Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

In silico Evaluation of Ferulic Acid Based Multifunctional Conjugates as Potential Drug Candidates

Author(s): Hayat A. Al-Btoush* and Mahmoud A. Al-Sha'er

Volume 20, Issue 2, 2024

Published on: 18 December, 2023

Page: [232 - 244] Pages: 13

DOI: 10.2174/1573406419666230713161434

Price: $65

Abstract

Background: Recent research has shown that ferulic acid (FA, trans-4-hydroxy-3- methoxycinnamic acid) has remarkable antioxidant properties and a wide range of biological activities. Conjugation of two or more biologically active compounds to produce a novel molecular scaffold is justified by the need to enhance biological activity against a single target or obtain a conjugate that behaves as a multi-target-directed ligand. In addition, the conjugation strategy decreases dose-dependent side effects by promoting the use of smaller doses of conjugated components to treat the disease. Moreover, the patient's compliance is positively affected when conjugating two active compounds into a single more active compound as this reduces the number of pills to be taken daily.

Objective: This study aims to shed light on studies that design and synthesize FA-based hybrid compounds with enhanced biological activities and to in silico assess these compounds as potential drug candidates.

Methods: The conjugate compounds were found by searching the literature using the keywords (ferulic acid-based hybrid or ferulic acid-based conjugate). To study conjugate pharmacokinetic parameters and toxicity (ADMET), software suites from Biovia Inc. (San Diego, California) were integrated into Discovery Studio 4.5. The structures were created using ChemDraw Ultra 7.0.

Results: 14 conjugates exhibiting variable biological activities were collected and three of them (compounds 3,5, and 6) in addition to the cis FA (compound 12) are the best-predicted compounds with low Daphnia toxicity and hepatotoxicity with acceptable pharmacokinetic properties.

Conclusion: Cis FA, FA conjugates 3,5, and 6 act as good drug candidates that can be used to modify new hits.

« Previous
Graphical Abstract

[1]
Li, D.; Rui, Y.; Guo, S.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci., 2021, 284, 119921.
[http://dx.doi.org/10.1016/j.lfs.2021.119921] [PMID: 34481866]
[2]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep., 2014, 4(1), 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[3]
Masai, E.; Harada, K.; Peng, X.; Kitayama, H.; Katayama, Y.; Fukuda, M. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol., 2002, 68(9), 4416-4424.
[http://dx.doi.org/10.1128/AEM.68.9.4416-4424.2002] [PMID: 12200295]
[4]
Tokura, H.T.S. Analysis of glycans/polysaccharide functional properties itle. Compr. Glycosci. Chem. Syst. Biol., 2007, 2, 449-475.
[http://dx.doi.org/10.1134/S0006297909070177]
[5]
Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med., 1992, 13(4), 435-448.
[http://dx.doi.org/10.1016/0891-5849(92)90184-I] [PMID: 1398220]
[6]
Itagaki, S.; Kurokawa, T.; Nakata, C.; Saito, Y.; Oikawa, S.; Kobayashi, M.; Hirano, T.; Iseki, K. in vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chem., 2009, 114(2), 466-471.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.073]
[7]
Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr., 2007, 40(2), 92-100.
[http://dx.doi.org/10.3164/jcbn.40.92] [PMID: 18188410]
[8]
Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem., 2012, 60(50), 12312-12323.
[http://dx.doi.org/10.1021/jf304076z] [PMID: 23157164]
[9]
Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem., 2002, 50(7), 2161-2168.
[http://dx.doi.org/10.1021/jf011348w] [PMID: 11902973]
[10]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[11]
Koufaki, M.; Detsi, A.; Kiziridi, C. Multifunctional lipoic acid conjugates. Curr. Med. Chem., 2009, 16(35), 4728-4742.
[http://dx.doi.org/10.2174/092986709789878274] [PMID: 19903137]
[12]
Sgarbossa, A.; Giacomazza, D.; Di Carlo, M. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients, 2015, 7(7), 5764-5782.
[http://dx.doi.org/10.3390/nu7075246] [PMID: 26184304]
[13]
Zhu, J.; Yang, H.; Chen, Y.; Lin, H.; Li, Q.; Mo, J.; Bian, Y.; Pei, Y.; Sun, H. Synthesis, pharmacology and molecular docking on multi-functional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 496-506.
[http://dx.doi.org/10.1080/14756366.2018.1430691] [PMID: 29405075]
[14]
Mo, J.; Yang, H.; Chen, T.; Li, Q.; Lin, H.; Feng, F.; Liu, W.; Qu, W.; Guo, Q.; Chi, H.; Chen, Y.; Sun, H. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorg. Chem., 2019, 93, 103310.
[http://dx.doi.org/10.1016/j.bioorg.2019.103310] [PMID: 31586704]
[15]
Meunier, J.; Ieni, J.; Maurice, T. The anti‐amnesic and neuroprotective effects of donepezil against amyloid β 25‐35 peptide‐induced toxicity in mice involve an interaction with the σ1 receptor. Br. J. Pharmacol., 2006, 149(8), 998-1012.
[http://dx.doi.org/10.1038/sj.bjp.0706927] [PMID: 17057756]
[16]
Xu, W.; Wang, X-B.; Wang, Z-M.; Wu, J-J.; Li, F.; Wang, J.; Kong, L-Y. Synthesis and evaluation of donepezil–ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. MedChemComm, 2016, 7(5), 990-998.
[http://dx.doi.org/10.1039/C6MD00053C]
[17]
Müller, M.K.; Jacobi, E.; Sakimura, K.; Malinow, R.; von Engelhardt, J. NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice. Acta Neuropathol. Commun., 2018, 6(1), 110.
[http://dx.doi.org/10.1186/s40478-018-0611-4] [PMID: 30352630]
[18]
Hardingham, G.E.; Fukunaga, Y.; Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci., 2002, 5(5), 405-414.
[http://dx.doi.org/10.1038/nn835] [PMID: 11953750]
[19]
