Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Deacetylation of Histones and Non-histone Proteins in Inflammatory Diseases and Cancer Therapeutic Potential of Histone Deacetylase Inhibitors

Author(s): Ezgi Man and Serap Evran*

Volume 24, Issue 3, 2023

Published on: 24 October, 2023

Page: [136 - 145] Pages: 10

DOI: 10.2174/0113892029265046231011100327

Price: $65

Abstract

Epigenetic changes play an important role in the pathophysiology of autoimmune diseases such as allergic asthma, multiple sclerosis, lung diseases, diabetes, cystic fibrosis, atherosclerosis, rheumatoid arthritis, and COVID-19. There are three main classes of epigenetic alterations: posttranslational modifications of histone proteins, control by non-coding RNA and DNA methylation. Since histone modifications can directly affect chromatin structure and accessibility, they can regulate gene expression levels. Abnormal expression and activity of histone deacetylases (HDACs) have been reported in immune mediated diseases. Increased acetylated levels of lysine residues have been suggested to be related to the overexpression of inflammatory genes. This review focuses on the effect of HDAC modifications on histone and non–histone proteins in autoimmune diseases. Furthermore, we discuss the potential therapeutic effect of HDAC inhibitors (HDACi) used in these diseases

Graphical Abstract

[1]
Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun., 2023, 14(1), 201.
[http://dx.doi.org/10.1038/s41467-023-35795-8] [PMID: 36639369]
[2]
Hermann, J.; Schurgers, L.; Jankowski, V. Identification and characterization of post-translational modifications: Clinical implications. Mol. Aspects Med., 2022, 86, 101066.
[http://dx.doi.org/10.1016/j.mam.2022.101066] [PMID: 35033366]
[3]
Ao, C.; Gao, L.; Yu, L. Research progress in predicting DNA methylation modifications and the relation with human diseases. Curr. Med. Chem., 2022, 29(5), 822-836.
[http://dx.doi.org/10.2174/0929867328666210917115733] [PMID: 34533438]
[4]
Li, P.; Ge, J.; Li, H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat. Rev. Cardiol., 2020, 17(2), 96-115.
[http://dx.doi.org/10.1038/s41569-019-0235-9] [PMID: 31350538]
[5]
Yang, X.J.; Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell, 2008, 31(4), 449-461.
[http://dx.doi.org/10.1016/j.molcel.2008.07.002] [PMID: 18722172]
[6]
Wang, Z.A.; Cole, P.A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol., 2020, 27(8), 953-969.
[http://dx.doi.org/10.1016/j.chembiol.2020.07.002] [PMID: 32698016]
[7]
Li, Y.; Zhou, M.; Lv, X.; Song, L.; Zhang, D.; He, Y.; Wang, M.; Zhao, X.; Yuan, X.; Shi, G.; Wang, D. Reduced activity of HDAC3 and increased acetylation of histones H3 in peripheral blood mononuclear cells of patients with rheumatoid arthritis. J. Immunol. Res., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/7313515] [PMID: 30402512]
[8]
Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett., 2009, 277(1), 8-21.
[http://dx.doi.org/10.1016/j.canlet.2008.08.016] [PMID: 18824292]
[9]
Ganai, S.A. Characterizing binding intensity and energetic features of histone deacetylase inhibitor pracinostat towards class I HDAC isozymes through futuristic drug designing strategy. In Silico Pharmacol., 2021, 9(1), 18.
[http://dx.doi.org/10.1007/s40203-021-00077-y] [PMID: 33628709]
[10]
Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br. J. Clin. Pharmacol., 2021, 87(12), 4577-4597.
[http://dx.doi.org/10.1111/bcp.14889] [PMID: 33971031]
[11]
Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[12]
Gatla, H.; Muniraj, N.; Thevkar, P.; Yavvari, S.; Sukhavasi, S.; Makena, M. Regulation of chemokines and cytokines by histone deacetylases and an update on histone decetylase inhibitors in human diseases. Int. J. Mol. Sci., 2019, 20(5), 1110.
[http://dx.doi.org/10.3390/ijms20051110] [PMID: 30841513]
[13]
Ribeiro, C.M.P.; Higgs, M.G.; Muhlebach, M.S.; Wolfgang, M.C.; Borgatti, M.; Lampronti, I.; Cabrini, G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int. J. Mol. Sci., 2023, 24(5), 5010.
[http://dx.doi.org/10.3390/ijms24055010] [PMID: 36902441]
[14]
Malhotra, S.; Hayes, D., Jr; Wozniak, D.J. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin. Microbiol. Rev., 2019, 32(3), e00138-e18.
[http://dx.doi.org/10.1128/CMR.00138-18] [PMID: 31142499]
[15]
Phuong, M.S.; Hernandez, R.E.; Wolter, D.J.; Hoffman, L.R.; Sad, S. Impairment in inflammasome signaling by the chronic Pseudomonas aeruginosa isolates from cystic fibrosis patients results in an increase in inflammatory response. Cell Death Dis., 2021, 12(3), 241.
[http://dx.doi.org/10.1038/s41419-021-03526-w] [PMID: 33664232]
[16]
Mateu-Borrás, M.; González-Alsina, A.; Doménech-Sánchez, A.; Querol-García, J.; Fernández, F.J.; Vega, M.C.; Albertí, S. Pseudomonas aeruginosa adaptation in cystic fibrosis patients increases C5a levels and promotes neutrophil recruitment. Virulence, 2022, 13(1), 215-224.
[http://dx.doi.org/10.1080/21505594.2022.2028484] [PMID: 35094639]
[17]
Petrocheilou, A.; Moudaki, A.; Kaditis, A.G. Inflammation and Infection in Cystic Fibrosis: Update for the Clinician. Children (Basel), 2022, 9(12), 1898.
[http://dx.doi.org/10.3390/children9121898] [PMID: 36553341]
[18]
Chmiel, J.F.; Konstan, M.W.; Elborn, J.S. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harb. Perspect. Med., 2013, 3(10), a009779.
[http://dx.doi.org/10.1101/cshperspect.a009779] [PMID: 23880054]
[19]
Ribeiro, C.M.P.; McElvaney, N.G.; Cabrini, G. Editorial: Novel anti-inflammatory approaches for cystic fibrosis lung disease: Identification of molecular targets and design of innovative therapies. Front. Pharmacol., 2021, 12, 794854.
[http://dx.doi.org/10.3389/fphar.2021.794854] [PMID: 34867428]
[20]
Bodas, M.; Mazur, S.; Min, T.; Vij, N. Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses. Respir. Res., 2018, 19(1), 2.
[http://dx.doi.org/10.1186/s12931-017-0705-8] [PMID: 29301535]
[21]
Brindisi, M.; Barone, S.; Rossi, A.; Cassese, E.; Del Gaudio, N.; Feliz Morel, Á.J.; Filocamo, G.; Alberico, A.; De Fino, I.; Gugliandolo, D.; Babaei, M.; Bove, G.; Croce, M.; Montesano, C.; Altucci, L.; Bragonzi, A.; Summa, V. Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis. Eur. J. Pharmacol., 2022, 936, 175349.
[http://dx.doi.org/10.1016/j.ejphar.2022.175349] [PMID: 36309047]
[22]
Chakraborty, A.; Kabashi, A.; Wilk, S.; Rahme, L.G. Quorum-sensing signaling molecule 2-aminoacetophenone mediates the persistence of Pseudomonas aeruginosa in macrophages by interference with autophagy through epigenetic regulation of lipid biosynthesis. MBio, 2023, 14(2), e00159-e23.
[http://dx.doi.org/10.1128/mbio.00159-23] [PMID: 37010415]
[23]
Hutt, D.M.; Herman, D.; Rodrigues, A.P.C.; Noel, S.; Pilewski, J.M.; Matteson, J.; Hoch, B.; Kellner, W.; Kelly, J.W.; Schmidt, A.; Thomas, P.J.; Matsumura, Y.; Skach, W.R.; Gentzsch, M.; Riordan, J.R.; Sorscher, E.J.; Okiyoneda, T.; Yates, J.R., III; Lukacs, G.L.; Frizzell, R.A.; Manning, G.; Gottesfeld, J.M.; Balch, W.E. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat. Chem. Biol., 2010, 6(1), 25-33.
[http://dx.doi.org/10.1038/nchembio.275] [PMID: 19966789]
[24]
Anglès, F.; Hutt, D.M.; Balch, W.E. HDAC inhibitors rescue multiple disease-causing CFTR variants. Hum. Mol. Genet., 2019, 28(12), 1982-2000.
[http://dx.doi.org/10.1093/hmg/ddz026] [PMID: 30753450]
[25]
Rosenjack, J.; Hodges, C.A.; Darrah, R.J.; Kelley, T.J. HDAC6 depletion improves cystic fibrosis mouse airway responses to bacterial challenge. Sci. Rep., 2019, 9(1), 10282.
[http://dx.doi.org/10.1038/s41598-019-46555-4] [PMID: 31311988]
[26]
Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells, 2020, 9(4), 880.
[http://dx.doi.org/10.3390/cells9040880] [PMID: 32260219]
[27]
Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci., 2021, 22(20), 10922.
[http://dx.doi.org/10.3390/ijms222010922] [PMID: 34681582]
[28]
Elemam, N.M.; Hannawi, S.; Maghazachi, A.A. Role of chemokines and chemokine receptors in rheumatoid arthritis. ImmunoTargets Ther., 2020, 9, 43-56.
[http://dx.doi.org/10.2147/ITT.S243636] [PMID: 32211348]
[29]
Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct. Target. Ther., 2023, 8(1), 68.
[http://dx.doi.org/10.1038/s41392-023-01331-9] [PMID: 36797236]
[30]
Angiolilli, C.; Kabala, P.A.; Grabiec, A.M.; Van Baarsen, I.M.; Ferguson, B.S.; García, S.; Malvar Fernandez, B.; McKinsey, T.A.; Tak, P.P.; Fossati, G.; Mascagni, P.; Baeten, D.L.; Reedquist, K.A. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann. Rheum. Dis., 2017, 76(1), 277-285.
[http://dx.doi.org/10.1136/annrheumdis-2015-209064] [PMID: 27457515]
[31]
Mao, D.; Jiang, H.; Zhang, F.; Yang, H.; Fang, X.; Zhang, Q.; Zhao, G. HDAC2 exacerbates rheumatoid arthritis progression via the IL‐17‐CCL7 signaling pathway. Environ. Toxicol., 2023, 38(7), 1743-1755.
[http://dx.doi.org/10.1002/tox.23802] [PMID: 37021908]
[32]
Li, M.; Hu, W.; Wang, R.; Li, Z.; Yu, Y.; Zhuo, Y.; Zhang, Y.; Wang, Z.; Qiu, Y.; Chen, K.; Ding, Q.; Qi, W.; Zhu, M.; Zhu, Y. Sp1 S-Sulfhydration Induced by Hydrogen Sulfide Inhibits Inflammation via HDAC6/MyD88/NF-κB Signaling Pathway in Adjuvant-Induced Arthritis. Antioxidants, 2022, 11(4), 732.
[http://dx.doi.org/10.3390/antiox11040732] [PMID: 35453416]
[33]
Park, J.K.; Shon, S.; Yoo, H.J.; Suh, D.H.; Bae, D.; Shin, J.; Jun, J.H.; Ha, N.; Song, H.; Choi, Y.I.; Pap, T.; Song, Y.W. Inhibition of histone deacetylase 6 suppresses inflammatory responses and invasiveness of fibroblast-like-synoviocytes in inflammatory arthritis. Arthritis Res. Ther., 2021, 23(1), 177.
[http://dx.doi.org/10.1186/s13075-021-02561-4] [PMID: 34225810]
[34]
Zhu, M.; Ding, Q.; Lin, Z.; Fu, R.; Zhang, F.; Li, Z.; Zhang, M.; Zhu, Y. New targets and strategies for rheumatoid arthritis: from signal transduction to epigenetic aspect. Biomolecules, 2023, 13(5), 766.
[http://dx.doi.org/10.3390/biom13050766] [PMID: 37238636]
[35]
Park, J.K.; Jang, Y.J.; Oh, B.R.; Shin, J.; Bae, D.; Ha, N.; Choi, Y.; Youn, G.S.; Park, J.; Lee, E.Y.; Lee, E.B.; Song, Y.W. Therapeutic potential of CKD-506, a novel selective histone deacetylase 6 inhibitor, in a murine model of rheumatoid arthritis. Arthritis Res. Ther., 2020, 22(1), 176.
[http://dx.doi.org/10.1186/s13075-020-02258-0] [PMID: 32711562]
[36]
Bae, D.; Choi, Y.; Lee, J.; Ha, N.; Suh, D.; Baek, J.; Park, J.; Son, W. M-134, a novel HDAC6-selective inhibitor, markedly improved arthritic severity in a rodent model of rheumatoid arthritis when combined with tofacitinib. Pharmacol. Rep., 2021, 73(1), 185-201.
[http://dx.doi.org/10.1007/s43440-020-00188-x] [PMID: 33188511]
[37]
Zhe, W.; Hoshina, N.; Itoh, Y.; Tojo, T.; Suzuki, T.; Hase, K.; Takahashi, D. A novel HDAC1-selective inhibitor attenuates autoimmune arthritis by inhibiting inflammatory cytokine production. Biol. Pharm. Bull., 2022, 45(9), 1364-1372.
[http://dx.doi.org/10.1248/bpb.b22-00321] [PMID: 36047206]
[38]
Mane, R.R.; Kale, P.P. The roles of HDAC with IMPDH and mTOR with JAK as future targets in the treatment of rheumatoid arthritis with combination therapy. J. Complement. Integr. Med., 2022, 0(0)
[http://dx.doi.org/10.1515/jcim-2022-0114] [PMID: 36409592]
[39]
Karami, J.; Aslani, S.; Tahmasebi, M.N.; Mousavi, M.J.; Sharafat Vaziri, A.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M. Epigenetics in rheumatoid arthritis; fibroblast‐like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol. Cell Biol., 2020, 98(3), 171-186.
[http://dx.doi.org/10.1111/imcb.12311] [PMID: 31856314]
[40]
Angiolilli, C.; Grabiec, A.M.; Ferguson, B.S.; Ospelt, C.; Malvar Fernandez, B.; van Es, I.E.; van Baarsen, L.G.M.; Gay, S.; McKinsey, T.A.; Tak, P.P.; Baeten, D.L.; Reedquist, K.A. Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann. Rheum. Dis., 2016, 75(2), 430-438.
[http://dx.doi.org/10.1136/annrheumdis-2014-205635] [PMID: 25452308]
[41]
Björkegren, J.L.M. Atherosclerosis: Recent developments. Cell, 2022, 185(10), 1630-1645.
[42]
Gusev, E.; Sarapultsev, A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int. J. Mol. Sci., 2023, 24(9), 7910.
[http://dx.doi.org/10.3390/ijms24097910] [PMID: 37175617]
[43]
Shao, B.Z.; Xu, H.Y.; Zhao, Y.C.; Zheng, X.R.; Wang, F.; Zhao, G.R. NLRP3 inflammasome in atherosclerosis: putting out the fire of inflammation. Inflammation, 2023, 46(1), 35-46.
[http://dx.doi.org/10.1007/s10753-022-01725-x] [PMID: 35953687]
[44]
Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7(1), 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[45]
Bhattacharya, P.; Kanagasooriyan, R.; Subramanian, M. Tackling inflammation in atherosclerosis: Are we there yet and what lies beyond? Curr. Opin. Pharmacol., 2022, 66, 102283.
[http://dx.doi.org/10.1016/j.coph.2022.102283] [PMID: 36037627]
[46]
Yang, H.; Sun, Y.; Li, Q.; Jin, F.; Dai, Y. Diverse epigenetic regulations of macrophages in atherosclerosis. Front. Cardiovasc. Med., 2022, 9, 868788.
[http://dx.doi.org/10.3389/fcvm.2022.868788] [PMID: 35425818]
[47]
Chen, X.; He, Y.; Fu, W.; Sahebkar, A.; Tan, Y.; Xu, S.; Li, H. Histone deacetylases (HDACs) and atherosclerosis: a mechanistic and pharmacological review. Front. Cell Dev. Biol., 2020, 8, 581015.
[http://dx.doi.org/10.3389/fcell.2020.581015] [PMID: 33282862]
[48]
Lee, H.T.; Oh, S.; Ro, D.H.; Yoo, H.; Kwon, Y.W. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis. J. Lipid Atheroscler., 2020, 9(3), 419-434.
[http://dx.doi.org/10.12997/jla.2020.9.3.419] [PMID: 33024734]
[49]
Fang, Z.; Wang, X.; Sun, X.; Hu, W.; Miao, Q.R. The role of histone protein acetylation in regulating endothelial function. Front. Cell Dev. Biol., 2021, 9, 672447.
[http://dx.doi.org/10.3389/fcell.2021.672447] [PMID: 33996829]
[50]
Shen, Z.; Bei, Y.; Lin, H.; Wei, T.; Dai, Y.; Hu, Y.; Zhang, C.; Dai, H. The role of class IIa histone deacetylases in regulating endothelial function. Front. Physiol., 2023, 14, 1091794.
[http://dx.doi.org/10.3389/fphys.2023.1091794] [PMID: 36935751]
[51]
Chang, S.; Young, B.D.; Li, S.; Qi, X.; Richardson, J.A.; Olson, E.N. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell, 2006, 126(2), 321-334.
[http://dx.doi.org/10.1016/j.cell.2006.05.040] [PMID: 16873063]
[52]
Chen, L.; Shang, C.; Wang, B.; Wang, G.; Jin, Z.; Yao, F.; Yue, Z.; Bai, L.; Wang, R.; Zhao, S.; Liu, E.; Wang, W. HDAC3 inhibitor suppresses endothelial-to-mesenchymal transition via modulating inflammatory response in atherosclerosis. Biochem. Pharmacol., 2021, 192, 114716.
[http://dx.doi.org/10.1016/j.bcp.2021.114716] [PMID: 34339713]
[53]
Nomura, Y.; Nakano, M.; Woo Sung, H.; Han, M.; Pandey, D. Inhibition of HDAC6 Activity Protects Against Endothelial Dysfunction and Atherogenesis in vivo: A Role for HDAC6 Neddylation. Front. Physiol., 2021, 12, 675724.
[http://dx.doi.org/10.3389/fphys.2021.675724] [PMID: 34220539]
[54]
Asare, Y.; Campbell-James, T.A.; Bokov, Y.; Yu, L.L.; Prestel, M.; El Bounkari, O.; Roth, S.; Megens, R.T.A.; Straub, T.; Thomas, K.; Yan, G.; Schneider, M.; Ziesch, N.; Tiedt, S.; Silvestre-Roig, C.; Braster, Q.; Huang, Y.; Schneider, M.; Malik, R.; Haffner, C.; Liesz, A.; Soehnlein, O.; Bernhagen, J.; Dichgans, M. Histone deacetylase 9 activates IKK to regulate atherosclerotic plaque vulnerability. Circ. Res., 2020, 127(6), 811-823.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316743] [PMID: 32546048]
[55]
Luan, Y.; Liu, H.; Luan, Y.; Yang, Y.; Yang, J.; Ren, K.D. New insight in HDACs: Potential therapeutic targets for the treatment of atherosclerosis. Front. Pharmacol., 2022, 13, 863677.
[http://dx.doi.org/10.3389/fphar.2022.863677] [PMID: 35529430]
[56]
Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina (Kaunas), 2022, 58(2), 144.
[http://dx.doi.org/10.3390/medicina58020144] [PMID: 35208467]
[57]
Gusev, E.; Sarapultsev, A.; Solomatina, L.; Chereshnev, V. SARS-CoV-2-Specific immune response and the pathogenesis of COVID-19. Int. J. Mol. Sci., 2022, 23(3), 1716.
[http://dx.doi.org/10.3390/ijms23031716] [PMID: 35163638]
[58]
Pires, B.G.; Calado, R.T. Hyper‐inflammation and complement in COVID ‐19. Am. J. Hematol., 2023, 98(S4)(Suppl. 4), S74-S81.
[http://dx.doi.org/10.1002/ajh.26746] [PMID: 36999459]
[59]
Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol., 2020, 214, 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[60]
Murakami, N.; Hayden, R.; Hills, T.; Al-Samkari, H.; Casey, J.; Del Sorbo, L.; Lawler, P.R.; Sise, M.E.; Leaf, D.E. Therapeutic advances in COVID-19. Nat. Rev. Nephrol., 2023, 19(1), 38-52.
[http://dx.doi.org/10.1038/s41581-022-00642-4] [PMID: 36253508]
[61]
Perico, N.; Cortinovis, M.; Suter, F.; Remuzzi, G. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. Lancet Infect. Dis., 2023, 23(1), e22-e33.
[http://dx.doi.org/10.1016/S1473-3099(22)00433-9] [PMID: 36030796]
[62]
Li, G.; Hilgenfeld, R.; Whitley, R.; De Clercq, E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov., 2023, 22(6), 449-475.
[http://dx.doi.org/10.1038/s41573-023-00672-y] [PMID: 37076602]
[63]
Shirvaliloo, M. Epigenomics in COVID-19; the link between DNA methylation, histone modifications and SARS-CoV-2 infection. Epigenomics, 2021, 13(10), 745-750.
[http://dx.doi.org/10.2217/epi-2021-0057] [PMID: 33876664]
[64]
Behrouj, H.; Vakili, O.; Sadeghdoust, A.; Aligolighasemabadi, N.; Khalili, P.; Zamani, M.; Mokarram, P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem. Biophys. Rep., 2022, 30, 101264.
[http://dx.doi.org/10.1016/j.bbrep.2022.101264] [PMID: 35469237]
[65]
Dey, A.; Vaishak, K.; Deka, D.; Radhakrishnan, A.K.; Paul, S.; Shanmugam, P.; Daniel, A.P.; Pathak, S.; Duttaroy, A.K.; Banerjee, A. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection, 2023, 1-16.
[http://dx.doi.org/10.1007/s15010-023-02017-8] [PMID: 36906872]
[66]
Rabaan, A.A.; Aljeldah, M.; Shammari, B.R.A.; Alsubki, R.A.; Alotaibi, J.; Alhashem, Y.N.; Alali, N.A.; Sulaiman, T.; Alsalem, Z.; Bajunaid, H.A.; Garout, M.; Alsaffar, H.A.; Almuthree, S.A.; Hudhaiah, D.; Alzaher, A.M.; Alshaikh, F.A.; Alshengeti, A.; Najim, M.A.; Farahat, R.A.; Mohapatra, R.K. Epigenetic targets and pathways linked to SARS-CoV-2 infection and pathology. Microorganisms, 2023, 11(2), 341.
[http://dx.doi.org/10.3390/microorganisms11020341] [PMID: 36838306]
[67]
Ripamonti, C.; Spadotto, V. HDAC inhibition as potential therapeutic strategy to restore the deregulated immune response in severe COVID-19. Front. Immunol., 2022, 13, 841716.
[68]
Liu, K.; Zou, R.; Cui, W.; Li, M.; Wang, X.; Dong, J.; Li, H.; Li, H.; Wang, P.; Shao, X.; Su, W.; Chan, H.C.S.; Li, H.; Yuan, S. Clinical HDAC inhibitors are effective drugs to prevent the entry of SARS-CoV2. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1361-1370.
[http://dx.doi.org/10.1021/acsptsci.0c00163] [PMID: 34778724]
[69]
Takahashi, Y.; Hayakawa, A.; Sano, R.; Fukuda, H.; Harada, M.; Kubo, R.; Okawa, T.; Kominato, Y. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci. Rep., 2021, 11(1), 3379.
[http://dx.doi.org/10.1038/s41598-021-82970-2] [PMID: 33564039]
[70]
Saiz, M.L.; DeDiego, M.L.; López-García, D.; Corte-Iglesias, V.; Baragaño Raneros, A.; Astola, I.; Asensi, V.; López-Larrea, C.; Suarez-Alvarez, B. Epigenetic targeting of the ACE2 and NRP1 viral receptors limits SARS-CoV-2 infectivity. Clin. Epigenetics, 2021, 13(1), 187.
[http://dx.doi.org/10.1186/s13148-021-01168-5]
[71]
Sixto-López, Y.; Correa-Basurto, J. HDAC inhibition as neuroprotection in COVID-19 infection. Curr. Top. Med. Chem., 2022, 22(16), 1369-1378.
[http://dx.doi.org/10.2174/1568026622666220303113445] [PMID: 35240959]
[72]
Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol., 2015, 16(1), 45-56.
[http://dx.doi.org/10.1038/ni.3049] [PMID: 25521684]
[73]
Siroux, V.; Boudier, A.; Bousquet, J.; Bresson, J.L.; Cracowski, J.L.; Ferran, J.; Gormand, F.; Just, J.; Le Moual, N.; Morange, S.; Nadif, R.; Oryszczyn, M.P.; Pison, C.; Scheinmann, P.; Varraso, R.; Vervloet, D.; Pin, I.; Kauffmann, F. Phenotypic determinants of uncontrolled asthma. J. Allergy Clin. Immunol., 2009, 124(4), 681-687.e3.
[http://dx.doi.org/10.1016/j.jaci.2009.06.010] [PMID: 19665764]
[74]
Boonpiyathad, T.; Sözener, Z.C.; Satitsuksanoa, P.; Akdis, C.A. Immunologic mechanisms in asthma. Semin. Immunol., 2019, 46, 101333.
[http://dx.doi.org/10.1016/j.smim.2019.101333] [PMID: 31703832]
[75]
Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell, 2021, 184(6), 1469-1485.
[http://dx.doi.org/10.1016/j.cell.2021.02.016] [PMID: 33711259]
[76]
Ora, J.; Calzetta, L.; Matera, M.G.; Cazzola, M.; Rogliani, P. Advances with glucocorticoids in the treatment of asthma: state of the art. Expert Opin. Pharmacother., 2020, 21(18), 2305-2316.
[http://dx.doi.org/10.1080/14656566.2020.1807514] [PMID: 32808828]
[77]
He, Y.; Shi, J.; Nguyen, Q.T.; You, E.; Liu, H.; Ren, X.; Wu, Z.; Li, J.; Qiu, W.; Khoo, S.K.; Yang, T.; Yi, W.; Sun, F.; Xi, Z.; Huang, X.; Melcher, K.; Min, B.; Xu, H.E. Development of highly potent glucocorticoids for steroid-resistant severe asthma. Proc. Natl. Acad. Sci. USA, 2019, 116(14), 6932-6937.
[http://dx.doi.org/10.1073/pnas.1816734116] [PMID: 30894497]
[78]
Nadeem, A.; Ahmad, S.F.; Al-Harbi, N.O.; Ibrahim, K.E.; Siddiqui, N.; Al-Harbi, M.M.; Attia, S.M.; Bakheet, S.A. Inhibition of Bruton’s tyrosine kinase and IL-2 inducible T-cell kinase suppresses both neutrophilic and eosinophilic airway inflammation in a cockroach allergen extract-induced mixed granulocytic mouse model of asthma using preventative and therapeutic strategy. Pharmacol. Res., 2019, 148, 104441.
[http://dx.doi.org/10.1016/j.phrs.2019.104441] [PMID: 31505252]
[79]
Nadeem, A.; Ahmad, S.F.; Al-Harbi, N.O.; El-Sherbeeny, A.M.; Alasmari, A.F.; Alanazi, W.A.; Alasmari, F.; Ibrahim, K.E.; Al-Harbi, M.M.; Bakheet, S.A.; Attia, S.M. Bruton’s tyrosine kinase inhibitor suppresses imiquimod-induced psoriasis-like inflammation in mice through regulation of IL-23/IL-17A in innate immune cells. Int. Immunopharmacol., 2020, 80, 106215.
[http://dx.doi.org/10.1016/j.intimp.2020.106215] [PMID: 31982823]
[80]
Nadeem, A.; Alshehri, S.; Al-Harbi, N.O.; Ahmad, S.F.; Albekairi, N.A.; Alqarni, S.A.; Ibrahim, K.E.; Alfardan, A.S.; Alshamrani, A.A.; Bin Salman, S.B.; Attia, S.M. Bruton’s tyrosine kinase inhibition suppresses neutrophilic inflammation and restores histone deacetylase 2 expression in myeloid and structural cells in a mixed granulocytic mouse model of asthma. Int. Immunopharmacol., 2023, 117, 109920.
[http://dx.doi.org/10.1016/j.intimp.2023.109920] [PMID: 36827920]
[81]
Weber, A.N.R.; Bittner, Z.; Liu, X.; Dang, T.M.; Radsak, M.P.; Brunner, C. Bruton’s tyrosine kinase: an emerging key player in innate immunity. Front. Immunol., 2017, 8, 1454.
[http://dx.doi.org/10.3389/fimmu.2017.01454] [PMID: 29167667]
[82]
Islam, R.; Dash, D.; Singh, R. Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine, 2022, 149, 155720.
[http://dx.doi.org/10.1016/j.cyto.2021.155720] [PMID: 34634654]
[83]
Chiappara, G.; Gagliardo, R.; Siena, A.; Bonsignore, M.R.; Bousquet, J.; Bonsignore, G.; Vignola, A.M. Airway remodelling in the pathogenesis of asthma. Curr. Opin. Allergy Clin. Immunol., 2001, 1(1), 85-93.
[http://dx.doi.org/10.1097/01.all.0000010990.97765.a1] [PMID: 11964675]
[84]
Wang, J.; Wen, L.; Wang, Y.; Chen, F. Therapeutic effect of histone deacetylase inhibitor, sodium butyrate, on allergic rhinitis in vivo. DNA Cell Biol., 2016, 35(4), 203-208.
[http://dx.doi.org/10.1089/dna.2015.3037] [PMID: 26859163]
[85]
Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: a general review. Int. J. Neurosci., 2017, 127(7), 624-633.
[http://dx.doi.org/10.1080/00207454.2016.1212854] [PMID: 27412492]
[86]
Rump, K.; Adamzik, M. Epigenetic mechanisms of postoperative cognitive impairment induced by anesthesia and neuroinflammation. Cells, 2022, 11(19), 2954.
[http://dx.doi.org/10.3390/cells11192954] [PMID: 36230916]
[87]
Liesz, A.; Zhou, W.; Na, S.Y.; Hämmerling, G.J.; Garbi, N.; Karcher, S.; Mracsko, E.; Backs, J.; Rivest, S.; Veltkamp, R. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J. Neurosci., 2013, 33(44), 17350-17362.
[http://dx.doi.org/10.1523/JNEUROSCI.4901-12.2013] [PMID: 24174668]
[88]
Leigh, T.; Scalia, R.G.; Autieri, M.V. Resolution of inflammation in immune and nonimmune cells by interleukin-19. Am. J. Physiol. Cell Physiol., 2020, 319(3), C457-C464.
[http://dx.doi.org/10.1152/ajpcell.00247.2020] [PMID: 32667867]
[89]
Dai, Y.; Wei, T.; Shen, Z.; Bei, Y.; Lin, H.; Dai, H. Classical HDACs in the regulation of neuroinflammation. Neurochem. Int., 2021, 150, 105182.
[http://dx.doi.org/10.1016/j.neuint.2021.105182] [PMID: 34509559]
[90]
Guo, A.; Li, J.; Luo, L.; Chen, C.; Lu, Q.; Ke, J.; Feng, X. Valproic acid mitigates spinal nerve ligation-induced neuropathic pain in rats by modulating microglial function and inhibiting neuroinflammatory response. Int. Immunopharmacol., 2021, 92, 107332.
[http://dx.doi.org/10.1016/j.intimp.2020.107332] [PMID: 33421931]
[91]
Borgonetti, V.; Governa, P.; Manetti, F.; Galeotti, N. Zingiberene, a non-zinc-binding class I HDAC inhibitor: A novel strategy for the management of neuropathic pain. Phytomedicine, 2023, 111, 154670.
[http://dx.doi.org/10.1016/j.phymed.2023.154670] [PMID: 36681053]
[92]
Liu, Y.F.; Hu, R.; Zhang, L.F.; Fan, Y.; Xiao, J.F.; Liao, X.Z. Effects of dexmedetomidine on cognitive dysfunction and neuroinflammation via the HDAC2/HIF‐1α/PFKFB3 axis in a murine model of postoperative cognitive dysfunction. J. Biochem. Mol. Toxicol., 2022, 36(6), e23044.
[http://dx.doi.org/10.1002/jbt.23044] [PMID: 35499365]
[93]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[94]
Singh, T.; Kaur, P.; Singh, P.; Singh, S.; Munshi, A. Differential molecular mechanistic behavior of HDACs in cancer progression. Med. Oncol., 2022, 39(11), 171.
[http://dx.doi.org/10.1007/s12032-022-01770-4] [PMID: 35972597]
[95]
Hai, R.; He, L.; Shu, G.; Yin, G. Characterization of histone deacetylase mechanisms in cancer development. Front. Oncol., 2021, 11, 700947.
[http://dx.doi.org/10.3389/fonc.2021.700947] [PMID: 34395273]
[96]
Patra, S.; Panigrahi, D.P.; Praharaj, P.P.; Bhol, C.S.; Mahapatra, K.K.; Mishra, S.R.; Behera, B.P.; Jena, M.; Bhutia, S.K. Dysregulation of histone deacetylases in carcinogenesis and tumor progression: a possible link to apoptosis and autophagy. Cell. Mol. Life Sci., 2019, 76(17), 3263-3282.
[http://dx.doi.org/10.1007/s00018-019-03098-1] [PMID: 30982077]
[97]
Kim, J.Y.; Cho, H.; Yoo, J.; Kim, G.W.; Jeon, Y.H.; Lee, S.W.; Kwon, S.H. Pathological role of HDAC8: Cancer and beyond. Cells, 2022, 11(19), 3161.
[http://dx.doi.org/10.3390/cells11193161] [PMID: 36231123]
[98]
Hanisch, D.; Krumm, A.; Diehl, T.; Stork, C.M.; Dejung, M.; Butter, F.; Kim, E.; Brenner, W.; Fritz, G.; Hofmann, T.G.; Roos, W.P. Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression. Cell Death Dis., 2022, 13(4), 293.
[http://dx.doi.org/10.1038/s41419-022-04751-7] [PMID: 35365623]
[99]
Cai, S.; Chen, W.; Zeng, W.; Cheng, X.; Lin, M.; Wang, J. Roles of HDAC2, eIF5, and eIF6 in lung cancer tumorigenesis. Curr. Med. Sci., 2021, 41(4), 764-769.
[http://dx.doi.org/10.1007/s11596-021-2389-z] [PMID: 34403101]
[100]
Yin, Y.; Zhang, M.; Dorfman, R.G.; Li, Y.; Zhao, Z.; Pan, Y.; Zhou, Q.; Huang, S.; Zhao, S.; Yao, Y.; Zou, X. Histone deacetylase 3 overexpression in human cholangiocarcinoma and promotion of cell growth via apoptosis inhibition. Cell Death Dis., 2017, 8(6), e2856-e2856.
[http://dx.doi.org/10.1038/cddis.2016.457] [PMID: 28569784]
[101]
Zhang, S.L.; Zhu, H.Y.; Zhou, B.Y.; Chu, Y.; Huo, J.R.; Tan, Y.Y.; Liu, D.L. Histone deacetylase 6 is overexpressed and promotes tumor growth of colon cancer through regulation of the MAPK/ERK signal pathway. OncoTargets Ther., 2019, 12, 2409-2419.
[http://dx.doi.org/10.2147/OTT.S194986] [PMID: 31118659]
[102]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[103]
Jenke, R.; Reßing, N.; Hansen, F.K.; Aigner, A.; Büch, T. Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers (Basel), 2021, 13(4), 634.
[http://dx.doi.org/10.3390/cancers13040634] [PMID: 33562653]
[104]
Patel, V.K.; Shirbhate, E.; Tiwari, P.; Kore, R.; Veerasamy, R.; Mishra, A.; Rajak, H. Multi-targeted HDAC Inhibitors as Anticancer Agents: Current Status and Future Prospective. Curr. Med. Chem., 2023, 30(24), 2762-2795.
[http://dx.doi.org/10.2174/0929867329666220922105615] [PMID: 36154583]
[105]
Mehmood, S.A.; Sahu, K.K.; Sengupta, S.; Partap, S.; Karpoormath, R.; Kumar, B.; Kumar, D. Recent advancement of HDAC inhibitors against breast cancer. Med. Oncol., 2023, 40(7), 201.
[http://dx.doi.org/10.1007/s12032-023-02058-x] [PMID: 37294406]
[106]
Psilopatis, I.; Garmpis, N.; Garmpi, A.; Vrettou, K.; Sarantis, P.; Koustas, E.; Antoniou, E.A.; Dimitroulis, D.; Kouraklis, G.; Karamouzis, M.V.; Marinos, G.; Kontzoglou, K.; Nonni, A.; Nikolettos, K.; Fleckenstein, F.N.; Zoumpouli, C.; Damaskos, C. The Emerging Role of Histone Deacetylase Inhibitors in Cervical Cancer Therapy. Cancers (Basel), 2023, 15(8), 2222.
[http://dx.doi.org/10.3390/cancers15082222] [PMID: 37190151]
[107]
Drzewiecka, M.; Gajos-Michniewicz, A.; Hoser, G.; Jaśniak, D.; Barszczewska-Pietraszek, G.; Sitarek, P.; Czarny, P.; Piekarski, J.; Radek, M.; Czyż, M.; Skorski, T.; Śliwiński, T. Histone Deacetylases (HDAC) Inhibitor—Valproic Acid Sensitizes Human Melanoma Cells to Dacarbazine and PARP Inhibitor. Genes (Basel), 2023, 14(6), 1295.
[http://dx.doi.org/10.3390/genes14061295] [PMID: 37372475]
[108]
Roca, M.S.; Moccia, T.; Iannelli, F.; Testa, C.; Vitagliano, C.; Minopoli, M.; Camerlingo, R.; De Riso, G.; De Cecio, R.; Bruzzese, F.; Conte, M.; Altucci, L.; Di Gennaro, E.; Avallone, A.; Leone, A.; Budillon, A. HDAC class I inhibitor domatinostat sensitizes pancreatic cancer to chemotherapy by targeting cancer stem cell compartment via FOXM1 modulation. J. Exp. Clin. Cancer Res., 2022, 41(1), 83.
[http://dx.doi.org/10.1186/s13046-022-02295-4] [PMID: 34980222]
[109]
Fan, F.; Liu, P.; Bao, R.; Chen, J.; Zhou, M.; Mo, Z.; Ma, Y.; Liu, H.; Zhou, Y.; Cai, X.; Qian, C.; Liu, X. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res., 2021, 81(24), 6233-6245.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1547] [PMID: 34711611]
[110]
Bär, S.I.; Pradhan, R.; Biersack, B.; Nitzsche, B.; Höpfner, M.; Schobert, R. New chimeric HDAC inhibitors for the treatment of colorectal cancer. Arch. Pharm. (Weinheim), 2023, 356(2), 2200422.
[http://dx.doi.org/10.1002/ardp.202200422] [PMID: 36442846]
[111]
He, S.; Dong, G.; Li, Y.; Wu, S.; Wang, W.; Sheng, C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew. Chem. Int. Ed., 2020, 59(8), 3028-3032.
[http://dx.doi.org/10.1002/anie.201915896] [PMID: 31943585]
[112]
Roy, R.; Ria, T. RoyMahaPatra, D.; Sk, U.H. Single inhibitors versus dual inhibitors: Role of HDAC in cancer. ACS Omega, 2023, 8(19), 16532-16544.
[http://dx.doi.org/10.1021/acsomega.3c00222] [PMID: 37214715]
[113]
Hu, Z.; Wei, F.; Su, Y.; Wang, Y.; Shen, Y.; Fang, Y.; Ding, J.; Chen, Y. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct. Target. Ther., 2023, 8(1), 11.
[http://dx.doi.org/10.1038/s41392-022-01221-6] [PMID: 36604412]
[114]
Zhu, J.; Han, S. Histone deacetylase 10 exerts antitumor effects on cervical cancer via a novel microRNA‐223/TXNIP/Wnt/β‐catenin pathway. IUBMB Life, 2021, 73(4), 690-704.
[http://dx.doi.org/10.1002/iub.2450] [PMID: 33481334]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy