer. J Cancer Prev 2018; 23(4): 162-9.
[http://dx.doi.org/10.15430/JCP.2018.23.4.162] [PMID: 30671398]
[83]
Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, et al. Endoglin protein interactome profiling identifies TRIM21 and Galectin-3 as new binding partners. Cells 2019; 8(9): 1082.
[http://dx.doi.org/10.3390/cells8091082] [PMID: 31540324]
[84]
Lu Z, Deng M, Ma G, Chen L. TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF- κ B signalling pathway. PeerJ 2022; 10: e13815.
[http://dx.doi.org/10.7717/peerj.13815] [PMID: 36061751]
[85]
Li L, Wei J, Mallampalli RK, Zhao Y, Zhao J. TRIM21 mitigates human lung microvascular endothelial cells’ inflammatory responses to LPS. Am J Respir Cell Mol Biol 2019; 61(6): 776-85.
[http://dx.doi.org/10.1165/rcmb.2018-0366OC] [PMID: 31184939]
[86]
López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 2010; 299(4): H959-74.
[http://dx.doi.org/10.1152/ajpheart.01251.2009] [PMID: 20656886]
[87]
Rossi E, Sanz-Rodriguez F, Eleno N, et al. Endothelial endoglin is involved in inflammation: Role in leukocyte adhesion and transmigration. Blood 2013; 121(2): 403-15.
[http://dx.doi.org/10.1182/blood-2012-06-435347] [PMID: 23074273]
[88]
van Laake LW, van den Driesche S, Post S, et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 2006; 114(21): 2288-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.639161] [PMID: 17088457]
[89]
Li Y, Meng Q, Wang L, Cui Y. TRIM27 protects against cardiac ischemia-reperfusion injury by suppression of apoptosis and inflammation via negatively regulating p53. Biochem Biophys Res Commun 2021; 557: 127-34.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.061] [PMID: 33865220]
[90]
Cruz-Hernandez A. Mast cells promote nitrogen mustard-mediated toxicity in the lung associated with proinflammatory cytokine and bioactive lipid mediator production. Toxicol Sci 2021; 184(1): 127-41.
[http://dx.doi.org/10.1093/toxsci/kfab107]
[91]
Li H, Lin PH, Gupta P, et al. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer 2021; 20(1): 118.
[http://dx.doi.org/10.1186/s12943-021-01418-3] [PMID: 34521423]
[92]
Li H, Rosas L, Li Z, et al. MG53 attenuates nitrogen mustard-induced acute lung injury. J Cell Mol Med 2022; 26(7): 1886-95.
[http://dx.doi.org/10.1111/jcmm.16917] [PMID: 35199443]
[93]
Tan S, Li M, Song X. MG53 alleviates airway inflammatory responses by regulating nuclear factor-κB pathway in asthmatic mice. Allergol Immunopathol 2023; 51(4): 175-81.
[http://dx.doi.org/10.15586/aei.v51i4.880] [PMID: 37422795]
[94]
Borlepawar A. TRIM24 protein promotes and TRIM32 protein inhibits cardiomyocyte hypertrophy via regulation of dysbindin protein levels. J Biol Chem 2017; 292(24): 10180-96.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy