Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Determination of Novel SARS-CoV-2 Inhibitors by Combination of Machine Learning and Molecular Modeling Methods

Author(s): Ersin Güner, Özgür Özkan, Gözde Yalcin-Ozkat and Süreyya Ölgen*

Volume 20, Issue 2, 2024

Published on: 08 November, 2023

Page: [153 - 231] Pages: 79

DOI: 10.2174/0115734064265609231026063624

Price: $65

Abstract

Introduction: Within the scope of the project, this study aimed to find novel inhibitors by combining computational methods. In order to design inhibitors, it was aimed to produce molecules similar to the RdRp inhibitor drug Favipiravir by using the deep learning method.

Methods: For this purpose, a Trained Neural Network (TNN) was used to produce 75 molecules similar to Favipiravir by using Simplified Molecular Input Line Entry System (SMILES) representations. The binding properties of molecules to Viral RNA-dependent RNA polymerase (RdRp) were studied by using molecular docking studies. To confirm the accuracy of this method, compounds were also tested against 3CL protease (3CLpro), which is another important enzyme for the progression of SARS-CoV-2. Compounds having better binding energies and RMSD values than favipiravir were searched with similarity analysis on the ChEMBL drug database in order to find similar structures with RdRp and 3CLpro inhibitory activities.

Results: A similarity search found new 200 potential RdRp and 3CLpro inhibitors structurally similar to produced molecules, and these compounds were again evaluated for their receptor interactions with molecular docking studies. Compounds showed better interaction with RdRp protease than 3CLpro. This result presented that artificial intelligence correctly produced structures similar to favipiravir that act more specifically as RdRp inhibitors. In addition, Lipinski's rules were applied to the molecules that showed the best interaction with RdRp, and 7 compounds were determined to be potential drug candidates. Among these compounds, a Molecular Dynamic simulation study was applied for ChEMBL ID:1193133 to better understand the existence and duration of the compound in the receptor site.

Conclusion: The results confirmed that the ChEMBL ID:1193133 compound showed good Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), hydrogen bonding, and remaining time in the active site; therefore, it was considered that it could be active against the virus. This compound was also tested for antiviral activity, and it was determined that it did not delay viral infection, although it was cytotoxic between 5mg/mL-1.25mg/mL concentrations. However, if other compounds could be tested, it might provide a chance to obtain activity, and compounds should also be tested against the enzymes as well as the other types of viruses.

Graphical Abstract

[1]
Cully, M. A tale of two antiviral targets — and the COVID-19 drugs that bind them. Nat. Rev. Drug Discov., 2022, 21(1), 3-5.
[http://dx.doi.org/10.1038/d41573-021-00202-8] [PMID: 34857884]
[2]
Imran, M.; Kumar, A.M.; Asdaq, S.M.B.; Khan, S.A.; Alaqel, S.I.; Alshammari̇, M.K.; Alshehri, M.M.; Alshrari, A.S.; Mateq Ali, A.; Al-shammeri, A.M.; Alhazmi, B.D.; Harshan, A.A.; Alam, M.T.; Abida, A. Discovery, development, and patent trends on molnupiravir: a prospective oral treatment for COVID-19. Molecules, 2021, 26(19), 5795.
[http://dx.doi.org/10.3390/molecules26195795] [PMID: 34641339]
[3]
Jayk Bernal, A.; Gomes da Si̇lva, M.M.; Musungai̇e, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos, R.V.; Martín-Quirós, A.; Caraco, Y. Williams-Diaz, A.; Brown, M.L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J.A.; Shamsuddin, H.H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J.R.; Johnson, M.G.; De Anda, C. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N. Engl. J. Med., 2022, 386(6), 509-520.
[http://dx.doi.org/10.1056/NEJMoa2116044] [PMID: 34914868]
[4]
Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berri̇tt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; Dantonio, A.; Di, L.; Eng, H.; Ferre, R.; Gajiwala, K.S.; Gibson, S.A.; Greasley, S.E.; Hurst, B.L.; Kadar, E.P.; Kalgutkar, A.S.; Lee, J.C.; Lee, J.; Liu, W.; Mason, S.W.; Noell, S.; Novak, J.J.; Obach, R.S.; Ogilvie, K.; Patel, N.C.; Pettersson, M.; Rai, D.K.; Reese, M.R.; Sammons, M.F.; Sathish, J.G.; Singh, R.S.P.; Steppan, C.M.; Stewart, A.E.; Tuttle, J.B.; Updyke, L.; Verhoest, P.R.; Wei, L.; Yang, Q.; Zhu, Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374(6575), 1586-1593.
[http://dx.doi.org/10.1126/science.abl4784] [PMID: 34726479]
[5]
Greasley, S.E.; Noell, S.; Plotni̇kova, O.; Ferre, R.; Li̇u, W.; Bolanos, B. Structural basis for nirmatrelvir in vitro efficacy against the omicron variant of SARS-COV-2. Bi̇orxi̇v, 2022, 298(6), 101972.
[6]
Ali̇per, A.; Pli̇s, S.; Artemov, A.; Ulloa, A.; Mamoshi̇na, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm., 2016, 13(7), 2524-2530.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00248] [PMID: 27200455]
[7]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Li̇u, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[8]
Ni̇guyen, D.D.; Gao, K.; Chen, J.; Wang, R.; Wi̇e, G.W. Potentially highly potent drugs for 2019-nCoV; Bi̇orxi̇v, 2020.
[http://dx.doi.org/10.1101/2020.02.05.936013]
[9]
Ivanov, J.; Polshakov, D.; Kato-Weinstein, J.; Zhou, Q.; Li̇, Y.; Granet, R.; Garner, L.; Deng, Y.; Liu, C.; Albaiu, D.; Wilson, J.; Aultman, C. Quantitative structure−activity relationship machine learning models and their applications for identifying viral 3CLpro- and RdRp-targeting compounds as potential therapeutics for COVID-19 and related viral ınfections. ACS Omega, 2020, 5(42), 27344-27358.
[http://dx.doi.org/10.1021/acsomega.0c03682] [PMID: 33134697]
[10]
Gawri̇ljuk, V.O.; Zi̇n, P.P.K.; Foi̇l, D.H.; Bernatchez, J.; Beck, S.; Beutler, N. Machine learning models identify ınhibitors of SARSCOV-2. bı̇orxı̇v, 2020.
[http://dx.doi.org/10.1101/2020.06.16.154765]
[11]
Haneczok, J.; Deli̇jewski̇, M. Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors based on fixed molecular fingerprints and Graph-CNN neural. J. Biomed. Inform., 2021, 119, 103821.
[http://dx.doi.org/10.1016/j.jbi.2021.103821]
[12]
Ghosh, A.; Chakraborty, M.; Chandra, A.; Alam, M.P. Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (Mpro) of SARS-CoV-2. J. Mol. Model., 2021, 27(3), 97.
[http://dx.doi.org/10.1007/s00894-021-04703-6] [PMID: 33641023]
[13]
Kadi̇oglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med., 2021, 133, 104359.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104359] [PMID: 33845270]
[14]
Rajput, A.; Thakur, A.; Mukhopadhyay, A.; Kamboj, S.; Rastogi̇, A.; Gautam, S.; Jassal, H.; Kumar, M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput. Struct. Biotechnol. J., 2021, 19, 3133-3148.
[http://dx.doi.org/10.1016/j.csbj.2021.05.037] [PMID: 34055238]
[15]
Parks, J.M.; Smi̇th, J.C. How to discover antiviral drugs quickly. N. Engl. J. Med., 2020, 382(23), 2261-2264.
[http://dx.doi.org/10.1056/NEJMcibr2007042] [PMID: 32433861]
[16]
Kosti̇as, P.; Bjerrum, E.J. Pcko1/deep-drug-coder: first stable release. 2021. Available From: https://github.com/pcko1/Deep-Drug-Coder
[17]
Morri̇s, G.M.; Huey, R.; Li̇ndstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[18]
Naydenova, K.; Muir, K.W.; Wu, L.F.; Zhang, Z.; Cosci̇a, F.; Peet, M.J.; Castro-Hartmann, P.; Qian, P.; Sader, K.; Dent, K.; Kimanius, D.; Sutherland, J.D.; Löwe, J.; Barford, D.; Russo, C.J. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc. Natl. Acad. Sci. USA, 2021, 118(7), e2021946118.
[http://dx.doi.org/10.1073/pnas.2021946118] [PMID: 33526596]
[19]
Huey, R.; Morri̇s, G.M.; Forli̇, S. Using autodock 4 and autodock vina with autodocktools: a tutorial. Scri̇pps Res. İnst. Mol. Graph. Lab., 2012, 10550, 92037.
[20]
Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Vei̇j, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; Gordillo-Marañón, M.; Hunter, F.; Junco, L.; Mugumbate, G.; Rodriguez-Lopez, M.; Atkinson, F.; Bosc, N.; Radoux, C.J.; Segura-Cabrera, A.; Hersey, A.; Leach, A.R. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res., 2019, 47(D1), D930-D940.
[http://dx.doi.org/10.1093/nar/gky1075] [PMID: 30398643]
[21]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[22]
Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti̇, D.S. Available From: https://ambermd.org/AmberMD.php
[23]
Bayly, C.I.; Ci̇eplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem., 1993, 97(40), 10269-10280.
[http://dx.doi.org/10.1021/j100142a004]
[24]
Jakali̇an, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem., 2002, 23(16), 1623-1641.
[http://dx.doi.org/10.1002/jcc.10128] [PMID: 12395429]
[25]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[26]
Yang, Z.; Lasker, K.; Schnei̇dman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J. Struct. Biol., 2012, 179(3), 269-278.
[http://dx.doi.org/10.1016/j.jsb.2011.09.006] [PMID: 21963794]
[27]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[28]
Swiss Institute of Bioinformatics. Swiss ADMET Prediction. 2022. Available From: http://swissadme.ch/
[29]
Bento, A.P.; Gaulton, A.; Hersey, A.; Belli̇s, L.J.; Chambers, J.; Davi̇es, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: an update. Nucleic Acids Res., 2014, 42(D1), D1083-D1090.
[http://dx.doi.org/10.1093/nar/gkt1031] [PMID: 24214965]
[30]
Davi̇es, M.; Nowotka, M.; Papadatos, G.; Dedman, N.; Gaulton, A.; Atki̇nson, F.; Bellis, L.; Overington, J.P. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res., 2015, 43(W1), W612-W620.
[http://dx.doi.org/10.1093/nar/gkv352] [PMID: 25883136]
[31]
Li̇pi̇nski̇, C.A.; Lombardo, F.; Domi̇ny, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[32]
Thakur, A.; Sharma, G.; Badavath, V.N.; Jayaprakash, V.; Merz, K.M., Jr; Blum, G.; Acevedo, O. Primer for designing main protease (M pro) inhibitors of SARS-CoV-2. J. Phys. Chem. Lett., 2022, 13(25), 5776-5786.
[http://dx.doi.org/10.1021/acs.jpclett.2c01193] [PMID: 35726889]
[33]
Burmaoglu, S.; Kazanci̇oglu, E.A.; Kazanci̇oglu, M.Z.; Sağlamtaş, R.; Yalci̇n, G.; Gulci̇n, I.; Algul, O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J. Mol. Struct., 2022, 1254, 132358.
[http://dx.doi.org/10.1016/j.molstruc.2022.132358]
[34]
Dassault systèmes. Dı̇scovery Studı̇o Vı̇sualı̇zer. 2021. Available From: https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php
[35]
Durdagi, S.; Avsar, T.; Orhan, M.D.; Serhatli, M.; Balcioglu, B.K.; Ozturk, H.U.; Kayabolen, A.; Cetin, Y.; Aydinlik, S.; Bagci-Onder, T.; Tekin, S.; Demirci, H.; Guzel, M.; Akdemir, A.; Calis, S.; Oktay, L.; Tolu, I.; Butun, Y.E.; Erdemoglu, E.; Olkan, A.; Tokay, N.; Işık, Ş.; Ozcan, A.; Acar, E.; Buyukkilic, S.; Yumak, Y. The neutralization effect of montelukast on SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies. Mol. Ther., 2022, 30(2), 963-974.
[http://dx.doi.org/10.1016/j.ymthe.2021.10.014] [PMID: 34678509]
[36]
Driouich, J.S.; Cochin, M.; Lingas, G.; Moureau, G.; Touret, F.; Petit, P.R.; Piorkowski, G.; Barthélémy, K.; Laprie, C.; Coutard, B.; Guedj, J.; de Lamballerie, X.; Solas, C.; Nougairède, A. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat. Commun., 2021, 12(1), 1735.
[http://dx.doi.org/10.1038/s41467-021-21992-w] [PMID: 33741945]
[37]
Pizzorno, A.; Padey, B.; Dubois, J.; Julien, T.; Traversier, A.; Dulière, V.; Brun, P.; Lina, B.; Rosa-Calatrava, M.; Terrier, O. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res., 2020, 181, 104878.
[http://dx.doi.org/10.1016/j.antiviral.2020.104878] [PMID: 32679055]
[38]
Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178, 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[39]
Bazzoli, C.; Jullien, V.; Le Tiec, C.; Rey, E.; Mentré, F.; Taburet, A.M. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin. Pharmacokinet., 2010, 49(1), 17-45.
[http://dx.doi.org/10.2165/11318110-000000000-00000] [PMID: 20000887]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy