Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biomarkers for Diagnosing and Treating Fetal Growth Restriction

Author(s): Mengyao Wu, Junyu He, Yetao Chen, Fangzhu Wan, Hongbo Tang, Chenghong Yin, Haibo He*, Huifan Yu and Chengfu Yuan

Volume 31, Issue 28, 2024

Published on: 25 October, 2023

Page: [4461 - 4478] Pages: 18

DOI: 10.2174/0109298673258444231019104656

Price: $65

Abstract

Fetal growth restriction (FGR), a common obstetric complication, significantly increases the risks of fetal intrauterine death and neonatal death, and fetuses with growth restriction are prone to cognitive retardation and various diseases in adulthood. The early determination of FGR risk is contentious in clinical research, and few indicators are available for the early prediction and diagnosis of FGR. This review focuses on the prediction and diagnosis of FGR, as well as the significance of biomarkers for FGR, such as those related to gene regulation, apoptosis, mitochondrial function, and inflammation. Although many of these biomarkers are still in the early stages of research, they are good predictors of the threats to fetal health and safety, and they provide new insights for the treatment of FGR.

[1]
Blencowe, H.; Krasevec, J.; de Onis, M.; Black, R.E.; An, X.; Stevens, G.A.; Borghi, E.; Hayashi, C.; Estevez, D.; Cegolon, L.; Shiekh, S.; Ponce Hardy, V.; Lawn, J.E.; Cousens, S. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: A systematic analysis. Lancet Glob. Health, 2019, 7(7), e849-e860.
[http://dx.doi.org/10.1016/S2214-109X(18)30565-5] [PMID: 31103470]
[2]
Sehgal, A.; Alexander, B.T.; Morrison, J.L.; South, A.M. Fetal growth restriction and hypertension in the offspring: mechanistic links and therapeutic directions. J. Pediatr., 2020, 224, 115-123.e2.
[http://dx.doi.org/10.1016/j.jpeds.2020.05.028] [PMID: 32450071]
[3]
Sharma, A.; Sah, N.; Kannan, S.; Kannan, R.M. Targeted drug delivery for maternal and perinatal health: Challenges and opportunities. Adv. Drug Deliv. Rev., 2021, 177, 113950.
[http://dx.doi.org/10.1016/j.addr.2021.113950] [PMID: 34454979]
[4]
Damron, D.P. Definition of fetal growth restriction. Am. J. Obstet. Gynecol., 2021, 224(2), 242.
[http://dx.doi.org/10.1016/j.ajog.2020.09.031] [PMID: 32980361]
[5]
Roeckner, J.T.; Pressman, K.; Odibo, L.; Duncan, J.R.; Odibo, A.O. Outcome-based comparison of SMFM and ISUOG definitions of fetal growth restriction. Ultrasound Obstet. Gynecol., 2021, 57(6), 925-930.
[http://dx.doi.org/10.1002/uog.23638] [PMID: 33798274]
[6]
Aplin, J.D.; Myers, J.E.; Timms, K.; Westwood, M. Tracking placental development in health and disease. Nat. Rev. Endocrinol., 2020, 16(9), 479-494.
[http://dx.doi.org/10.1038/s41574-020-0372-6] [PMID: 32601352]
[7]
Schoots, M.H.; Bourgonje, M.F.; Bourgonje, A.R.; Prins, J.R.; van Hoorn, E.G.M.; Abdulle, A.E.; Muller Kobold, A.C.; van der Heide, M.; Hillebrands, J.L.; van Goor, H.; Gordijn, S.J. Oxidative stress biomarkers in fetal growth restriction with and without preeclampsia. Placenta, 2021, 115, 87-96.
[http://dx.doi.org/10.1016/j.placenta.2021.09.013] [PMID: 34583270]
[8]
Bougea, A. New markers in Parkinson’s disease. Adv. Clin. Chem., 2020, 96, 137-178.
[http://dx.doi.org/10.1016/bs.acc.2019.12.001] [PMID: 32362317]
[9]
Silver, R.M.; Blue, N.R. Delivery before 39 weeks' gestation for suspected fetal growth restriction: More harm than good?. JAMA, 2021, 326(2), 135-136.
[http://dx.doi.org/10.1001/jama.2021.8381]
[10]
Lees, C.C.; Romero, R.; Stampalija, T.; Dall’Asta, A.; DeVore, G.R.; Prefumo, F.; Frusca, T.; Visser, G.H.A.; Hobbins, J.C.; Baschat, A.A.; Bilardo, C.M.; Galan, H.L.; Campbell, S.; Maulik, D.; Figueras, F.; Lee, W.; Unterscheider, J.; Valensise, H.; Da Silva Costa, F.; Salomon, L.J.; Poon, L.C.; Ferrazzi, E.; Mari, G.; Rizzo, G.; Kingdom, J.C.; Kiserud, T.; Hecher, K. The diagnosis and management of suspected fetal growth restriction: An evidence-based approach. Am. J. Obstet. Gynecol., 2022, 226(3), 366-378.
[http://dx.doi.org/10.1016/j.ajog.2021.11.1357] [PMID: 35026129]
[11]
Nowakowska, B.A.; Pankiewicz, K.; Nowacka, U.; Niemiec, M.; Kozłowski, S.; Issat, T. Genetic background of fetal growth restriction. Int. J. Mol. Sci., 2021, 23(1), 36.
[http://dx.doi.org/10.3390/ijms23010036] [PMID: 35008459]
[12]
Zhang, Q.; Zhang, C.; Wang, Y.; Zhao, J.; Li, H.; Shen, Q.; Wang, X.; Ni, M.; Ouyang, F.; Vinturache, A.; Chen, H.; Liu, Z. Relationship of maternal obesity and vitamin D concentrations with fetal growth in early pregnancy. Eur. J. Nutr., 2022, 61(2), 915-924.
[http://dx.doi.org/10.1007/s00394-021-02695-w] [PMID: 34657185]
[13]
Street, M.E.; Bernasconi, S. Endocrine-disrupting chemicals in human fetal growth. Int. J. Mol. Sci., 2020, 21(4), 1430.
[http://dx.doi.org/10.3390/ijms21041430] [PMID: 32093249]
[14]
Kojima, J.; Ono, M.; Kuji, N.; Nishi, H. Human chorionic villous differentiation and placental development. Int. J. Mol. Sci., 2022, 23(14), 8003.
[http://dx.doi.org/10.3390/ijms23148003] [PMID: 35887349]
[15]
Sheridan, M.A.; Fernando, R.C.; Gardner, L.; Hollinshead, M.S.; Burton, G.J.; Moffett, A.; Turco, M.Y. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat. Protoc., 2020, 15(10), 3441-3463.
[http://dx.doi.org/10.1038/s41596-020-0381-x] [PMID: 32908314]
[16]
Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Sáez, M.A.; Álvarez-Mon, M.A.; Torres-Carranza, D.; Álvarez-Mon, M.; Bujan, J.; García-Honduvilla, N.; Bravo, C.; Guijarro, L.G.; De León-Luis, J.A. The pivotal role of the placenta in normal and pathological pregnancies: A focus on preeclampsia, fetal growth restriction, and maternal chronic venous disease. Cells, 2022, 11(3), 568.
[http://dx.doi.org/10.3390/cells11030568] [PMID: 35159377]
[17]
Sun, C.; Groom, K.M.; Oyston, C.; Chamley, L.W.; Clark, A.R.; James, J.L. The placenta in fetal growth restriction: What is going wrong? Placenta, 2020, 96, 10-18.
[http://dx.doi.org/10.1016/j.placenta.2020.05.003] [PMID: 32421528]
[18]
Zhang, l.; Qi, H.B. Interpretation and comparison of fetal growth restriction guidelines in the United Kingdom, the United States, Canada and France. Chin. Electr. J. Obstetri. first Aid., 2018, 7(6), 35-39.
[19]
Groom, K.M.; David, A.L. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am. J. Obstet. Gynecol., 2018, 218(2), S829-S840.
[http://dx.doi.org/10.1016/j.ajog.2017.11.565] [PMID: 29229321]
[20]
Terstappen, F.; Richter, A.E.; Lely, A.T.; Hoebeek, F.E.; Elvan-Taspinar, A.; Bos, A.F.; Ganzevoort, W.; Pels, A.; Lemmers, P.M.; Kooi, E.M.W. Prenatal use of sildenafil in fetal growth restriction and its effect on neonatal tissue oxygenation—a retrospective analysis of hemodynamic data from participants of the dutch sTRIDER trial. Front Pediatr., 2020, 8, 595693.
[http://dx.doi.org/10.3389/fped.2020.595693] [PMID: 33344386]
[21]
Karaman, S.; Paavonsalo, S.; Heinolainen, K.; Lackman, M.H.; Ranta, A.; Hemanthakumar, K.A.; Kubota, Y.; Alitalo, K. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J. Exp. Med., 2022, 219(3), e20210565.
[http://dx.doi.org/10.1084/jem.20210565] [PMID: 35050301]
[22]
Yan, S.; Hu, J.; Li, J.; Wang, P.; Wang, Y.; Wang, Z. PRMT4 drives post-ischemic angiogenesis via YB1/VEGF signaling. J. Mol. Med., 2021, 99(7), 993-1008.
[http://dx.doi.org/10.1007/s00109-021-02067-1] [PMID: 33822264]
[23]
Bolatai, A.; He, Y.; Wu, N. Vascular endothelial growth factor and its receptors regulation in gestational diabetes mellitus and eclampsia. J. Transl. Med., 2022, 20(1), 400.
[http://dx.doi.org/10.1186/s12967-022-03603-4] [PMID: 36064413]
[24]
Huang, Z.; Huang, S.; Song, T.; Yin, Y.; Tan, C. Placental angiogenesis in mammals: A review of the regulatory effects of signaling pathways and functional nutrients. Adv. Nutr., 2021, 12(6), 2415-2434.
[http://dx.doi.org/10.1093/advances/nmab070] [PMID: 34167152]
[25]
Atia, T.A. Placental apoptosis in recurrent miscarriage. Kaohsiung J. Med. Sci., 2017, 33(9), 449-452.
[http://dx.doi.org/10.1016/j.kjms.2017.06.012] [PMID: 28865602]
[26]
Liu, W.; Li, S.; Zhou, Q.; Fu, Z.; Liu, P.; Cao, X.; Xi, S. 2, 2′, 4, 4′-tetrabromodiphenyl ether induces placental toxicity via activation of p38 MAPK signaling pathway in vivo and in vitro. Ecotoxicol. Environ. Saf., 2022, 244, 114034.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114034] [PMID: 36063615]
[27]
Bao, J.; Zou, Y.; Liu, Y.; Yuan, L.; Garfield, R.E.; Liu, H. Nicotine protects fetus against LPS-induced fetal growth restriction through ameliorating placental inflammation and vascular development in late pregnancy in rats. Biosci. Rep., 2019, 39(7), BSR20190386.
[http://dx.doi.org/10.1042/BSR20190386] [PMID: 31209145]
[28]
Pei, J.; Li, Y.; Min, Z.; Dong, Q.; Ruan, J.; Wu, J.; Hua, X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: Their longitudinal changes and correlations with risk of fetal growth restriction. Ir. J. Med. Sci., 2022, 191(3), 1251-1257.
[http://dx.doi.org/10.1007/s11845-021-02664-6] [PMID: 34159524]
[29]
Shi, X.T.; Zhu, H.L.; Xu, X.F.; Xiong, Y.W.; Dai, L.M.; Zhou, G.X.; Liu, W.B.; Zhang, Y.F.; Xu, D.X.; Wang, H. Gestational cadmium exposure impairs placental angiogenesis via activating GC/GR signaling. Ecotoxicol. Environ. Saf., 2021, 224, 112632.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112632] [PMID: 34411824]
[30]
Rossi, C.; Lees, M.; Mehta, V.; Heikura, T.; Martin, J.; Zachary, I.; Spencer, R.; Peebles, D.M.; Shaw, R.; Karhinen, M.; Yla-Herttuala, S.; David, A.L. Comparison of efficiency and function of vascular endothelial growth factor adenovirus vectors in endothelial cells for gene therapy of placental insufficiency. Hum. Gene Ther., 2020, 31(21-22), 1190-1202.
[http://dx.doi.org/10.1089/hum.2020.006] [PMID: 32988220]
[31]
Porter, B.; Maulik, D.; Babbar, S.; Schrufer-Poland, T.; Allsworth, J.; Ye, S.Q.; Heruth, D.P.; Lei, T. Maternal plasma soluble neuropilin-1 is downregulated in fetal growth restriction complicated by abnormal umbilical artery Doppler: A pilot study. Ultrasound Obstet. Gynecol., 2021, 58(5), 716-721.
[http://dx.doi.org/10.1002/uog.23605] [PMID: 33533520]
[32]
Kim, D.K.; Jeong, J.; Lee, D.S.; Hyeon, D.Y.; Park, G.W.; Jeon, S.; Lee, K.B.; Jang, J.Y.; Hwang, D.; Kim, H.M.; Jung, K. PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer. Nat. Commun., 2022, 13(1), 6292.
[http://dx.doi.org/10.1038/s41467-022-33991-6] [PMID: 36272973]
[33]
Manna, C.; Lacconi, V.; Rizzo, G.; De Lorenzo, A.; Massimiani, M. Placental dysfunction in assisted reproductive pregnancies: perinatal, neonatal and adult life outcomes. Int. J. Mol. Sci., 2022, 23(2), 659.
[http://dx.doi.org/10.3390/ijms23020659] [PMID: 35054845]
[34]
Zuo, Q.; Zou, Y.; Huang, S.; Wang, T.; Xu, Y.; Zhang, T.; Zhang, M.; Ge, Z.; Jiang, Z. Aspirin reduces sFlt-1-mediated apoptosis of trophoblast cells in preeclampsia. Mol. Hum. Reprod., 2021, 27(1), gaaa089.
[http://dx.doi.org/10.1093/molehr/gaaa089] [PMID: 33493277]
[35]
Matsui, M.; Onoue, K.; Saito, Y. sFlt-1 in chronic kidney disease: Friend or foe? Int. J. Mol. Sci., 2022, 23(22), 14187.
[http://dx.doi.org/10.3390/ijms232214187] [PMID: 36430665]
[36]
Stepan, H.; Hund, M.; Andraczek, T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia. Hypertension, 2020, 75(4), 918-926.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13763] [PMID: 32063058]
[37]
Lecarpentier, E.; Zsengellér, Z.K.; Salahuddin, S.; Covarrubias, A.E.; Lo, A.; Haddad, B.; Thadhani, R.I.; Karumanchi, S.A. Total versus free placental growth factor levels in the pathogenesis of preeclampsia. Hypertension, 2020, 76(3), 875-883.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15338] [PMID: 32654553]
[38]
Hendrix, M.L.E.; Bons, J.A.P.; Snellings, R.R.G.; Bekers, O.; van Kuijk, S.M.J.; Spaanderman, M.E.A.; Al-Nasiry, S. Can fetal growth velocity and first trimester maternal biomarkers improve the prediction of small-for-gestational age and adverse neonatal outcome? Fetal Diagn. Ther., 2019, 46(4), 274-284.
[http://dx.doi.org/10.1159/000499580] [PMID: 31067557]
[39]
Gaccioli, F.; Aye, I.L.M.H.; Sovio, U.; Charnock-Jones, D.S.; Smith, G.C.S. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am. J. Obstet. Gynecol., 2018, 218(2), S725-S737.
[http://dx.doi.org/10.1016/j.ajog.2017.12.002] [PMID: 29275822]
[40]
Garcia-Manau, P.; Mendoza, M.; Bonacina, E.; Garrido-Gimenez, C.; Fernandez-Oliva, A.; Zanini, J.; Catalan, M.; Tur, H.; Serrano, B.; Carreras, E. Soluble fms-like tyrosine kinase to placental growth factor ratio in different stages of early-onset fetal growth restriction and small for gestational age. Acta Obstet. Gynecol. Scand., 2021, 100(1), 119-128.
[http://dx.doi.org/10.1111/aogs.13978] [PMID: 32860218]
[41]
Tan, L.; Chen, Z.; Sun, F.; Zhou, Z.; Zhang, B.; Wang, B.; Chen, J.; Li, M.; Xiao, T.; Neuman, R.I.; Niu, J.; Verdonk, K.; Lu, X.; Zhang, J.V.; Danser, A.H.J.; Yang, Q.; Fan, X. Placental trophoblast-specific overexpression of chemerin induces preeclampsia-like symptoms. Clin. Sci., 2022, 136(4), 257-272.
[http://dx.doi.org/10.1042/CS20210989] [PMID: 35103285]
[42]
Addis, D.R.; Lambert, J.A.; Ren, C.; Doran, S.; Aggarwal, S.; Jilling, T.; Matalon, S. Vascular endothelial growth factor-121 administration mitigates halogen inhalation-induced pulmonary injury and fetal growth restriction in pregnant mice. J. Am. Heart Assoc., 2020, 9(3), e013238.
[http://dx.doi.org/10.1161/JAHA.119.013238] [PMID: 32009528]
[43]
Villalaín, C.; Herraiz, I.; Valle, L.; Mendoza, M.; Delgado, J.L.; Vázquez-Fernández, M.; Martínez-Uriarte, J.; Melchor, Í.; Caamiña, S.; Fernández-Oliva, A.; Villar, O.P.; Galindo, A. Maternal and perinatal outcomes associated with extremely high values for the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor) Ratio. J. Am. Heart Assoc., 2020, 9(7), e015548.
[http://dx.doi.org/10.1161/JAHA.119.015548] [PMID: 32248765]
[44]
Gaccioli, F.; Sovio, U.; Cook, E.; Hund, M.; Charnock-Jones, D.S.; Smith, G.C.S. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: A prospective cohort study. Lancet Child Adolesc. Health, 2018, 2(8), 569-581.
[http://dx.doi.org/10.1016/S2352-4642(18)30129-9] [PMID: 30119716]
[45]
Bonacina, E.; Mendoza, M.; Farràs, A.; Garcia-Manau, P.; Serrano, B.; Hurtado, I.; Ferrer-Oliveras, R.; Illan, L.; Armengol-Alsina, M.; Carreras, E. Angiogenic factors for planning fetal surveillance in fetal growth restriction and small-for-gestational-age fetuses: A prospective observational study. BJOG, 2022, 129(11), 1870-1877.
[http://dx.doi.org/10.1111/1471-0528.17151] [PMID: 35303394]
[46]
Kluivers, A.C.M.; Biesbroek, A.; Visser, W.; Saleh, L.; Russcher, H.; Danser, A.H.J.; Neuman, R.I. Angiogenic imbalance in pre-eclampsia and fetal growth restriction: enhanced soluble fms-like tyrosine kinase-1 binding or diminished production of placental growth factor? Ultrasound Obstet. Gynecol., 2023, 61(4), 466-473.
[http://dx.doi.org/10.1002/uog.26088] [PMID: 36191149]
[47]
Gao, W.; Wang, Y.; Yu, S.; Wang, Z.; Ma, T.; Chan, A.M.L.; Chiu, P.K.F.; Ng, C.F.; Wu, D.; Chan, F.L. Endothelial nitric oxide synthase (eNOS)-NO signaling axis functions to promote the growth of prostate cancer stem-like cells. Stem Cell Res. Ther., 2022, 13(1), 188.
[http://dx.doi.org/10.1186/s13287-022-02864-6] [PMID: 35526071]
[48]
Sutton, E.F.; Gemmel, M.; Powers, R.W. Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide, 2020, 95, 55-62.
[http://dx.doi.org/10.1016/j.niox.2019.11.006] [PMID: 31852621]
[49]
Dai, Y.; Zhang, J.; Liu, R.; Xu, N.; Yan, S.B.; Chen, Y.; Li, T.H. The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis. J. Assist. Reprod. Genet., 2020, 37(5), 1083-1095.
[http://dx.doi.org/10.1007/s10815-020-01750-5] [PMID: 32215825]
[50]
Tropea, T.; Renshall, L.J.; Nihlen, C.; Weitzberg, E.; Lundberg, J.O.; David, A.L.; Tsatsaris, V.; Stuckey, D.J.; Wareing, M.; Greenwood, S.L.; Sibley, C.P.; Cottrell, E.C. Beetroot juice lowers blood pressure and improves endothelial function in pregnant eNOS −/− mice: importance of nitrate-independent effects. J. Physiol., 2020, 598(18), 4079-4092.
[http://dx.doi.org/10.1113/JP279655] [PMID: 32368787]
[51]
Mukosera, G.T.; Clark, T.C.; Ngo, L.; Liu, T.; Schroeder, H.; Power, G.G.; Yellon, S.M.; Parast, M.M.; Blood, A.B. Nitric oxide metabolism in the human placenta during aberrant maternal inflammation. J. Physiol., 2020, 598(11), 2223-2241.
[http://dx.doi.org/10.1113/JP279057] [PMID: 32118291]
[52]
George, H.; Steeves, K.L.; Mercer, G.V.; Aghaei, Z.; Schneider, C.M.; Cahill, L.S. Endothelial nitric oxide deficiency results in abnormal placental metabolism. Placenta, 2022, 128, 36-38.
[http://dx.doi.org/10.1016/j.placenta.2022.08.013] [PMID: 36058049]
[53]
Montalbán-Loro, R.; Lassi, G.; Lozano-Ureña, A.; Perez-Villalba, A.; Jiménez-Villalba, E.; Charalambous, M.; Vallortigara, G.; Horner, A.E.; Saksida, L.M.; Bussey, T.J.; Trejo, J.L.; Tucci, V.; Ferguson-Smith, A.C.; Ferrón, S.R. Dlk1 dosage regulates hippocampal neurogenesis and cognition. Proc. Natl. Acad. Sci., 2021, 118(11), e2015505118.
[http://dx.doi.org/10.1073/pnas.2015505118] [PMID: 33712542]
[54]
Finn, J.; Sottoriva, K.; Pajcini, K.V.; Kitajewski, J.K.; Chen, C.; Zhang, W.; Malik, A.B.; Liu, Y. Dlk1-mediated temporal regulation of notch signaling is required for differentiation of alveolar type II to type I cells during repair. Cell Rep., 2019, 26(11), 2942-2954.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.02.046] [PMID: 30865885]
[55]
Carreras-Badosa, G.; Remesar, X.; Prats-Puig, A.; Xargay-Torrent, S.; Lizarraga-Mollinedo, E.; de Zegher, F.; Ibáñez, L.; Bassols, J.; López-Bermejo, A. Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth. Pediatr. Res., 2019, 86(2), 195-201.
[http://dx.doi.org/10.1038/s41390-019-0428-2] [PMID: 31091532]
[56]
Fu, Y.; Hao, X.; Shang, P.; Chamba, Y.; Zhang, B.; Zhang, H. Functional identification of porcine DLK1 during muscle development. Animals, 2022, 12(12), 1523.
[http://dx.doi.org/10.3390/ani12121523] [PMID: 35739860]
[57]
Hofmeister, R.J.; Rubinacci, S.; Ribeiro, D.M.; Buil, A.; Kutalik, Z.; Delaneau, O. Parent-of-Origin inference for biobanks. Nat. Commun., 2022, 13(1), 6668.
[http://dx.doi.org/10.1038/s41467-022-34383-6] [PMID: 36335127]
[58]
Weinberg-Shukron, A.; Ben-Yair, R.; Takahashi, N.; Dunjić, M.; Shtrikman, A.; Edwards, C.A.; Ferguson-Smith, A.C.; Stelzer, Y. Balanced gene dosage control rather than parental origin underpins genomic imprinting. Nat. Commun., 2022, 13(1), 4391.
[http://dx.doi.org/10.1038/s41467-022-32144-z] [PMID: 35906226]
[59]
Cleaton, M.A.M.; Dent, C.L.; Howard, M.; Corish, J.A.; Gutteridge, I.; Sovio, U.; Gaccioli, F.; Takahashi, N.; Bauer, S.R.; Charnock-Jones, D.S.; Powell, T.L.; Smith, G.C.S.; Ferguson-Smith, A.C.; Charalambous, M. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat. Genet., 2016, 48(12), 1473-1480.
[http://dx.doi.org/10.1038/ng.3699] [PMID: 27776119]
[60]
Traustadóttir, G.Á.; Lagoni, L.V.; Ankerstjerne, L.B.S.; Bisgaard, H.C.; Jensen, C.H.; Andersen, D.C. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev., 2019, 46, 17-27.
[http://dx.doi.org/10.1016/j.cytogfr.2019.03.006] [PMID: 30930082]
[61]
MacDonald, T.M.; Walker, S.P.; Hiscock, R.; Cannon, P.; Harper, A.; Murray, E.; Hui, L.; Dane, K.; Middleton, A.; Kyritsis, V.; de Alwis, N.; Hannan, N.J.; Tong, S.; Kaitu’u-Lino, T.J. Circulating Delta-like homolog 1 (DLK1) at 36 weeks is correlated with birthweight and is of placental origin. Placenta, 2020, 91, 24-30.
[http://dx.doi.org/10.1016/j.placenta.2020.01.003] [PMID: 32174303]
[62]
Van de Pette, M.; Dimond, A.; Galvão, A.M.; Millership, S.J.; To, W.; Prodani, C.; McNamara, G.; Bruno, L.; Sardini, A.; Webster, Z.; McGinty, J.; French, P.M.W.; Uren, A.G.; Castillo-Fernandez, J.; Watkinson, W.; Ferguson-Smith, A.C.; Merkenschlager, M.; John, R.M.; Kelsey, G.; Fisher, A.G. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat. Commun., 2022, 13(1), 2464.
[http://dx.doi.org/10.1038/s41467-022-30022-2] [PMID: 35513363]
[63]
Lopez-Tello, J.; Schofield, Z.; Kiu, R.; Dalby, M.J.; van Sinderen, D.; Le Gall, G.; Sferruzzi-Perri, A.N.; Hall, L.J. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cell. Mol. Life Sci., 2022, 79(7), 386.
[http://dx.doi.org/10.1007/s00018-022-04379-y] [PMID: 35760917]
[64]
Pham, A.; Mitanchez, D.; Forhan, A.; Perin, L.; Le Bouc, Y.; Brioude, F.; Sobrier, M.L.; Heude, B.; Netchine, I. Low maternal DLK1 levels at 26 weeks is associated with small for gestational age at birth. Front. Endocrinol. (Lausanne), 2022, 13, 836731.
[http://dx.doi.org/10.3389/fendo.2022.836731] [PMID: 35295988]
[65]
Field, J.T.; Gordon, J.W. BNIP3 and Nix: Atypical regulators of cell fate. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(10), 119325.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119325] [PMID: 35863652]
[66]
Choubey, V.; Zeb, A.; Kaasik, A. Molecular mechanisms and regulation of mammalian mitophagy. Cells, 2021, 11(1), 38.
[http://dx.doi.org/10.3390/cells11010038] [PMID: 35011599]
[67]
Ma, Z.; Wang, D.; Weng, J.; Zhang, S.; Zhang, Y. BNIP3 decreases the LPS-induced inflammation and apoptosis of chondrocytes by promoting the development of autophagy. J. Orthop. Surg. Res., 2020, 15(1), 284.
[http://dx.doi.org/10.1186/s13018-020-01791-7] [PMID: 32723351]
[68]
Wu, B.; Chen, Y.; Clarke, R.; Akala, E.; Yang, P.; He, B.; Gao, H. AMPK signaling regulates mitophagy and mitochondrial ATP production in human trophoblast cell line BeWo. Frontiers in Bioscience-Landmark, 2022, 27(4), 118.
[http://dx.doi.org/10.31083/j.fbl2704118] [PMID: 35468677]
[69]
Tang, Z.; Chen, J.; Zhang, Z.; Bi, J.; Xu, R.; Lin, Q.; Wang, Z. HIF-1α activation promotes luteolysis by enhancing ROS levels in the corpus luteum of pseudopregnant rats. Oxid. Med. Cell. Longev., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/1764929] [PMID: 34512862]
[70]
Zhou, X.; Zhao, X.; Zhou, W.; Qi, H.; Zhang, H.; Han, T.; Baker, P. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia. Sci. Rep., 2021, 11(1), 20469.
[http://dx.doi.org/10.1038/s41598-021-99837-1] [PMID: 34650122]
[71]
Conrad, K.P.; von Versen-Höynck, F.; Baker, V.L. Potential role of the corpus luteum in maternal cardiovascular adaptation to pregnancy and preeclampsia risk. Am. J. Obstet. Gynecol., 2022, 226(5), 683-699.
[http://dx.doi.org/10.1016/j.ajog.2021.08.018] [PMID: 34437863]
[72]
Zhu, H.L.; Shi, X.T.; Xu, X.F.; Zhou, G.X.; Xiong, Y.W.; Yi, S.J.; Liu, W.B.; Dai, L.M.; Cao, X.L.; Xu, D.X.; Wang, H. Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol., 2021, 40, 101854.
[http://dx.doi.org/10.1016/j.redox.2021.101854] [PMID: 33454563]
[73]
Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol., 2022, 80, 1-17.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.008] [PMID: 31866476]
[74]
Wen, E.; Xin, G.; Su, W.; Li, S.; Zhang, Y.; Dong, Y.; Yang, X.; Wan, C.; Chen, Z.; Yu, X.; Zhang, K.; Niu, H.; Huang, W. Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway. Mol. Immunol., 2022, 142, 63-75.
[http://dx.doi.org/10.1016/j.molimm.2021.12.012] [PMID: 34965485]
[75]
Chen, G.; Chen, L.; Huang, Y.; Zhu, X.; Yu, Y. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells. Bioengineered, 2022, 13(2), 3620-3633.
[http://dx.doi.org/10.1080/21655979.2021.1997132] [PMID: 34699308]
[76]
Merech, F.; Hauk, V.; Paparini, D.; Fernandez, L.; Naguila, Z.; Ramhorst, R.; Waschek, J.; Pérez Leirós, C.; Vota, D. Growth impairment, increased placental glucose uptake and altered transplacental transport in VIP deficient pregnancies: Maternal vs. placental contributions. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(10), 166207.
[http://dx.doi.org/10.1016/j.bbadis.2021.166207] [PMID: 34186168]
[77]
Gupta, M.B.; Jansson, T. Novel roles of mechanistic target of rapamycin signaling in regulating fetal growth†. Biol. Reprod., 2019, 100(4), 872-884.
[http://dx.doi.org/10.1093/biolre/ioy249] [PMID: 30476008]
[78]
Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol., 2018, 218(2), S745-S761.
[http://dx.doi.org/10.1016/j.ajog.2017.11.577] [PMID: 29422210]
[79]
Hung, T.H.; Wu, C.P.; Chen, S.F. Differential changes in Akt and AMPK phosphorylation regulating mTOR activity in the placentas of pregnancies complicated by fetal growth restriction and gestational diabetes mellitus with large-for-gestational age infants. Front. Med., 2021, 8, 788969.
[http://dx.doi.org/10.3389/fmed.2021.788969] [PMID: 34938752]
[80]
Ozmen, A.; Kipmen-Korgun, D.; Korgun, E.T. Rapamycin administration during normal and diabetic pregnancy effects the mTOR and angiogenesis signaling in the rat placenta. J. Gynecol. Obstet. Hum. Reprod., 2019, 48(3), 193-199.
[http://dx.doi.org/10.1016/j.jogoh.2018.12.003] [PMID: 30553049]
[81]
Dong, J.; Shin, N.; Chen, S.; Lei, J.; Burd, I.; Wang, X. Is there a definite relationship between placental mTOR signaling and fetal growth? Biol. Reprod., 2020, 103(3), 471-486.
[http://dx.doi.org/10.1093/biolre/ioaa070] [PMID: 32401303]
[82]
Tsuchiya, K.; Tanaka, K.; Tanaka, H.; Maki, S.; Enomoto, N.; Takakura, S.; Nii, M.; Toriyabe, K.; Katsuragi, S.; Ikeda, T. Tadalafil treatment ameliorates hypoxia and alters placental expression of proteins downstream of mTOR signaling in fetal growth restriction. Medicina, 2020, 56(12), 722.
[http://dx.doi.org/10.3390/medicina56120722] [PMID: 33371356]
[83]
Li, R.; Peng, J.; Zhang, W.; Wu, Y.; Hu, R.; Chen, R.; Gu, W.; Zhang, L.; Qin, L.; Zhong, M.; Chen, L.C.; Sun, Q.; Liu, C. Ambient fine particulate matter exposure disrupts placental autophagy and fetal development in gestational mice. Ecotoxicol. Environ. Saf., 2022, 239, 113680.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113680] [PMID: 35617897]
[84]
Fang, F.; Xie, S.; Chen, M.; Li, Y.; Yue, J.; Ma, J.; Shu, X.; He, Y.; Xiao, W.; Tian, Z. Advances in NK cell production. Cell. Mol. Immunol., 2022, 19(4), 460-481.
[http://dx.doi.org/10.1038/s41423-021-00808-3] [PMID: 34983953]
[85]
Mikhailova, V.; Grebenkina, P.; Khokhlova, E.; Davydova, A.; Salloum, Z.; Tyshchuk, E.; Zagainova, V.; Markova, K.; Kogan, I.; Selkov, S.; Sokolov, D. Pro- and anti-inflammatory cytokines in the context of nk cell–trophoblast interactions. Int. J. Mol. Sci., 2022, 23(4), 2387.
[http://dx.doi.org/10.3390/ijms23042387] [PMID: 35216502]
[86]
Barry, F.; Benart, L.; Robert, L.; Gala, A.; Ferrières-Hoa, A.; Loup, V.; Anahory, T.; Brouillet, S.; Hamamah, S. HLA-C KIR interactions and placental defects: Implications in ART pregnancy issues. Gynécol. Obstét. Fertil. Sénol., 2022, 50(9), 600-609.
[http://dx.doi.org/10.1016/j.gofs.2022.06.003] [PMID: 35724923]
[87]
Borowski, S.; Tirado-Gonzalez, I.; Freitag, N.; Garcia, M.G.; Barrientos, G.; Blois, S.M. Altered glycosylation contributes to placental dysfunction upon early disruption of the nk cell-dc dynamics. Front. Immunol., 2020, 11, 1316.
[http://dx.doi.org/10.3389/fimmu.2020.01316] [PMID: 32760395]
[88]
Fu, B.; Zhou, Y.; Ni, X.; Tong, X.; Xu, X.; Dong, Z.; Sun, R.; Tian, Z.; Wei, H. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity, 2017, 47(6), 1100-1113.e6.
[http://dx.doi.org/10.1016/j.immuni.2017.11.018] [PMID: 29262349]
[89]
Kaur, G.; Porter, C.B.M.; Ashenberg, O.; Lee, J.; Riesenfeld, S.J.; Hofree, M.; Aggelakopoulou, M.; Subramanian, A.; Kuttikkatte, S.B.; Attfield, K.E.; Desel, C.A.E.; Davies, J.L.; Evans, H.G.; Avraham-Davidi, I.; Nguyen, L.T.; Dionne, D.A.; Neumann, A.E.; Jensen, L.T.; Barber, T.R.; Soilleux, E.; Carrington, M.; McVean, G.; Rozenblatt-Rosen, O.; Regev, A.; Fugger, L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat. Commun., 2022, 13(1), 4398.
[http://dx.doi.org/10.1038/s41467-022-32171-w] [PMID: 35906236]
[90]
Dang, Y.; Souchet, C.; Moresi, F.; Jeljeli, M.; Raquillet, B.; Nicco, C.; Chouzenoux, S.; Lagoutte, I.; Marcellin, L.; Batteux, F.; Doridot, L. BCG-trained innate immunity leads to fetal growth restriction by altering immune cell profile in the mouse developing placenta. J. Leukoc. Biol., 2022, 111(5), 1009-1020.
[http://dx.doi.org/10.1002/JLB.4A0720-458RR] [PMID: 34533228]
[91]
Depierreux, D.M.; Kieckbusch, J.; Shreeve, N.; Hawkes, D.A.; Marsh, B.; Blelloch, R.; Sharkey, A.; Colucci, F. Beyond maternal tolerance: Education of uterine natural killer cells by maternal MHC drives fetal growth. Front. Immunol., 2022, 13, 808227.
[http://dx.doi.org/10.3389/fimmu.2022.808227] [PMID: 35619712]
[92]
Takahashi, M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc. Res., 2022, 118(2), 372-385.
[http://dx.doi.org/10.1093/cvr/cvab010] [PMID: 33483732]
[93]
Park, J.Y.; Jo, S.G.; Lee, H.N.; Choi, J.H.; Lee, Y.J.; Kim, Y.M.; Cho, J.Y.; Lee, S.K.; Park, J.H. Tendril extract of Cucurbita moschata suppresses NLRP3 inflammasome activation in murine macrophages and human trophoblast cells. Int. J. Med. Sci., 2020, 17(8), 1006-1014.
[http://dx.doi.org/10.7150/ijms.39003] [PMID: 32410829]
[94]
Alfian, I.; Chakraborty, A.; Yong, H.E.J.; Saini, S.; Lau, R.W.K.; Kalionis, B.; Dimitriadis, E.; Alfaidy, N.; Ricardo, S.D.; Samuel, C.S.; Murthi, P. The placental NLRP3 inflammasome and its downstream targets, caspase-1 and interleukin-6, are increased in human fetal growth restriction: Implications for aberrant inflammation-induced trophoblast dysfunction. Cells, 2022, 11(9), 1413.
[http://dx.doi.org/10.3390/cells11091413] [PMID: 35563719]
[95]
Silva, G.B.; Gierman, L.M.; Rakner, J.J.; Stødle, G.S.; Mundal, S.B.; Thaning, A.J.; Sporsheim, B.; Elschot, M.; Collett, K.; Bjørge, L.; Aune, M.H.; Thomsen, L.C.V.; Iversen, A.C. Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies. Front. Immunol., 2020, 11, 564712.
[http://dx.doi.org/10.3389/fimmu.2020.564712] [PMID: 33117348]
[96]
Park, S.; Shin, J.; Bae, J.; Han, D.; Park, S.R.; Shin, J.; Lee, S.K.; Park, H.W. SIRT1 alleviates LPS-Induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells, 2020, 9(3), 728.
[http://dx.doi.org/10.3390/cells9030728] [PMID: 32188057]
[97]
Meihe, L.; Shan, G.; Minchao, K.; Xiaoling, W.; Peng, A.; Xili, W.; Jin, Z.; Huimin, D. The ferroptosis-NLRP1 inflammasome: The vicious cycle of an adverse pregnancy. Front. Cell Dev. Biol., 2021, 9, 707959.
[http://dx.doi.org/10.3389/fcell.2021.707959] [PMID: 34490257]
[98]
Rogers, L.M.; Serezani, C.H.; Eastman, A.J.; Hasty, A.H.; Englund-Ögge, L.; Jacobsson, B.; Vickers, K.C.; Aronoff, D.M. Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta, 2020, 90, 45-51.
[http://dx.doi.org/10.1016/j.placenta.2019.12.009] [PMID: 32056551]
[99]
Hirata, Y.; Shimazaki, S.; Suzuki, S.; Henmi, Y.; Komiyama, H.; Kuwayama, T.; Iwata, H.; Karasawa, T.; Takahashi, M.; Takahashi, H.; Shirasuna, K. β-hydroxybutyrate suppresses NLRP3 inflammasome-mediated placental inflammation and lipopolysaccharide-induced fetal absorption. J. Reprod. Immunol., 2021, 148, 103433.
[http://dx.doi.org/10.1016/j.jri.2021.103433] [PMID: 34628106]
[100]
Motomura, K.; Romero, R.; Garcia-Flores, V.; Leng, Y.; Xu, Y.; Galaz, J.; Slutsky, R.; Levenson, D.; Gomez-Lopez, N. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Mol. Hum. Reprod., 2020, 26(9), 712-726.
[http://dx.doi.org/10.1093/molehr/gaaa054] [PMID: 32647859]
[101]
Mantovani, A.; Byrne, C.D.; Targher, G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol. Hepatol., 2022, 7(4), 367-378.
[http://dx.doi.org/10.1016/S2468-1253(21)00261-2] [PMID: 35030323]
[102]
Zhao, L.; Zheng, X.; Liu, J.; Zheng, R.; Yang, R.; Wang, Y.; Sun, L. PPAR signaling pathway in the first trimester placenta from in vitro fertilization and embryo transfer. Biomed. Pharmacother., 2019, 118, 109251.
[http://dx.doi.org/10.1016/j.biopha.2019.109251] [PMID: 31351426]
[103]
Zhang, Y.; Huo, Y.; He, W.; Liu, S.; Li, H.; Li, L. Visfatin is regulated by interleukin-6 and affected by the PPAR-γ pathway in BeWo cells. Mol. Med. Rep., 2018, 19(1), 400-406.
[http://dx.doi.org/10.3892/mmr.2018.9671] [PMID: 30483779]
[104]
Liu, F.; Zhu, W.; Shoaito, H.; Chissey, A.; Degrelle, S.A.; Fournier, T. Mining of combined human placental gene expression data across pregnancy, applied to PPAR signaling pathway. Placenta, 2020, 99, 157-165.
[http://dx.doi.org/10.1016/j.placenta.2020.07.024] [PMID: 32805615]
[105]
Sundrani, D.P.; Karkhanis, A.R.; Joshi, S.R. Peroxisome proliferator-activated receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med, 2021, 67(1), 24-41.
[http://dx.doi.org/10.1080/19396368.2020.1858994] [PMID: 33719831]
[106]
Li, J.; Quan, X.; Lei, S.; Chen, G.; Hong, J.; Huang, Z.; Wang, Q.; Song, W.; Yang, X. LncRNA MEG3 alleviates PFOS induced placental cell growth inhibition through its derived miR-770 targeting PTX3. Environ. Pollut., 2022, 293, 118542.
[http://dx.doi.org/10.1016/j.envpol.2021.118542] [PMID: 34801623]
[107]
Xu, P.; Guo, H.; Wang, H.; Lee, S.C.; Liu, M.; Pan, Y.; Zheng, J.; Zheng, K.; Wang, H.; Xie, Y.; Bai, X.; Liu, Y.; Zhao, M.; Wang, L. Downregulations of placental fatty acid transporters during cadmium-induced fetal growth restriction. Toxicology, 2019, 423, 112-122.
[http://dx.doi.org/10.1016/j.tox.2019.05.013] [PMID: 31152847]
[108]
Kolben, T.; Rogatsch, E.; Vattai, A.; Hester, A.; Kuhn, C.; Schmoeckel, E.; Mahner, S.; Jeschke, U.; Kolben, T. PPARγ expression is diminished in macrophages of recurrent miscarriage placentas. Int. J. Mol. Sci., 2018, 19(7), 1872.
[http://dx.doi.org/10.3390/ijms19071872] [PMID: 29949879]
[109]
Fu, L.; Bo, Q.L.; Gan, Y.; Chen, Y.H.; Zhao, H.; Tao, F.B.; Xu, D.X. Association among placental 11β-HSD2, PPAR-γ, and NF-κB p65 in small-for-gestational-age infants: A nested case-control study. Am. J. Reprod. Immunol., 2020, 83(5), e13231.
[http://dx.doi.org/10.1111/aji.13231] [PMID: 32187412]
[110]
Yamashita, F.; Kaieda, T.; Shimomura, T.; Kawaguchi, M.; Lin, C.Y.; Johnson, M.D.; Tanaka, H.; Kiwaki, T.; Fukushima, T.; Kataoka, H. Role of the polycystic kidney disease domain in matriptase chaperone activity and localization of hepatocyte growth factor activator inhibitor-1. FEBS J., 2022, 289(12), 3422-3439.
[http://dx.doi.org/10.1111/febs.16348] [PMID: 35020274]
[111]
Zheng, Q.; Yang, Q.; Zhou, J.; Gu, X.; Zhou, H.; Dong, X.; Zhu, H.; Chen, Z. Immune signature-based hepatocellular carcinoma subtypes may provide novel insights into therapy and prognosis predictions. Cancer Cell Int., 2021, 21(1), 330.
[http://dx.doi.org/10.1186/s12935-021-02033-4] [PMID: 34193146]
[112]
Ko, C.J.; Hsu, T.W.; Wu, S.R.; Lan, S.W.; Hsiao, T.F.; Lin, H.Y.; Lin, H.H.; Tu, H.F.; Lee, C.F.; Huang, C.C.; Chen, M.J.M.; Hsiao, P.W.; Huang, H.P.; Lee, M.S. Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene, 2020, 39(37), 5950-5963.
[http://dx.doi.org/10.1038/s41388-020-01413-w] [PMID: 32778768]
[113]
Kaitu’u-Lino, T.J.; MacDonald, T.M.; Cannon, P.; Nguyen, T.V.; Hiscock, R.J.; Haan, N.; Myers, J.E.; Hastie, R.; Dane, K.M.; Middleton, A.L.; Bittar, I.; Sferruzzi-Perri, A.N.; Pritchard, N.; Harper, A.; Hannan, N.J.; Kyritsis, V.; Crinis, N.; Hui, L.; Walker, S.P.; Tong, S. Circulating SPINT1 is a biomarker of pregnancies with poor placental function and fetal growth restriction. Nat. Commun., 2020, 11(1), 2411.
[http://dx.doi.org/10.1038/s41467-020-16346-x] [PMID: 32415092]
[114]
Murphy, C.N.; Walker, S.P.; MacDonald, T.M.; Keenan, E.; Hannan, N.J.; Wlodek, M.E.; Myers, J.; Briffa, J.F.; Romano, T.; Roddy Mitchell, A.; Whigham, C.A.; Cannon, P.; Nguyen, T.V.; Kandel, M.; Pritchard, N.; Tong, S.; Kaitu’u-Lino, T.J. Elevated circulating and placental SPINT2 is associated with placental dysfunction. Int. J. Mol. Sci., 2021, 22(14), 7467.
[http://dx.doi.org/10.3390/ijms22147467] [PMID: 34299087]
[115]
Murphy, C.N.; Cluver, C.A.; Walker, S.P.; Keenan, E.; Hastie, R.; MacDonald, T.M.; Hannan, N.J.; Brownfoot, F.C.; Cannon, P.; Tong, S.; Kaitu’u-Lino, T.J. Circulating SPINT1 Is reduced in a preeclamptic cohort with co-existing fetal growth restriction. J. Clin. Med., 2022, 11(4), 901.
[http://dx.doi.org/10.3390/jcm11040901] [PMID: 35207174]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy