Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Advancements in Nanotechnology for Enhanced Antifungal Drug Delivery: A Comprehensive Review

Author(s): Rajat Srivastava*, Ajay Kumar Singh Rawat, Manoj Kumar Mishra and Amit Kumar Patel

Volume 24, Issue 2, 2024

Published on: 02 November, 2023

Article ID: e021123223053 Pages: 13

DOI: 10.2174/0118715265266257231022134933

Price: $65

Abstract

Infections caused by fungi can be mildly bothersome or fatal, causing life-threatening conditions or even death. Antifungal drugs have used synthetic chemicals, organic compounds, and phytoconstituents in their formulations to treat fungal infections. Research into novel antifungal drugs has progressed more rapidly than into antibacterial treatments. This can be attributed to the low resistance of fungal infections to antifungal bioactivities and the relatively low incidence of these diseases. Carrier systems based on nanotechnology have generated much interest recently because of the incredible potential of these systems. By using nanoarchitecture as a better carrier and drug delivery system (DDS), we can have greater antifungal effectiveness, bioavailability, targeted action, and less cytotoxicity, a development made possible using nanotechnology. This review discusses various nanocarrier-based technologies in addition to other nanotechnological methods. These include liposomes, transfersomes, ethosomes, niosomes, dendrimers, polymeric nanoparticles, polymer nanocomposites, metallic nanoparticles, carbon nanomaterials, etc.

This review focused on general information regarding fungi infections, different antifungal agent types and mechanisms of action, and an overview of formulation strategies such as nanotechnology systems, which are frequently researched for antifungal therapies.

We concluded that new drug delivery systems are crucial to delivering antifungal medicines to their target site with the optimum concentration. The researchers also concentrated on these innovative drug delivery systems, which primarily focus on regulating and maintaining the release of antifungal drugs.

Graphical Abstract

[1]
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2019; 109: 333-44.
[http://dx.doi.org/10.1016/j.biopha.2018.10.075] [PMID: 30399567]
[2]
Janbon G, Quintin J, Lanternier F, d’Enfert C. Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20(5): 403-14.
[http://dx.doi.org/10.1038/s41435-019-0071-2] [PMID: 31019254]
[3]
Sharma B, Nonzom S. Superficial mycoses, a matter of concern: Global and Indian scenario‐an updated analysis. Mycoses 2021; 64(8): 890-908.
[http://dx.doi.org/10.1111/myc.13264] [PMID: 33665915]
[4]
Souza ACO, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front Microbiol 2017; 8: 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]
[5]
Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asi J Pharmac Sci 2019; 14(2): 117-29.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007] [PMID: 32104444]
[6]
Vallabhaneni S, Mody RK, Walker T, Chiller T. The global burden of fungal diseases. Infect Dis Clin North Am 2016; 30(1): 1-11.
[http://dx.doi.org/10.1016/j.idc.2015.10.004] [PMID: 26739604]
[7]
Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020; 13(9): 248.
[http://dx.doi.org/10.3390/ph13090248] [PMID: 32942693]
[8]
Grover S, Roy P. Clinico-mycological profile of superficial mycosis in a hospital in North-East India. Med J Armed Forces India 2003; 59(2): 114-6.
[http://dx.doi.org/10.1016/S0377-1237(03)80053-9] [PMID: 27407482]
[9]
Brown AJP, Gow NAR, Warris A, Brown GD. Memory in fungal pathogens promotes immune evasion, colonisation, and infection. Trends Microbiol 2019; 27(3): 219-30.
[http://dx.doi.org/10.1016/j.tim.2018.11.001] [PMID: 30509563]
[10]
Hay R. Therapy of skin, hair and nail fungal infections. J Fungi 2018; 4(3): 99.
[http://dx.doi.org/10.3390/jof4030099]
[11]
Rai M, Ingle AP, Pandit R, et al. Nanotechnology for the treatment of fungal infections on human skin. The Microbiology of Skin, Soft Tissue, Bone and Joint Infections. Elsevier 2017; pp. 169-84.
[http://dx.doi.org/10.1016/B978-0-12-811079-9.00019-7]
[12]
Shields BE, Rosenbach M, Brown-Joel Z, Berger AP, Ford BA, Wanat KA. Angioinvasive fungal infections impacting the skin. J Am Acad Dermatol 2019; 80(4): 869-880.e5.
[http://dx.doi.org/10.1016/j.jaad.2018.04.059] [PMID: 30102951]
[13]
Li Y, Wei W, An S, et al. Identification and analysis of lncRNA, microRNA and mRNA expression profiles and construction of ceRNA network in Talaromyces marneffei -infected THP-1 macrophage. PeerJ 2021; 9: e10529.
[http://dx.doi.org/10.7717/peerj.10529] [PMID: 33520437]
[14]
Noé W, Murhekar S, White A, Davis C, Cock IE. Inhibition of the growth of human dermatophytic pathogens by selected australian and asian plants traditionally used to treat fungal infections. J Mycol Med 2019; 29(4): 331-44.
[http://dx.doi.org/10.1016/j.mycmed.2019.05.003] [PMID: 31248775]
[15]
Mishra V, Singh M, Mishra Y, et al. Nanoarchitectures in management of fungal diseases: An overview. Appl Sci 2021; 11(15): 7119.
[http://dx.doi.org/10.3390/app11157119]
[16]
Cohen L, Seminario-Vidal L, Lockey RF. Dermatologic problems commonly seen by the allergist/immunologist. J Allergy Clin Immunol Pract 2020; 8(1): 102-12.
[http://dx.doi.org/10.1016/j.jaip.2019.07.019] [PMID: 31351991]
[17]
Khurana A, Sardana K, Chowdhary A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet Biol 2019; 132: 103255.
[http://dx.doi.org/10.1016/j.fgb.2019.103255] [PMID: 31330295]
[18]
Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence 2017; 8(2): 222-36.
[http://dx.doi.org/10.1080/21505594.2016.1257457] [PMID: 27820668]
[19]
Nivoix Y, Ledoux MP, Herbrecht R. Antifungal therapy: New and evolving therapies. Semin Respir Crit Care Med 2020; 41(1): 158-74.
[http://dx.doi.org/10.1055/s-0039-3400291] [PMID: 32000291]
[20]
Carmona EM, Limper AH. Overview of treatment approaches for fungal infections. Clin Chest Med 2017; 38(3): 393-402.
[http://dx.doi.org/10.1016/j.ccm.2017.04.003] [PMID: 28797484]
[21]
Kumar Nigam P. Antifungal drugs and resistance: Current concepts. Nasza Dermatol Online 2015; 6(2): 212-21.
[http://dx.doi.org/10.7241/ourd.20152.58]
[22]
Alghuthaymi M A, Hassan A A, Kalia A, et al. Antifungal nano-therapy in veterinary medicine: Current status and future prospects. J Fungi 2021; 7(7): 494.
[http://dx.doi.org/10.3390/jof7070494]
[23]
Patil A, Mishra V, Thakur S, et al. Nanotechnology derived nanotools in biomedical perspectives: An update. Curr Nanosci 2018; 15(2): 137-46.
[http://dx.doi.org/10.2174/1573413714666180426112851]
[24]
Zhang Y, Huang L. Liposomal delivery system. Nanoparticles Biomed Appl Fundam Concepts, Biol Interact Clin Appl 2020; 145-52.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00010-2]
[25]
Eloy JO, Claro de Souza M, Petrilli R, Barcellos JPA, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123: 345-63.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.029] [PMID: 25280609]
[26]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[27]
Ambati S, Ellis EC, Lin J, Lin X, Lewis ZA, Meagher RB. Dectin-2-targeted antifungal liposomes exhibit enhanced efficacy. MSphere 2019; 4(5): e00715-9.
[http://dx.doi.org/10.1128/mSphere.00715-19] [PMID: 31666315]
[28]
Liu KR, Peyman GA, Khoobehi B. Efficacy of liposome-bound amphotericin B for the treatment of experimental fungal endophthalmitis in rabbits. Invest Ophthalmol Vis Sci 1989; 30(7): 1527-34.
[PMID: 2787300]
[29]
Veloso DFMC, Benedetti NIGM, Ávila RI, et al. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv 2018; 25(1): 1585-94.
[http://dx.doi.org/10.1080/10717544.2018.1492046] [PMID: 30044149]
[30]
Giordani B, Basnet P, Mishchenko E, Luppi B, Škalko-Basnet N. Utilizing liposomal quercetin and gallic acid in localized treatment of vaginal Candida infections. Pharmaceutics 2019; 12(1): 9.
[http://dx.doi.org/10.3390/pharmaceutics12010009] [PMID: 31861805]
[31]
Ravi K, Singh M, Rajini B, Nimratha S, Rana AC. Transferosomes: A novel approach for transdermal drug delivery. Int Res J Pharm 2012; 3: 20-4.
[32]
Wu PS, Li YS, Kuo YC, Tsai SJ, Lin CC. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019; 24(3): 600.
[http://dx.doi.org/10.3390/molecules24030600] [PMID: 30743989]
[33]
Steinberg G. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers. PLoS One 2012; 7(5): e38181.
[http://dx.doi.org/10.1371/journal.pone.0038181] [PMID: 22666476]
[34]
Ghannoum M, Isham N, Herbert J, Henry W, Yurdakul S. Activity of TDT 067 (terbinafine in Transfersome) against agents of onychomycosis, as determined by minimum inhibitory and fungicidal concentrations. J Clin Microbiol 2011; 49(5): 1716-20.
[http://dx.doi.org/10.1128/JCM.00083-11] [PMID: 21411586]
[35]
Alaa Z. Comparative study of terbinafine hydrochloride transfersome, menthosome and ethosome nanovesicle formulations via skin permeation and antifungal efficacy. Al-Azhar. Al-Azhar J Pharmac Sci 2018; 54(2): 18-36.
[http://dx.doi.org/10.21608/ajps.2018.6631]
[36]
Romero E, Morilla M. Highly deformable and highly fluid vesicles as potential drug delivery systems: Theoretical and practical considerations. Int J Nanomedicine 2013; 8: 3171-86.
[http://dx.doi.org/10.2147/IJN.S33048] [PMID: 23986634]
[37]
Bhalaria MK, Naik S, Misra AN. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol 2009; 47(5): 368-75.
[PMID: 19579803]
[38]
Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res 2018; 28(1): 14-21.
[http://dx.doi.org/10.1080/08982104.2016.1239636] [PMID: 27667097]
[39]
Akhtar N, Pathak K. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: Development and comparison with ethosomal gel. AAPS PharmSciTech 2012; 13(1): 344-55.
[http://dx.doi.org/10.1208/s12249-012-9754-y] [PMID: 22282041]
[40]
Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2012; 92: 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[41]
Verma S, Utreja P. Transethosomes of econazole nitrate for transdermal delivery: Development, In-vitro characterization, and Ex-vivo assessment. Pharm Nanotechnol 2018; 6(3): 171-9.
[http://dx.doi.org/10.2174/2211738506666180813122102] [PMID: 30101725]
[42]
El Maghraby GM, Williams AC. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv 2009; 6(2): 149-63.
[http://dx.doi.org/10.1517/17425240802691059] [PMID: 19239387]
[43]
Goyal MK, Qureshi J. Formulation and evaluation of itraconazole niosomal gel for topical application. J Drug Deliv Ther 2019; 9: 961-6.
[44]
Kumar A, Dua JS. Formulation and evaluation of itraconazole niosomal gel. Asian J Pharmac Res Develop 2018; 6(5): 76-80.
[http://dx.doi.org/10.22270/ajprd.v6i5.425]
[45]
Shirsand SB, Kanani KM, Keerthy D, Nagendrakumar D, Para MS. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig 2012; 2(4): 201-7.
[http://dx.doi.org/10.4103/2230-973X.107002] [PMID: 23580936]
[46]
Khalifa MKA, Abu El-Enin ASM, Dawaba A, Dawaba H. Proniosomal gel-mediated topical delivery of fluconazole: Development, in vitro characterization, and microbiological evaluation. J Adv Pharm Technol Res 2019; 10(1): 20-6.
[http://dx.doi.org/10.4103/japtr.JAPTR_332_18] [PMID: 30815384]
[47]
El-Ridy MS, Abdelbary A, Essam T, Abd EL-Salam RM Aly Kassem AA. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev Ind Pharm 2011; 37(12): 1491-508.
[http://dx.doi.org/10.3109/03639045.2011.587431] [PMID: 21707323]
[48]
Ing LY, Zin NM, Sarwar A, Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/632698] [PMID: 22829829]
[49]
Divya K, Smitha V, Jisha MS. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int J Biol Macromol 2018; 114: 572-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.130] [PMID: 29578005]
[50]
Ling X, Huang Z, Wang J, et al. Development of an itraconazole encapsulated polymeric nanoparticle platform for effective antifungal therapy. J Mater Chem B Mater Biol Med 2016; 4(10): 1787-96.
[http://dx.doi.org/10.1039/C5TB02453F] [PMID: 32263056]
[51]
Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 2017; 7(5): 225-41.
[http://dx.doi.org/10.1007/s13204-017-0561-3]
[52]
Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 2004; 96(4): 803-9.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02234.x] [PMID: 15012819]
[53]
Gutiérrez JA, Caballero S, Díaz LA, Guerrero MA, Ruiz J, Ortiz CC. High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater Sci Eng 2018; 4(2): 647-53.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00511] [PMID: 33418753]
[54]
Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 2014; 117(6): 1601-13.
[http://dx.doi.org/10.1111/jam.12652] [PMID: 25234047]
[55]
Bocate KP, Reis GF, de Souza PC, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol 2019; 291: 79-86.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.11.012] [PMID: 30476736]
[56]
Nasrollahi A, Pourshamsian KH, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nanodimens 2011; 1: 233-9.
[57]
Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop 2015; 57(2): 165-7.
[http://dx.doi.org/10.1590/S0036-46652015000200011] [PMID: 25923897]
[58]
Alananbeh KM, Refaee WJA, Qodah ZA. Antifungal effect of silver nanoparticles on selected fungi isolated from raw and waste water. Indian J Pharm Sci 2017; 79(4)
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000263]
[59]
Zhang Y, Chen Y, Huang L, Chai Z, Shen L, Xiao Y. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin. Sci Rep 2017; 7(1): 1547.
[http://dx.doi.org/10.1038/s41598-017-01686-4] [PMID: 28484255]
[60]
Oliveira DRB, Furtado GF, Cunha RL. Solid lipid nanoparticles stabilized by sodium caseinate and lactoferrin. Food Hydrocoll 2019; 90: 321-9.
[http://dx.doi.org/10.1016/j.foodhyd.2018.12.025]
[61]
Mishra V, Bansal K, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[62]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[63]
El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv 2018; 25(1): 78-90.
[http://dx.doi.org/10.1080/10717544.2017.1413444] [PMID: 29239242]
[64]
Jansook P, Pichayakorn W, Ritthidej GC. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): Effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm 2018; 44(10): 1693-700.
[http://dx.doi.org/10.1080/03639045.2018.1492606] [PMID: 29936874]
[65]
Gratieri T, Krawczyk-Santos AP, da Rocha PBR, et al. SLN- and NLC-encapsulating antifungal agents: Skin drug delivery and their unexplored potential for treating onychomycosis. Curr Pharm Des 2017.
[http://dx.doi.org/10.2174/1381612823666171115112745] [PMID: 29141535]
[66]
Souto EB, Müller RH. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie 2006; 61(5): 431-7.
[PMID: 16724541]
[67]
Jaiswal M, Dudhe R, Sharma P K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[68]
Yang Q, Liu S, Gu Y, et al. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Int J Nanomedicine 2019; 14: 3955-66.
[http://dx.doi.org/10.2147/IJN.S206657] [PMID: 31239665]
[69]
Garcia A, Fan YY, Vellanki S, et al. Nanoemulsion as an effective treatment against human-pathogenic fungi. MSphere 2019; 4(6): e00729-19.
[http://dx.doi.org/10.1128/mSphere.00729-19] [PMID: 31852807]
[70]
Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 2005; 44(39): 6358-62.
[http://dx.doi.org/10.1002/anie.200501613] [PMID: 16138384]
[71]
Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R. Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 2011; 5(1): 199-208.
[http://dx.doi.org/10.1021/nn1023522] [PMID: 21141979]
[72]
Habibizadeh M, Rostamizadeh K, Dalali N, Ramazani A. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study. Mater Sci Eng C 2017; 74: 1-9.
[http://dx.doi.org/10.1016/j.msec.2016.12.023] [PMID: 28254271]
[73]
Vikelouda M, Simitsopoulou M, Kechagioglou P, et al. Antifungal activity of functionalized carbon nanotubes conjugated to amphotericin- b against candida albicans and candida parapsilosis biofilms. Mycoses 2017; 60: 85.
[74]
Wang X, Zhou Z, Chen F. Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 2017; 10(12): 1375.
[http://dx.doi.org/10.3390/ma10121375] [PMID: 29189733]
[75]
Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600: 120485.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120485] [PMID: 33744447]
[76]
Saluja V, Mankoo A, Saraogi GK, Tambuwala MM, Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J Drug Deliv Sci Technol 2019; 52: 15-26.
[http://dx.doi.org/10.1016/j.jddst.2019.04.014]
[77]
Mishra V, Yadav N, Saraogi GK, Tambuwala MM, Giri N. Dendrimer based nanoarchitectures in diabetes management: An overview. Curr Pharm Des 2019; 25(23): 2569-83.
[http://dx.doi.org/10.2174/1381612825666190716125332] [PMID: 31333099]
[78]
Mishra V, Gupta U, Jain NK. Surface-engineered dendrimers: A solution for toxicity issues. J Biomater Sci Polym Ed 2009; 20(2): 141-66.
[http://dx.doi.org/10.1163/156856208X386246] [PMID: 19154667]
[79]
Svenson S, Tomalia DA. Dendrimers in biomedical applications: Reflections on the field. Adv Drug Deliv Rev 2012; 64 (Suppl.): 102-15.
[http://dx.doi.org/10.1016/j.addr.2012.09.030] [PMID: 16305813]
[80]
Lazniewska J, Milowska K, Gabryelak T. Dendrimers—revolutionary drugs for infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(5): 469-91.
[http://dx.doi.org/10.1002/wnan.1181] [PMID: 22761054]
[81]
Winnicka K, Sosnowska K, Wieczorek P, Sacha PT, Tryniszewska E. Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole. Biol Pharm Bull 2011; 34(7): 1129-33.
[http://dx.doi.org/10.1248/bpb.34.1129] [PMID: 21720026]
[82]
Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska E. Hydrogel of ketoconazole and PAMAM dendrimers: Formulation and antifungal activity. Molecules 2012; 17(4): 4612-24.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[83]
Khairnar GA, Chavan-Patil AB, Palve PR, Bhise SB, Mourya VK, Kulkarni CG. Dendrimers: Potential tool for enhancement of antifungal activity. Int J Pharm Tech Res 2010; 736-9.
[84]
Hegazy M. PVCL-grafted mesoporous silica nanocontainers for thermo-responsive controlled release and their antifungal activity study. Mater Today Commun 2023; 35: 105585.
[http://dx.doi.org/10.1016/j.mtcomm.2023.105585]
[85]
Hegazy M, Zhou P, Wu G, et al. Facile synthesis of poly(DMAEMA-co-MPS)-coated porous silica nanocarriers as dual-targeting drug delivery platform: Experimental and biological investigations. Acta Chim Slov 2020; 67(2): 462-8.
[http://dx.doi.org/10.17344/acsi.2019.5390] [PMID: 33855553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy