Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis of Piperazine-containing Derivatives and their Antimicrobial, Antimycobacterial, Antimalarial and Antioxidant Activities

Author(s): Navin B. Patel*, Pratik N. Maisuria, Akash V. Gujarati and Divyesh K. Patel

Volume 20, Issue 6, 2024

Published on: 25 October, 2023

Article ID: e251023222647 Pages: 11

DOI: 10.2174/0115734072265828231010050909

Price: $65

Abstract

Background: One of the most crucial heterocycles is piperazine for the creation of novel medication candidates with a variety of medicinal applications. The piperazine moiety is a cyclic compound with four carbon atoms and two nitrogen atoms in positions 1 and 4.

Objective: The objective of this studty is the development of 1-((3,4-dimethoxyphenyl) (substitutedphenyl) substituted -piperazine (A1-A10) analogs via the one-pot synthesis method and evaluation for their preliminary antibacterial, antifungal, antimycobacterial, antioxidant, and antimalarial activity.

Methods: Desired piperazine derivatives were obtained in a single step reaction using piperazine, aldehydes, and boronic acid derivatives. The structures of all newly synthesized compounds have been established based on analytical and spectral data. An in silico molecular docking study was carried out for the series.

Results: The spectral data using IR, 1H NMR, and 13C NMR and mass spectra confirmed the structure of the synthesized compounds. Compounds A6 and A10 were found to be the most promising agents for antimalarial activity. A1-A10 showed a higher IC50 value and found less antioxidant activity. Some of the compounds showed higher potency when compared to the standard drugs in this antimicrobial study.

Conclusion: The structure-activity study showed that changes in substituents either on aldehyde, piperazine, or boronic acid derivatives can lead to potential active compounds. These facts make the compounds interesting candidates for further evaluation of their efficacy in the treatment of microbial, tubercular and malarial diseases.

Graphical Abstract

[1]
Amita, T.; Mridula, M.; Manju, V. Piperazine: The molecule of diverse pharmacological importance. Int. J. Ayurveda Res., 2011, 2, 1547.
[2]
Alghamdi, S.; Alshehri, M.M.; Asif, M. The neuropharmacological potential of piperazine derivatives: A mini- review. Mini Rev. Org. Chem., 2022, 19(7), 798-810.
[http://dx.doi.org/10.2174/1570193X19666220119120211]
[3]
Jalageri, M.D.; Nagaraja, A.; Puttaiahgowda, Y.M. Piperazine based antimicrobial polymers: A review. RSC Advances, 2021, 11(25), 15213-15230.
[http://dx.doi.org/10.1039/D1RA00341K] [PMID: 35424074]
[4]
Meanwell, N.A.; Loiseleur, O. Applications of isosteres of piperazine in the design of biologically active compounds: Part 2. J. Agric. Food Chem., 2022, 70(36), 10972-11004.
[http://dx.doi.org/10.1021/acs.jafc.2c00729] [PMID: 35675052]
[5]
Zhang, R.H.; Guo, H.Y.; Deng, H.; Li, J.; Quan, Z.S. Piperazine skeleton in the structural modification of natural products: A review. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1165-1197.
[http://dx.doi.org/10.1080/14756366.2021.1931861] [PMID: 34080510]
[6]
Wei, M.X.; Zhou, Y.X.; Lin, M.; Zhang, J.; Sun, X. Design, synthesis and biological evaluation of rhein-piperazine-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2022, 241, 114651.
[http://dx.doi.org/10.1016/j.ejmech.2022.114651] [PMID: 35963130]
[7]
İbiş, K.; Nalbat, E.; Çalışkan, B.; Kahraman, D.C.; Cetin-Atalay, R.; Banoglu, E. Synthesis and biological evaluation of novel isoxazole-piperazine hybrids as potential anti-cancer agents with inhibitory effect on liver cancer stem cells. Eur. J. Med. Chem., 2021, 221, 113489.
[http://dx.doi.org/10.1016/j.ejmech.2021.113489] [PMID: 33951549]
[8]
Xu, Y.; Liang, P.; Rashid, H.; Wu, L.; Xie, P.; Wang, H.; Zhang, S.; Wang, L.; Jiang, J. Design, synthesis, and biological evaluation of matrine derivatives possessing piperazine moiety as antitumor agents. Med. Chem. Res., 2019, 28(10), 1618-1627.
[http://dx.doi.org/10.1007/s00044-019-02398-2]
[9]
Yurttaş, L.; Demirayak, Ş.; Ilgın, S.; Atlı, Ö. In vitro antitumor activity evaluation of some 1,2,4-triazine derivatives bearing piperazine amide moiety against breast cancer cells. Bioorg. Med. Chem., 2014, 22(22), 6313-6323.
[http://dx.doi.org/10.1016/j.bmc.2014.10.002] [PMID: 25438754]
[10]
Chiaramonte, N.; Angeli, A.; Sgambellone, S.; Bonardi, A.; Nocentini, A.; Bartolucci, G.; Braconi, L.; Dei, S.; Lucarini, L.; Teodori, E.; Gratteri, P.; Wünsch, B.; Supuran, C.T.; Romanelli, M.N. 2-(2-Hydroxyethyl)piperazine derivatives as potent human carbonic anhydrase inhibitors: Synthesis, enzyme inhibition, computational studies and antiglaucoma activity. Eur. J. Med. Chem., 2022, 228, 114026.
[http://dx.doi.org/10.1016/j.ejmech.2021.114026] [PMID: 34920169]
[11]
Phougat, H.; Devi, V.; Rai, S.; Reddy, T.S.; Singh, K. Urea derivatives of piperazine doped with pyrazole‐4‐carboxylic acids: Synthesis and antimicrobial evaluation. J. Heterocycl. Chem., 2021, 58(10), 1992-1999.
[http://dx.doi.org/10.1002/jhet.4325]
[12]
Zhao, S.J.; Lv, Z.S.; Deng, J.L.; Zhang, G.D.; Xu, Z. Pyrrolidine‐containing or piperazine‐containing nitrofuranylamides: Design, synthesis, and in vitro anti‐mycobacterial activities. J. Heterocycl. Chem., 2018, 55(12), 2996-3000.
[http://dx.doi.org/10.1002/jhet.3340]
[13]
Flagstad, T.; Pedersen, M.T.; Jakobsen, T.H.; Felding, J.; Tolker-Nielsen, T.; Givskov, M.; Qvortrup, K.; Nielsen, T.E. Solid-phase synthesis and biological evaluation of piperazine-based novel bacterial topoisomerase inhibitors. Bioorg. Med. Chem. Lett., 2022, 57, 128499.
[http://dx.doi.org/10.1016/j.bmcl.2021.128499] [PMID: 34906671]
[14]
Konduri, S.; Prashanth, J.; Krishna, V.S.; Sriram, D.; Behera, J.N.; Siegel, D.; Rao, K.P. Design and synthesis of purine connected piperazine derivatives as novel inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2020, 30(22), 127512.
[http://dx.doi.org/10.1016/j.bmcl.2020.127512] [PMID: 32871269]
[15]
Paidi, K.; Tatipamula, V.; Kolli, M.; Annam, S.; Pedakotla, V. Synthesis of imidazo[1,2-b]pyridazine comprised piperazine, morpholine derivatives as potent antimycobacterial agents with in vivo locomotor activity. Anti-infect., 2017, 15, 131.
[16]
Murthy, V.S.; Tamboli, Y.; Krishna, V.S.; Sriram, D.; Zhang, F.X.; Zamponi, G.W.; Vijayakumar, V. Synthesis and biological evaluation of novel benzhydrylpiperazine-coupled nitrobenzenesulfonamide hybrids. ACS Omega, 2021, 6(14), 9731-9740.
[http://dx.doi.org/10.1021/acsomega.1c00369] [PMID: 33869953]
[17]
Rimoli, M.G.; Russo, E.; Cataldi, M.; Citraro, R.; Ambrosino, P.; Melisi, D.; Curcio, A.; De Lucia, S.; Patrignani, P.; De Sarro, G.; Abignente, E. T-type channel blocking properties and antiabsence activity of two imidazo[1,2-b]pyridazine derivatives structurally related to indomethacin. Neuropharmacology, 2009, 56(3), 637-646.
[http://dx.doi.org/10.1016/j.neuropharm.2008.11.003] [PMID: 19071141]
[18]
Sacchi, A.; Laneri, S.; Arena, F.; Abignente, E.; Gallitelli, M.; D’amico, M.; Filippelli, W.; Rossi, F. Research on heterocyclic compounds, XLI. 2-Phenylimidazo[1,2-b]pyridazine-3-acetic derivatives: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 1999, 34(11), 1003-1008.
[http://dx.doi.org/10.1016/S0223-5234(99)00112-9] [PMID: 10889324]
[19]
Batista, D.C.; Silva, D.P.B.; Florentino, I.F.; Cardoso, C.S.; Gonçalves, M.P.; Valadares, M.C.; Lião, L.M.; Sanz, G.; Vaz, B.G.; Costa, E.A.; Menegatti, R. Anti-inflammatory effect of a new piperazine derivative: (4-methylpiperazin-1-yl)(1-phenyl-1H-pyrazol-4-yl)methanone. Inflammopharmacology, 2018, 26(1), 217-226.
[http://dx.doi.org/10.1007/s10787-017-0390-8] [PMID: 28825161]
[20]
Jain, A.; Chaudhary, J.; Khaira, H.; Chopra, B.; Dhingra, A. Piperazine: A promising scaffold with analgesic and anti-inflammatory potential. Drug Res., 2021, 71(2), 62-72.
[http://dx.doi.org/10.1055/a-1323-2813] [PMID: 33336346]
[21]
Ajala, A.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E. Structure-based drug design of novel piperazine containing hydrazone derivatives as potent alzheimer inhibitors: Molecular docking and drug kinetics evaluation. Brain Disorders, 2022, 7, 100041.
[http://dx.doi.org/10.1016/j.dscb.2022.100041]
[22]
Sergeant, N.; Vingtdeux, V.; Eddarkaoui, S.; Gay, M.; Evrard, C.; Le Fur, N.; Laurent, C.; Caillierez, R.; Obriot, H.; Larchanché, P.E.; Farce, A.; Coevoet, M.; Carato, P.; Kouach, M.; Descat, A.; Dallemagne, P.; Buée-Scherrer, V.; Blum, D.; Hamdane, M.; Buée, L.; Melnyk, P. New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer’s disease. Neurobiol. Dis., 2019, 129, 217-233.
[http://dx.doi.org/10.1016/j.nbd.2019.03.028] [PMID: 30928644]
[23]
Mathew, B.; Oh, J.M.; Baty, R.S.; Batiha, G.E.S.; Parambi, D.G.T.; Gambacorta, N.; Nicolotti, O.; Kim, H. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. Environ. Sci. Pollut. Res. Int., 2021, 28(29), 38855-38866.
[http://dx.doi.org/10.1007/s11356-021-13320-y] [PMID: 33743158]
[24]
Zhang, X.; Wang, H.; Li, Y.; Cao, R.; Zhong, W.; Zheng, Z.; Wang, G.; Xiao, J.; Li, S. Novel substituted heteroaromatic piperazine and piperidine derivatives as inhibitors of human enterovirus 71 and coxsackievirus a16. Molecules, 2013, 18(5), 5059-5071.
[http://dx.doi.org/10.3390/molecules18055059] [PMID: 23629759]
[25]
Omar, A.Z.; Mosa, T.M.; El-sadany, S.K.; Hamed, E.A.; El-atawy, M. Novel piperazine based compounds as potential inhibitors for SARS-CoV-2 Protease Enzyme: Synthesis and molecular docking study. J. Mol. Struct., 2021, 1245, 131020.
[http://dx.doi.org/10.1016/j.molstruc.2021.131020] [PMID: 34248201]
[26]
Aggarwal, M.; Kaur, R.; Saha, A.; Mudgal, R.; Yadav, R.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Evaluation of antiviral activity of piperazine against Chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antiviral Res., 2017, 146, 102-111.
[http://dx.doi.org/10.1016/j.antiviral.2017.08.015] [PMID: 28842264]
[27]
Saadeh, H.A.; Khasawneh, M.A.; Abu-Zeid, Y.A.; El-Haty, I.A.; Mubarak, M.S.; Nsangou, S.P.; Goyal, K.; Sehgal, R.; Marco-Contelles, J.; Samadi, A. Novel 5-nitroimidazole and 5-nitrothiazole piperazine derivatives and their antiparasitic activity. ChemistrySelect, 2017, 2(20), 5684-5687.
[http://dx.doi.org/10.1002/slct.201700348]
[28]
Aboutabl, M.E.; Hamed, A.R.; Hamissa, M.F.; Ahmed, E.K. Anti-inflammatory and analgesic activities of 7-Chloro-4-(Piperazin-1-yl) quinoline derivative mediated by suppression of inflammatorymediators expression in both RAW 264.7 and mouse models. Ulum-i Daruyi, 2020, 27(3), 326-338.
[http://dx.doi.org/10.34172/PS.2020.101]
[29]
Carter, D.S.; Cai, H.Y.; Lee, E.K.; Iyer, P.S.; Lucas, M.C.; Roetz, R.; Schoenfeld, R.C.; Weikert, R.J. 2-Substituted N-aryl piperazines as novel triple reuptake inhibitors for the treatment of depression. Bioorg. Med. Chem. Lett., 2010, 20(13), 3941-3945.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.008] [PMID: 20570146]
[30]
Chance, J.P.; Fejzic, H.; Hernandez, O.; Istvan, E.S.; Andaya, A.; Maslov, N.; Aispuro, R.; Crisanto, T.; Nguyen, H.; Vidal, B.; Serrano, W.; Kuwahara, B.; Pugne Andanado, C.; Goldberg, D.E.; Mallari, J.P. Development of piperazine-based hydroxamic acid inhibitors against falcilysin, an essential malarial protease. Bioorg. Med. Chem. Lett., 2018, 28(10), 1846-1848.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.010] [PMID: 29691139]
[31]
Yang, L.; Xu, X.; Huang, Y.; Zhang, B.; Zeng, C.; He, H.; Wang, C.; Hu, L. Synthesis of polyhydroxylated aromatics having amidation of piperazine nitrogen as HIV-1 integrase inhibitor. Bioorg. Med. Chem. Lett., 2010, 20(18), 5469-5471.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.087] [PMID: 20709544]
[32]
Al-Soud, Y.; Al-Masoudi, N.; Hassan, H.; De Clercq, E.; Pannecouque, C. Nitroimidazoles. V. Synthesis and anti-HIV evaluation of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Acta Pharm., 2007, 57(4), 379-393.
[http://dx.doi.org/10.2478/v10007-007-0031-7] [PMID: 18165184]
[33]
Begum, S.; Rashida Anjum, M.S.; Harisree, G.P.; Sivalakshmi, N.; Priyanka, P.; Bharathi, K. antioxidant activity of piperazine compounds- A Brief review. Asian J. Chem., 2020, 32(9), 2105-2118.
[http://dx.doi.org/10.14233/ajchem.2020.22832]
[34]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[35]
Tsukatani, T.; Suenaga, H.; Shiga, M.; Noguchi, K.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J. Microbiol. Methods, 2012, 90(3), 160-166.
[http://dx.doi.org/10.1016/j.mimet.2012.05.001] [PMID: 22642794]
[36]
Palkar, M.; Noolvi, M.; Patel, H.; Maddi, V.; Nargund, L. 2D-QSAR study of fluoroquinolone derivatives: An approach to design anti-tubercular agents. Int. J. Drug. Des. Discovery., 2011, 2, 559.
[37]
Liang, H.; Xing, Y.; Chen, J.; Zhang, D.; Guo, S.; Wang, C. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complement. Altern. Med., 2012, 12(1), 238.
[http://dx.doi.org/10.1186/1472-6882-12-238] [PMID: 23190550]
[38]
Monteiro, M.C.; de la Cruz, M.; Cantizani, J.; Moreno, C.; Tormo, J.R.; Mellado, E.; De Lucas, J.R.; Asensio, F.; Valiante, V.; Brakhage, A.A.; Latgé, J.P.; Genilloud, O.; Vicente, F. A new approach to drug discovery: High-throughput screening of microbial natural extracts against aspergillus fumigatus using resazurin. SLAS Discov., 2012, 17(4), 542-549.
[http://dx.doi.org/10.1177/1087057111433459] [PMID: 22233645]
[39]
Desjardins, R.E.; Canfield, C.J.; Haynes, J.D.; Chulay, J.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother., 1979, 16(6), 710-718.
[http://dx.doi.org/10.1128/AAC.16.6.710] [PMID: 394674]
[40]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy