Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanomedicine: Innovative Strategies and Recent Advances in Targeted Cancer Therapy

Author(s): Rupesh K. Gautam*, Pooja Mittal, Rajat Goyal, Kamal Dua, Dinesh Kumar Mishra, Sanjay Sharma and Rajeev Kumar Singla*

Volume 31, Issue 28, 2024

Published on: 11 October, 2023

Page: [4479 - 4494] Pages: 16

DOI: 10.2174/0109298673258987231004092334

Price: $65

Abstract

Nanomedicine's application of nanotechnology in medicine holds tremendous potential for diagnosing and treating life-threatening diseases such as cancer. Unlike conventional therapies, nanomedicine offers a promising strategy to enhance clinical outcomes while minimizing severe side effects. The principle of drug targeting enables specific delivery of therapeutic agents to their intended sites, making it a more precise and effective therapy. Combination strategies, such as the co-delivery of chemotherapeutic drugs with nucleic acids or receptor-specific molecules, are being employed to enhance therapeutic outcomes. Nanocarriers and drug delivery systems designed using these approaches offer resourceful co-delivery of therapeutic agents for anticancer therapy. Targeted drug delivery via nanotechnology-based techniques has become an urgent need and has shown significant improvements in therapeutic implications, pharmacokinetics, specificity, reduced toxicity, and biocompatibility. This review discusses the extrapolation of nanomaterials for developing innovative and novel drug delivery systems for effective anticancer therapy. Additionally, we explore the role of nanotechnology-based concepts in drug delivery research.

[1]
Adlercreutz, H. Phyto-oestrogens and cancer. Lancet Oncol., 2002, 3(6), 364-373.
[http://dx.doi.org/10.1016/S1470-2045(02)00777-5] [PMID: 12107024]
[2]
Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibody–drug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol., 2010, 14(4), 529-537.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.170] [PMID: 20643572]
[3]
Chavda, V.P.; Nalla, L.V.; Balar, P.; Bezbaruah, R.; Apostolopoulos, V.; Singla, R.K.; Khadela, A.; Vora, L.; Uversky, V.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers., 2023, 15(4), 1023.
[http://dx.doi.org/10.3390/cancers15041023] [PMID: 36831369]
[4]
Sultana, A.; Alam, M.S.; Liu, X.; Sharma, R.; Singla, R.K.; Gundamaraju, R.; Shen, B. Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches. Transl. Oncol., 2023, 27, 101571.
[http://dx.doi.org/10.1016/j.tranon.2022.101571] [PMID: 36401966]
[5]
Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater., 2013, 12(11), 958-962.
[http://dx.doi.org/10.1038/nmat3792] [PMID: 24150413]
[6]
Liu, J.; Zhang, R.; Xu, Z.P. Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions. Small, 2019, 15(32), 1900262.
[http://dx.doi.org/10.1002/smll.201900262] [PMID: 30908864]
[7]
Akash, S.; Kumer, A.; Rahman, M.M.; Emran, T.B.; Sharma, R.; Singla, R.K.; Alhumaydhi, F.A.; Khandaker, M.U.; Park, M.N.; Idris, A.M.; Wilairatana, P.; Kim, B. Development of new bioactive molecules to treat breast and lung cancer with natural myricetin and its derivatives: A computational and SAR approach. Front. Cell. Infect. Microbiol., 2022, 12, 952297.
[http://dx.doi.org/10.3389/fcimb.2022.952297] [PMID: 36237438]
[8]
Rani, N.; Singla, R.K.; Redhu, R.; Narwal, S.; Sonia; Bhatt, A. A review on green synthesis of silver nanoparticles and its role against cancer. Curr. Top. Med. Chem., 2022, 22(18), 1460-1471.
[http://dx.doi.org/10.2174/1568026622666220601165005] [PMID: 35652404]
[9]
Singla, R.K.; Scotti, M.T.; Kar, S. Editorial: Exploration of natural product leads for multitarget-based treatment of cancer-computational to experimental journey. Front. Pharmacol., 2022, 13, 850151.
[http://dx.doi.org/10.3389/fphar.2022.850151] [PMID: 35273512]
[10]
Singla, R.K.; Sharma, P.; Kumar, D.; Gautam, R.K.; Goyal, R.; Tsagkaris, C.; Dubey, A.K.; Bansal, H.; Sharma, R.; Shen, B. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front. Pharmacol., 2022, 13, 987088.
[http://dx.doi.org/10.3389/fphar.2022.987088] [PMID: 36386196]
[11]
Singla, R.K.; Wang, X.; Gundamaraju, R.; Joon, S.; Tsagkaris, C.; Behzad, S.; Khan, J.; Gautam, R.; Goyal, R.; Rakmai, J.; Dubey, A.K.; Simal-Gandara, J.; Shen, B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: A comprehensive review of preclinical and clinical studies. Crit. Rev. Food Sci. Nutr., 2022, 1-45.
[http://dx.doi.org/10.1080/10408398.2022.2097196] [PMID: 35838143]
[12]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[13]
Xue, S.; Ruan, G.; Li, J.; Madry, H.; Zhang, C.; Ding, C. Bio-responsive and multi-modality imaging nanomedicine for osteoarthritis theranostics. Biomater. Sci., 2023, 11(15), 5095-5107.
[http://dx.doi.org/10.1039/D3BM00370A] [PMID: 37305990]
[14]
Rouco, H.; García-García, P.; Briffault, E.; Diaz-Rodriguez, P. Modulating osteoclasts with nanoparticles: A path for osteoporosis management? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(4), e1885.
[http://dx.doi.org/10.1002/wnan.1885] [PMID: 37037204]
[15]
Chen, Y.; Wu, X.; Li, J.; Jiang, Y.; Xu, K.; Su, J. Bone-targeted nanoparticle drug delivery system: An emerging strategy for bone-related disease. Front. Pharmacol., 2022, 13, 909408.
[http://dx.doi.org/10.3389/fphar.2022.909408] [PMID: 35712701]
[16]
Yang, L.; Chaves, L.; Kutscher, H.L.; Karki, S.; Tamblin, M.; Kenney, P.; Reynolds, J.L. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front. Bioeng. Biotechnol., 2023, 11, 1095926.
[http://dx.doi.org/10.3389/fbioe.2023.1095926] [PMID: 37304141]
[17]
Giordo, R.; Wehbe, Z.; Paliogiannis, P.; Eid, A.H.; Mangoni, A.A.; Pintus, G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin. Cancer Biol., 2022, 86(Pt 2), 784-804.
[http://dx.doi.org/10.1016/j.semcancer.2022.03.001] [PMID: 35257860]
[18]
Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433.
[http://dx.doi.org/10.1016/j.nano.2021.102433] [PMID: 34171467]
[19]
Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; Rico, J.L.; Becerra-Ruiz, J.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem., 2021, 21(14), 1798-1812.
[http://dx.doi.org/10.2174/18755607MTEziOTEv4] [PMID: 33535949]
[20]
Gowthami, P.; Kosiha, A.; Meenakshi, S.; Boopathy, G.; Ramu, A.G.; Choi, D. Biosynthesis of Co3O4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities. Sci. Rep., 2023, 13(1), 9002.
[http://dx.doi.org/10.1038/s41598-023-35877-z] [PMID: 37268654]
[21]
Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574.
[http://dx.doi.org/10.1056/NEJM199705293362206] [PMID: 9164814]
[22]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[23]
Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules, 2016, 21(3), 342.
[http://dx.doi.org/10.3390/molecules21030342] [PMID: 26978341]
[24]
Chu, E. Cancer chemotherapy. In: Basic & Clinical Pharmacology, 15e; Katzung, B.G.; Vanderah, T.W., Eds.; McGraw-Hill: New York, NY, 2021.
[25]
Dadwal, A.; Baldi, A.; Kumar, N.R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[26]
DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[27]
Dunn, G.P.; Old, L.J.; Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004, 21(2), 137-148.
[http://dx.doi.org/10.1016/j.immuni.2004.07.017] [PMID: 15308095]
[28]
Ehdaie, B. Application of nanotechnology in cancer research: Review of progress in the national cancer institute’s alliance for nanotechnology. Int. J. Biol. Sci., 2007, 3(2), 108-110.
[http://dx.doi.org/10.7150/ijbs.3.108] [PMID: 17304339]
[29]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[30]
Ferrari, M. Cancer nanotechnology: Ogpportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[31]
Ferrari, M. Beyond drug delivery. Nat. Nanotechnol., 2008, 3(3), 131-132.
[http://dx.doi.org/10.1038/nnano.2008.46] [PMID: 18654480]
[32]
Firer, M.A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol., 2012, 5(1), 70.
[http://dx.doi.org/10.1186/1756-8722-5-70] [PMID: 23140144]
[33]
Frei, E., III; Canellos, G.P. Dose: A critical factor in cancer chemotherapy. Am. J. Med., 1980, 69(4), 585-594.
[http://dx.doi.org/10.1016/0002-9343(80)90472-6] [PMID: 6999898]
[34]
Grobmyer, S.R.; Iwakuma, N.; Sharma, P.; Moudgil, B.M. What is cancer nanotechnology? Methods Mol. Biol., 2010, 624, 1-9.
[http://dx.doi.org/10.1007/978-1-60761-609-2_1]
[35]
Gustafson, D.L.; Page, R.L. Cancer chemotherapy. Withrow MacEwen's Small Ani. Clini. Oncol., 2013, 157-179.
[36]
Jain, K.K. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 407-416.
[http://dx.doi.org/10.1177/153303460500400408] [PMID: 16029059]
[37]
Jain, K.K. Editorial: Targeted drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 311-313.
[http://dx.doi.org/10.1177/153303460500400401] [PMID: 16029052]
[38]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[39]
Kolhe, S.; Parikh, K. Application of nanotechnology in cancer: A review. Int. J. Bioinform. Res. Appl., 2012, 8(1/2), 112-125.
[http://dx.doi.org/10.1504/IJBRA.2012.045954] [PMID: 22450274]
[40]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[41]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[42]
Nygren, P. What is cancer chemotherapy? Acta Oncol., 2001, 40(2-3), 166-174.
[http://dx.doi.org/10.1080/02841860151116204] [PMID: 11441929]
[43]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[44]
Patri, A.K.; Majoros, I.J.; Baker, J.R., Jr Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 2002, 6(4), 466-471.
[http://dx.doi.org/10.1016/S1367-5931(02)00347-2] [PMID: 12133722]
[45]
Pillai, G. Nanotechnology toward treating Cancer: A comprehensive review. App. Targeted Nano Drugs Deliv. Sys., 2019, 221-256.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00009-0]
[46]
Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720.
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287]
[47]
Singhvi, G.; Rapalli, V.K.; Nagpal, S.; Dubey, S.K.; Saha, R.N. Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in Medicine; Springer, 2020; pp. 51-88.
[http://dx.doi.org/10.1007/978-3-030-29207-2_2]
[48]
Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol., 2022, 86(Pt 2), 1-13.
[http://dx.doi.org/10.1016/j.semcancer.2022.08.006] [PMID: 36028154]
[49]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0141] [PMID: 16928810]
[50]
Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/pva based hydrogel films loaded with honey for wound healing application. Gels, 2022, 8(2), 111.
[http://dx.doi.org/10.3390/gels8020111] [PMID: 35200493]
[51]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[52]
Kim, M.; Lee, J.H.; Nam, J.M. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci., 2019, 6(17)
[53]
Tarkistani, M.A.M.; Komalla, V.; Kayser, V. Recent advances in the use of iron–gold hybrid nanoparticles for biomedical applications. Nanomaterials., 2021, 11(5), 1227.
[http://dx.doi.org/10.3390/nano11051227] [PMID: 34066549]
[54]
Zamborlin, A.; Voliani, V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov. Today, 2023, 28(2), 103438.
[http://dx.doi.org/10.1016/j.drudis.2022.103438] [PMID: 36375738]
[55]
Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A.J. Polymer carriers for drug delivery in tissue engineering. Adv. Drug Deliv. Rev., 2007, 59(4-5), 187-206.
[http://dx.doi.org/10.1016/j.addr.2007.04.001] [PMID: 17540473]
[56]
Su, J.; Chen, F.; Cryns, V.L.; Messersmith, P.B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc., 2011, 133(31), 11850-11853.
[http://dx.doi.org/10.1021/ja203077x] [PMID: 21751810]
[57]
Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2(1), 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[58]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[59]
Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374.
[http://dx.doi.org/10.1177/153303460500400405] [PMID: 16029056]
[60]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[61]
Tong, R.; Cheng, J. Anticancer polymeric nanomedicines. Polym. Rev., 2007, 47(3), 345-381.
[http://dx.doi.org/10.1080/15583720701455079]
[62]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[63]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[64]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[65]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[66]
Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release, 2014, 190, 485-499.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.038] [PMID: 24984011]
[67]
Rivolta, I.; Panariti; Miserocchi The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnol. Sci. Appl., 2012, 87.
[http://dx.doi.org/10.2147/NSA.S25515]
[68]
Schiffelers, R.M.; Storm, G. Liposomal nanomedicines as anticancer therapeutics: Beyond targeting tumor cells. Int. J. Pharm., 2008, 364(2), 258-264.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.005] [PMID: 18773947]
[69]
Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[70]
Chopra, H.; Kaur, A.; Singh, I.; Sharma, R.K.; Emran, T.B. Nano-based targeting strategies for cancer treatment. Int. J. Surg., 2022, 105, 106864.
[http://dx.doi.org/10.1016/j.ijsu.2022.106864] [PMID: 36031069]
[71]
Khan, H.; Tiwari, P.; Kaur, A.; Singh, T.G. Sirtuin acetylation and deacetylation: A complex paradigm in neurodegenerative disease. Mol. Neurobiol., 2021, 58(8), 3903-3917.
[http://dx.doi.org/10.1007/s12035-021-02387-w] [PMID: 33877561]
[72]
Grewal, A.K.; Singh, T.G.; Sharma, D.; Sharma, V.; Singh, M.; Rahman, M.H.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.M.; Akhtar, M.F.; Saleem, A.; Abdel-Daim, M.M. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother., 2021, 140, 111729.
[http://dx.doi.org/10.1016/j.biopha.2021.111729] [PMID: 34044274]
[73]
Grewal, A.K.; Singh, N.; Singh, T.G. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia–reperfusion-induced injury in mice. J. Pharm. Pharmacol., 2019, 71(6), 956-970.
[http://dx.doi.org/10.1111/jphp.13073] [PMID: 30809806]
[74]
Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. Future J. Pharm. Sci., 2021, 7(1)
[75]
Compston, J.E.; Rosen, C. Fast Facts: Osteoporosis; Karger Medical and Scientific Publishers: Basel, Switzerland, 2009.
[http://dx.doi.org/10.1159/isbn.978-1-905832-60-6]
[76]
Shabatina, T.I.; Vernaya, O.I.; Shimanovskiy, N.L.; Melnikov, M.Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics, 2023, 15(4), 1181.
[http://dx.doi.org/10.3390/pharmaceutics15041181] [PMID: 37111666]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy