Abstract
The aim of this review article is an overview of the tin oxide (SnO2) nanoparticles, and the literature addresses the existing research related to the various modifications and characterization of SnO2 nanoparticles with their physicochemical investigations. Among various metal-oxide nanoparticles, SnO2 nanoparticles are considered one of the potential candidates for electronic and electrical device fabrication, sensors, display devices, gas sensing, photovoltaic devices, LIBs (Lithium-ion batteries), photocatalysis and optoelectronic devices, supercapacitors, SnO2 nanowires would provide electrolyte channels for effective transport, catalyst, and anode materials. Apart from their technological supremacy, SnO2 nanoparticles have demonstrated their compatibility with human cervical cancer cells and have successfully achieved hyperthermia temperature when subjected to an alternating current magnetic field. Doping with some of the potential rare-earth dopants via various synthesis methods such as Chemical co-precipitation, sol-gel, polymeric precursor method, and nebulizer spray pyrolysis method is the major highlight of this review article. As per the requirement of the system, SnO2 nanoparticles can be tuned by size, shape, and functionality.
Graphical Abstract
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.010] [PMID: 26724726]
[http://dx.doi.org/10.1002/adfm.201401919]
[http://dx.doi.org/10.1007/s11164-020-04084-0]
[http://dx.doi.org/10.1016/j.pmatsci.2014.06.003]
[http://dx.doi.org/10.1021/jp012700b]
[http://dx.doi.org/10.1021/jp035769n]
[http://dx.doi.org/10.1016/j.cej.2011.02.029]
[http://dx.doi.org/10.1016/j.snb.2005.03.104]
[http://dx.doi.org/10.1016/S1381-1169(03)00496-5]
[http://dx.doi.org/10.1002/admi.201600881]
[http://dx.doi.org/10.1016/j.apsusc.2019.06.300]
[http://dx.doi.org/10.1016/j.jallcom.2019.03.277]
[http://dx.doi.org/10.1016/j.orgel.2017.01.018]
[http://dx.doi.org/10.1016/j.materresbull.2018.01.050]
[http://dx.doi.org/10.1155/2020/8958043]
[http://dx.doi.org/10.1117/12.2290170]
[http://dx.doi.org/10.1007/s10854-020-03379-7]
[http://dx.doi.org/10.1117/12.2554585]
[http://dx.doi.org/10.1016/j.ceramint.2015.11.111]
[http://dx.doi.org/10.1039/C4DT03000A] [PMID: 25747103]
[http://dx.doi.org/10.1021/acsami.8b04245] [PMID: 29767956]
[http://dx.doi.org/10.1021/ja2004329] [PMID: 21401090]
[http://dx.doi.org/10.1002/adma.200600733]
[http://dx.doi.org/10.1021/cm4018248]
[http://dx.doi.org/10.1021/jp208021w]
[http://dx.doi.org/10.1039/c1cc11968k] [PMID: 21607244]
[http://dx.doi.org/10.1038/35104644] [PMID: 11713543]
[http://dx.doi.org/10.1002/adma.200802290]
[http://dx.doi.org/10.1021/jp904209k]
[http://dx.doi.org/10.1021/cm9007014]
[http://dx.doi.org/10.1021/jp1102109]
[http://dx.doi.org/10.1021/nn100592d] [PMID: 20593844]
[http://dx.doi.org/10.1007/s10971-020-05362-4]
[http://dx.doi.org/10.1016/j.vacuum.2020.109635]
[http://dx.doi.org/10.1021/acsami.9b22679] [PMID: 32078288]
[http://dx.doi.org/10.3390/electronics9020254]
[http://dx.doi.org/10.1016/j.vacuum.2018.11.025]
[http://dx.doi.org/10.1007/s10854-016-6101-1]
[http://dx.doi.org/10.1039/C6RA21444D]
[http://dx.doi.org/10.1007/s11671-008-9135-3]
[http://dx.doi.org/10.1016/j.matchemphys.2005.10.006]
[http://dx.doi.org/10.1016/j.progsurf.2005.09.002]
[http://dx.doi.org/10.1063/1.347400]
[http://dx.doi.org/10.1016/j.jallcom.2010.06.131]
[http://dx.doi.org/10.1063/1.3295328]
[http://dx.doi.org/10.1016/j.jcis.2010.02.031] [PMID: 20219206]
[http://dx.doi.org/10.1016/j.apsusc.2019.03.209]
[http://dx.doi.org/10.1016/j.mssp.2017.07.017]
[http://dx.doi.org/10.1016/j.ceramint.2021.06.063]
[http://dx.doi.org/10.1166/jnn.2017.14358]
[http://dx.doi.org/10.1016/j.apsusc.2020.146794]
[http://dx.doi.org/10.1155/2021/5102014]
[http://dx.doi.org/10.1007/s10854-022-07716-w]
[http://dx.doi.org/10.1149/10701.3739ecst]
[http://dx.doi.org/10.1007/s10854-022-09808-z]
[http://dx.doi.org/10.1007/s00339-020-03758-1]
[http://dx.doi.org/10.1063/1.5032973]
[http://dx.doi.org/10.1088/1742-6596/2070/1/012071]
[http://dx.doi.org/10.1016/j.matpr.2023.05.207]