Tu, S.; Okamoto, S.; Lipton, S.A.; Xu, H. Oligomeric A β -induced synaptic dysfunction in Alzheimer ’ s disease. Mol. Neurodegeneration, 2014, 9(48), 1-12.
[http://dx.doi.org/10.1186/1750-1326-9-48]
[20]
Takahashi, H.; Xia, P.; Cui, J.; Talantova, M.; Bodhinathan, K.; Li, W.; Saleem, S.; Holland, E.A.; Tong, G.; Piña-Crespo, J.; Zhang, D.; Nakanishi, N.; Larrick, J.W.; McKercher, S.R.; Nakamura, T.; Wang, Y.; Lipton, S.A. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Sci. Rep., 2015, 5(1), 14781.
[http://dx.doi.org/10.1038/srep14781] [PMID: 26477507]
[21]
Rosini, M.; Simoni, E.; Caporaso, R.; Basagni, F.; Catanzaro, M.; Abu, I.F.; Fagiani, F.; Fusco, F.; Masuzzo, S.; Albani, D.; Lanni, C.; Mellor, I.R.; Minarini, A. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem., 2019, 180, 111-120.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.011] [PMID: 31301562]
[22]
Tripathi, A.; Choubey, P.K.; Sharma, P.; Seth, A.; Saraf, P.; Shrivastava, S.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 95, 103506.
[http://dx.doi.org/10.1016/j.bioorg.2019.103506] [PMID: 31887472]
[23]
Kasim, S.M.; Al-Dabbagh, B.M.; Mustafa, Y.F. A review on the biological potentials of carbazole and its derived products. Eurasian Chem. Commun., 2022, 4(6), 495-512.
[http://dx.doi.org/10.22034/ecc.2022.334196.1377]
[24]
Bachurin, S.O.; Shevtsova, E.F.; Makhaeva, G.F.; Grigoriev, V.V.; Boltneva, N.P.; Kovaleva, N.V.; Lushchekina, S.V.; Shevtsov, P.N.; Neganova, M.E.; Redkozubova, O.M.; Gabrelyan, A.V.; Fisenko, V.P.; Sokolov, V.B.; Aksinenko, A.Y.; Echeverria, V.; Barreto, G.E.; Aliev, G. Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment. Sci. Rep., 2017, 7, 45627.
[http://dx.doi.org/10.1038/srep45627] [PMID: 28358144]
[25]
Elmabruk, A. Carbazole based multifunctional dopamine agonists and related molecules as potential symptomatic and disease-modifying therapeutic agents for Parkinson’s Disease; Wayne State University: Detroit, Michigan, USA, 2018.
[26]
Fang, L.; Chen, M.; Liu, Z.; Fang, X.; Gou, S.; Chen, L. Ferulic acid–carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorg. Med. Chem., 2016, 24(4), 886-893.
[http://dx.doi.org/10.1016/j.bmc.2016.01.010] [PMID: 26795115]
[27]
Gu, Y.; Zhang, Y.; Li, M.; Huang, Z.; Jiang, J.; Chen, Y.; Chen, J.; Jia, Y.; Zhang, L.; Zhou, F. Ferulic acid ameliorates atherosclerotic injury by modulating gut microbiota and lipid metabolism. Front. Pharmacol., 2021, 12, 621339.
[http://dx.doi.org/10.3389/fphar.2021.621339] [PMID: 33841148]
[28]
Kwon, E.Y.; Do, G.M.; Cho, Y.Y.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Anti-atherogenic property of ferulic acid in apolipoprotein E-deficient mice fed Western diet: Comparison with clofibrate. Food Chem. Toxicol., 2010, 48(8-9), 2298-2303.
[http://dx.doi.org/10.1016/j.fct.2010.05.063] [PMID: 20573577]
[29]
Wu, X.; Hu, Z.; Zhou, J.; Liu, J.; Ren, P.; Huang, X. Ferulic acid alleviates atherosclerotic plaques by inhibiting VSMC proliferation through the NO/p21 signaling pathway. J. Cardiovasc. Transl. Res., 2022, 15(4), 865-875.
[http://dx.doi.org/10.1007/s12265-021-10196-8] [PMID: 34993756]
[30]
Gori, T. Exogenous no therapy for the treatment and prevention of atherosclerosis. Int. J. Mol. Sci., 2020, 21(8), 2703.
[http://dx.doi.org/10.3390/ijms21082703] [PMID: 32295055]
[31]
Cena, C.; Boschi, D.; Tron, G.C.; Chegaev, K.; Lazzarato, L.; Stilo, A.D.; Aragno, M.; Fruttero, R.; Gasco, A. Development of a new class of potential antiatherosclerosis agents: NO-donor antioxidants. Bioorg. Med. Chem. Lett., 2004, 14(24), 5971-5974.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.006] [PMID: 15546710]
[32]
Boschi, D.; Tron, G.C.; Lazzarato, L.; Chegaev, K.; Cena, C.; Di Stilo, A.; Giorgis, M.; Bertinaria, M.; Fruttero, R.; Gasco, A. NO-donor phenols: A new class of products endowed with antioxidant and vasodilator properties. J. Med. Chem., 2006, 49(10), 2886-2897.
[http://dx.doi.org/10.1021/jm0510530] [PMID: 16686532]
[33]
Li, N.G.; Wang, R.; Shi, Z-H.; Tang, Y-P.; Li, B-Q.; Wang, Z-J.; Song, S-L.; Qian, L-H.; Wei, L.; Yang, J-P.; Yao, L-J.; Xi, J-Z.; Xu, J.; Feng, F.; Qian, D-W.; Duan, J-A. Design and synthesis of novel NO-donor-ferulic acid hybrids as potential antiatherosclerotic drug candi-datesa. Drug Dev. Res., 2011, 72(5), 405-415.
[http://dx.doi.org/10.1002/ddr.20442]
[34]
Stompor-Gorący, M.; Machaczka, M. Recent advances in biological activity, new formulations and prodrugs of ferulic acid. Int. J. Mol. Sci., 2021, 22(23), 12889.
[http://dx.doi.org/10.3390/ijms222312889]
[35]
Turner, M.D.; Sale, C.; Garner, A.C.; Hipkiss, A.R. Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(11), 119117.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119117] [PMID: 34384791]
[36]
Aljawish, A.; Chevalot, I.; Madad, N.; Paris, C.; Muniglia, L. Laccase mediated-synthesis of hydroxycinnamoyl-peptide from ferulic acid and carnosine. J. Biotechnol., 2016, 227, 83-93.
[http://dx.doi.org/10.1016/j.jbiotec.2016.04.021] [PMID: 27084055]
[37]
Han, X.; Wei, T.; Jiang, H.; Li, W.; Zhang, G. Enhanced water solubility, stability, and in vitro antitumor activity of ferulic acid by chemical conjugation with amino-β-cyclodextrins. J. Mater. Sci., 2020, 55(20), 8694-8709.
[http://dx.doi.org/10.1007/s10853-020-04621-7]
[38]
Fukuyo, Y.; Hunt, C.R.; Horikoshi, N. Geldanamycin and its anti-cancer activities. Cancer Lett., 2010, 290(1), 24-35.
[http://dx.doi.org/10.1016/j.canlet.2009.07.010] [PMID: 19850405]
[39]
Li, Z.; Jia, L.; Tang, H.; Shen, Y.; Shen, C. Synthesis and biological evaluation of geldanamycin–ferulic acid conjugate as a potent Hsp90 inhibitor. RSC Advances, 2019, 9(72), 42509-42515.
[http://dx.doi.org/10.1039/C9RA08665J] [PMID: 35542888]
[40]
Yin, Z.N.; Wu, W.J.; Sun, C.Z.; Liu, H.F.; Chen, W.B.; Zhan, Q.P.; Lei, Z.G.; Xin, X.; Ma, J.J.; Yao, K.; Min, T.; Zhang, M.M.; Wu, H. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of aspergillus niger. Biomed. Environ. Sci., 2019, 32(1), 11-21.
[http://dx.doi.org/10.3967/BES2019.002] [PMID: 30696535]
[41]
Shi, Y.; Chen, X.; Qiang, S.; Su, J.; Li, J.; Lo Muzio, L. Anti-oxidation and anti-inflammatory potency evaluation of ferulic acid derivatives obtained through virtual screening. Int. J. Mol. Sci., 2021, 22(21), 11305.
[http://dx.doi.org/10.3390/ijms222111305] [PMID: 34768735]
[42]
Liu, Y.; Shi, L.; Qiu, W.; Shi, Y. Ferulic acid exhibits anti-inflammatory effects by inducing autophagy and blocking NLRP3 inflam-masome activation. Mol. Cell. Toxicol., 2022, 18(4), 509-519.
[http://dx.doi.org/10.1007/s13273-021-00219-5] [PMID: 35035494]
[43]
Zhu, H.; Liang, Q-H.; Xiong, X-G.; Chen, J.; Wu, D.; Wang, Y.; Yang, B.; Zhang, Y.; Zhang, Y.; Huang, X. Anti-inflammatory effects of the bioactive compound ferulic acid contained in oldenlandia diffusa on collagen-induced arthritis in rats. Evid. Based Complement. Alternat. Med., 2014, 2014, 573801.
[http://dx.doi.org/10.1155/2014/573801] [PMID: 24883069]
[44]
Kwon, M.Y.; Kim, S.M.; Park, J.; Lee, J.; Cho, H.; Lee, H.; Jeon, C.; Park, J.H.; Han, I.O. A caffeic acid-ferulic acid hybrid compound attenuates lipopolysaccharide-mediated inflammation in BV2 and RAW264.7 cells. Biochem. Biophys. Res. Commun., 2019, 515(4), 565-571.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.005] [PMID: 31178135]
[45]
Paquin, A.; Reyes-Moreno, C.; Bérubé, G. Recent advances in the use of the dimerization strategy as a means to increase the biological potential of natural or synthetic molecules. Molecules, 2021, 26(8), 2340.
[http://dx.doi.org/10.3390/molecules26082340] [PMID: 33920597]
[46]
Hirata, A.; Murakami, Y.; Atsumi, T.; Shoji, M.; Ogiwara, T.; Shibuya, K.; Ito, S.; Yokoe, I.; Fujisawa, S. Ferulic acid dimer inhibits lipo-polysaccharide-stimulated cyclooxygenase-2 expression in macrophages. In Vivo, 2005, 19(5), 849-853.
[PMID: 16097437]
[47]
Ou, S.; Kwok, K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric., 2004, 84(11), 1261-1269.
[http://dx.doi.org/10.1002/jsfa.1873]
[48]
Eom, S.H.; Kang, S.K.; Lee, D.S.; Myeong, J.I.; Lee, J.; Kim, H.W.; Kim, K.H.; Je, J.Y.; Jung, W.K.; Kim, Y.M. Synergistic antibacterial effect and antibacterial action mode of chitosan-ferulic acid conjugate against methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol., 2016, 26(4), 784-789.
[http://dx.doi.org/10.4014/jmb.1511.11046] [PMID: 26718468]
[49]
Lee, D.S.; Woo, J.Y.; Ahn, C.B.; Je, J.Y. Chitosan–hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chem., 2014, 148, 97-104.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.019] [PMID: 24262532]
[50]
Chen, Y.; Wang, F. Review on the preparation, biological activities and applications of curdlan and its derivatives. Eur. Polym. J., 2020, 141, 110096.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110096]
[51]
Chaudhari, V.; Buttar, H.S.; Bagwe-Parab, S.; Tuli, H.S.; Vora, A.; Kaur, G. Therapeutic and industrial applications of curdlan with overview on its recent patents. Front. Nutr., 2021, 8, 646988.
[http://dx.doi.org/10.3389/fnut.2021.646988] [PMID: 34262922]
[52]
Spizzirri, U.G.; Iemma, F.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Picci, N. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules, 2009, 10(7), 1923-1930.
[http://dx.doi.org/10.1021/bm900325t] [PMID: 19413362]
[53]
Cai, W.D.; Zhu, J.; Wu, L.X.; Qiao, Z.R.; Li, L.; Yan, J.K. Preparation, characterization, rheological and antioxidant properties of ferulic acid-grafted curdlan conjugates. Food Chem., 2019, 300, 125221.
[http://dx.doi.org/10.1016/j.foodchem.2019.125221] [PMID: 31351256]
[55]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[56]
Cheng, A.; Merz, K.M. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure−property relationships. J. Med. Chem., 2003, 46, 3572-3580.
[57]
Cheng, A.; Dixon, S.L. in silico models for the prediction of dose-dependent human hepatotoxicity. J. Comput. Aided Mol. Des., 2003, 17(12), 811-823.
[http://dx.doi.org/10.1023/B:JCAM.0000021834.50768.c6] [PMID: 15124930]
[58]
Persoone, G.; Baudo, R.; Cotman, M.; Blaise, C.; Thompson, K.C.; Moreira-Santos, M.; Vollat, B.; Törökne, A.; Han, T. Review on the acute Daphnia magna toxicity test – Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl. Manag. Aquat. Ecosyst., 2009, (393), 01.
[http://dx.doi.org/10.1051/kmae/2009012]
[59]
Al-Sha’er, M.A.; Basheer, H.A.; Taha, M.O. Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores. Mol. Divers., 2022, 27(1), 443-462.
[http://dx.doi.org/10.1007/s11030-022-10434-4] [PMID: 35507210]
[60]
Al-Mustafa, A.; Al-Zereini, W.; Ashram, M.; Al-Sha’er, M. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med. Chem. Res., 2022, 32, 239-253.
[http://dx.doi.org/10.1007/s00044-022-02999-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy