Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Neonatal Microbiome: Is it Still Beneficial?

Author(s): Mohamed Shawky Elfarargy*, Dalia Hamdy Elbadry, Ahmad Roshdy Ahmad and Hany A. Elhady

Volume 24, Issue 6, 2024

Published on: 24 October, 2023

Page: [617 - 625] Pages: 9

DOI: 10.2174/0118715303238665231010062701

Price: $65

Abstract

The neonatal microbiome includes all the microorganisms living within or on the surface of the newborn, as well as their genes (i.e., bacteria, fungi, and viruses), which are composed mainly of bacteria. The majority of these microorganisms reside in the gastrointestinal tract (GIT), which is known as the gut microbiome. They include trillions of microbes, which exceed the total number of neonate cells. In this study, we have examined factors affecting neonatal microbiome colonization, various phyla of the microbiome in neonates, and their characteristics. In addition, we have discussed symbiosis and dysbiosis, precipitating diseases, breast milk’s role in the neonatal gut microbiome, prebiotics, probiotics, postbiotics, and synbiotics, as well as the airway or respiratory microbiome, and the main role of the neonatal microbiome. We have also discussed neonatal mycobiome and neonatal virome, as well as the research done on the neonatal microbiome.

Graphical Abstract

[1]
Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev., 2021, 83101943.
[http://dx.doi.org/10.1016/j.cpr.2020.101943] [PMID: 33271426]
[2]
Cullin, N.; Azevedo Antunes, C.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell, 2021, 39(10), 1317-1341.
[http://dx.doi.org/10.1016/j.ccell.2021.08.006] [PMID: 34506740]
[3]
Sorbara, M.T.; Pamer, E.G. Microbiome-based therapeutics. Nat. Rev. Microbiol., 2022, 20(6), 365-380.
[http://dx.doi.org/10.1038/s41579-021-00667-9] [PMID: 34992261]
[4]
Kapourchali, F.R.; Cresci, G.A.M. Early‐life gut microbiome-the importance of maternal and infant factors in its establishment. Nutr. Clin. Pract., 2020, 35(3), 386-405.
[http://dx.doi.org/10.1002/ncp.10490] [PMID: 32329544]
[5]
Ahn, J.; Hayes, R.B. Environmental influences on the human microbiome and implications for noncommunicable disease. Annu. Rev. Public Health, 2021, 42(1), 277-292.
[http://dx.doi.org/10.1146/annurev-publhealth-012420-105020] [PMID: 33798404]
[6]
Liu, M.; Chen, C.; Kang, S.; Kwon, J.; Jin, J.; Che, H. Effect of different feeding methods and gut microbiota on premature infants and clinical outcomes. Front. Nutr., 2022, 9888304.
[http://dx.doi.org/10.3389/fnut.2022.888304] [PMID: 35978959]
[7]
Diggikar, S. Neonatal microbiome: A complex, invisible organ and its evolving role in neonatal illness and beyond. J. Clin. Neonatol., 2019, 8(1), 5-9.
[http://dx.doi.org/10.4103/jcn.JCN_98_18]
[8]
Coelho, G.D.P.; Ayres, L.F.A.; Barreto, D.S.; Henriques, B.D.; Prado, M.R.M.C.; Passos, C.M.D. Acquisition of microbiota according to the type of birth: An integrative review. Rev. Lat. Am. Enfermagem, 2021, 29e3446.
[http://dx.doi.org/10.1590/1518.8345.4466.3446] [PMID: 34287544]
[9]
Wardman, J.F.; Bains, R.K.; Rahfeld, P.; Withers, S.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol., 2022, 20(9), 542-556.
[http://dx.doi.org/10.1038/s41579-022-00712-1] [PMID: 35347288]
[10]
Wallace, R.K. The microbiome in health and disease from the perspective of modern medicine and ayurveda. Medicina, 2020, 56(9), 462.
[http://dx.doi.org/10.3390/medicina56090462] [PMID: 32932766]
[11]
Metwaly, A.; Reitmeier, S.; Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(6), 383-397.
[http://dx.doi.org/10.1038/s41575-022-00581-2] [PMID: 35190727]
[12]
Eck, A.; Rutten, N.B.M.M.; Singendonk, M.M.J.; Rijkers, G.T.; Savelkoul, P.H.M.; Meijssen, C.B.; Crijns, C.E.; Oudshoorn, J.H.; Budding, A.E.; Vlieger, A.M. Neonatal microbiota development and the effect of early life antibiotics are determined by two distinct settler types. PLoS One, 2020, 15(2), e0228133.
[http://dx.doi.org/10.1371/journal.pone.0228133] [PMID: 32023276]
[13]
van Best, N.; Dominguez-Bello, M.G.; Hornef, M.W. Jašarević E.; Korpela, K.; Lawley, T.D. Should we modulate the neonatal microbiome and what should be the goal? Microbiome, 2022, 10(1), 74.
[http://dx.doi.org/10.1186/s40168-022-01281-4] [PMID: 35538552]
[14]
Chawla, M.; Gupta, R.; Das, B. Gut microbiome dysbiosis in malnutrition. Prog. Mol. Biol. Transl. Sci., 2022, 192(1), 205-229.
[http://dx.doi.org/10.1016/bs.pmbts.2022.07.011] [PMID: 36280320]
[15]
Turunen, J.; Tejesvi, M.V.; Paalanne, N.; Hekkala, J.; Lindgren, O.; Kaakinen, M.; Pokka, T.; Kaisanlahti, A.; Reunanen, J.; Tapiainen, T. Presence of distinctive microbiome in the first-pass meconium of newborn infants. Sci. Rep., 2021, 11(1), 19449.
[http://dx.doi.org/10.1038/s41598-021-98951-4] [PMID: 34593932]
[16]
Cuffaro, B.; Assohoun, A.L.W.; Boutillier, D.; Peucelle, V.; Desramaut, J.; Boudebbouze, S.; Croyal, M.; Waligora-Dupriet, A.J.; Rhimi, M.; Grangette, C.; Maguin, E. Identification of new potential biotherapeutics from human gut microbiota-derived bacteria. Microorganisms, 2021, 9(3), 565.
[http://dx.doi.org/10.3390/microorganisms9030565] [PMID: 33803291]
[17]
Horrocks, V.; Hind, C.K.; Wand, M.E.; Fady, P.E.; Chan, J.; Hopkins, J.C.; Houston, G.L.; Tribe, R.M.; Sutton, J.M.; Mason, A.J. Nuclear Magnetic Resonance Metabolomics of Symbioses between Bacterial Vaginosis-Associated Bacteria. MSphere, 2022, 7(3), e00166-e22.
[http://dx.doi.org/10.1128/msphere.00166-22] [PMID: 35491843]
[18]
Bennett, P.R.; Brown, R.G.; MacIntyre, D.A. Vaginal microbiome in preterm rupture of membranes. Obstet. Gynecol. Clin. North Am., 2020, 47(4), 503-521.
[http://dx.doi.org/10.1016/j.ogc.2020.08.001] [PMID: 33121642]
[19]
Moosa, Y.; Kwon, D.; de Oliveira, T.; Wong, E.B. Determinants of vaginal microbiota composition. Front. Cell. Infect. Microbiol., 2020, 10, 467.
[http://dx.doi.org/10.3389/fcimb.2020.00467] [PMID: 32984081]
[20]
Zhou, P.; Zhou, Y.; Liu, B.; Jin, Z.; Zhuang, X.; Dai, W.; Yang, Z.; Feng, X.; Zhou, Q.; Liu, Y.; Xu, X.; Zhang, L. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. MSphere, 2020, 5(1), e00984-e19.
[http://dx.doi.org/10.1128/mSphere.00984-19] [PMID: 32075882]
[21]
Lee, C.C.; Feng, Y.; Yeh, Y.M.; Lien, R.; Chen, C.L.; Zhou, Y.L.; Chiu, C.H. Gut dysbiosis, bacterial colonization and translocation, and neonatal sepsis in very-low-birth-weight preterm infants. Front. Microbiol., 2021, 12746111.
[http://dx.doi.org/10.3389/fmicb.2021.746111] [PMID: 34690993]
[22]
Mattern, J.; Marin, T. Neonatal microbiome and its relationship to necrotizing enterocolitis. J. Perinat. Neonatal Nurs., 2020, 34(3), 276-282.
[http://dx.doi.org/10.1097/JPN.0000000000000507] [PMID: 32697548]
[23]
Yang, K.; He, S.; Dong, W. Gut microbiota and bronchopulmonary dysplasia. Pediatr. Pulmonol., 2021, 56(8), 2460-2470.
[http://dx.doi.org/10.1002/ppul.25508] [PMID: 34077996]
[24]
Ding, J.; Ma, X.; Han, L.; Zhao, X.; Li, A.; Xin, Q.; Lian, W.; Li, Z.; Ren, H.; Ren, Z. Gut microbial alterations in neonatal jaundice pre- and post-treatment. Biosci. Rep., 2021, 41(4), BSR20210362.
[http://dx.doi.org/10.1042/BSR20210362] [PMID: 33860293]
[25]
Acevedo, N.; Alashkar Alhamwe, B.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinás-Caballero, K.; López, J.F.; Miethe, S.; Perveen, K.; Pogge von Strandmann, E.; Sokolowska, M.; Potaczek, D.P.; van Esch, B.C.A.M. Perinatal and early-life nutrition, epigenetics, and allergy. Nutrients, 2021, 13(3), 724.
[http://dx.doi.org/10.3390/nu13030724] [PMID: 33668787]
[26]
Montecchiani, V.; Fanos, V. Human microbiome and allergy. Pediatr. Allergy Immunol., 2020, 31(S26), 5-7.
[http://dx.doi.org/10.1111/pai.13360] [PMID: 33236419]
[27]
Gasmi Benahmed, A.; Gasmi, A. Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association between the gut and oral microbiome with obesity. Anaerobe, 2021, 70102248.
[http://dx.doi.org/10.1016/j.anaerobe.2020.102248] [PMID: 32805390]
[28]
Lau, W.L.; Tran, T.; Rhee, C.M.; Kalantar-Zadeh, K.; Vaziri, N.D. Diabetes and the gut microbiome. Semin. Nephrol., 2021, 41(2), 104-113.
[http://dx.doi.org/10.1016/j.semnephrol.2021.03.005] [PMID: 34140089]
[29]
Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172105840.
[http://dx.doi.org/10.1016/j.phrs.2021.105840] [PMID: 34450312]
[30]
Mathee, K.; Cickovski, T.; Deoraj, A.; Stollstorff, M.; Narasimhan, G. The gut microbiome and neuropsychiatric disorders: Implications for attention deficit hyperactivity disorder (ADHD). J. Med. Microbiol., 2020, 69(1), 14-24.
[http://dx.doi.org/10.1099/jmm.0.001112] [PMID: 31821133]
[31]
Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients, 2020, 12(4), 1039.
[http://dx.doi.org/10.3390/nu12041039] [PMID: 32283875]
[32]
Gopalakrishna, K.P.; Hand, T.W. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients, 2020, 12(3), 823.
[http://dx.doi.org/10.3390/nu12030823] [PMID: 32244880]
[33]
Yi, D.; Kim, S. Human Breast Milk composition and function in human health: From nutritional components to microbiome and MicroRNAs. Nutrients, 2021, 13(9), 3094.
[http://dx.doi.org/10.3390/nu13093094] [PMID: 34578971]
[34]
Masi, A.C.; Embleton, N.D.; Lamb, C.A.; Young, G.; Granger, C.L.; Najera, J.; Smith, D.P.; Hoffman, K.L.; Petrosino, J.F.; Bode, L.; Berrington, J.E.; Stewart, C.J. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut, 2021, 70(12), 2273-2282.
[http://dx.doi.org/10.1136/gutjnl-2020-322771] [PMID: 33328245]
[35]
Nolan, L.S.; Rimer, J.M.; Good, M. The role of human milk oligosaccharides and probiotics on the neonatal microbiome and risk of necrotizing enterocolitis: A narrative review. Nutrients, 2020, 12(10), 3052.
[http://dx.doi.org/10.3390/nu12103052] [PMID: 33036184]
[36]
Nuzzi, G.; Trambusti, I.; Di Cicco, M.E.; Peroni, D.G. Breast milk: More than just nutrition. Minerva Pediatr., 2021, 73(2), 111-114.
[http://dx.doi.org/10.23736/S2724-5276.21.06223-X] [PMID: 33880902]
[37]
Murphy, K.; Ross, R.P.; Ryan, C.A.; Dempsey, E.M.; Stanton, C. Probiotics, prebiotics, and synbiotics for the prevention of necrotizing enterocolitis. Front. Nutr., 2021, 8667188.
[http://dx.doi.org/10.3389/fnut.2021.667188] [PMID: 34557508]
[38]
Boggio, M.C.; Burgos, F.; Del Compare, M.; Gerold, I.; Tabacco, O.; Vinderola, G. Approach to probiotics in pediatrics: The role of Lactobacillus rhamnosus GG. Arch. Argent. Pediatr., 2022, 120(1), e1-e7.
[PMID: 35068121]
[39]
Beghetti, I.; Panizza, D.; Lenzi, J.; Gori, D.; Martini, S.; Corvaglia, L.; Aceti, A. Probiotics for preventing necrotizing enterocolitis in preterm infants: A network meta-analysis. Nutrients, 2021, 13(1), 192.
[http://dx.doi.org/10.3390/nu13010192] [PMID: 33435456]
[40]
Chi, C.; Li, C.; Buys, N.; Wang, W.; Yin, C.; Sun, J. Effects of probiotics in preterm infants: A network meta-analysis. Pediatrics, 2021, 147(1), e20200706.
[http://dx.doi.org/10.1542/peds.2020-0706] [PMID: 33323491]
[41]
Kulkarni, T.; Majarikar, S.; Deshmukh, M.; Ananthan, A.; Balasubramanian, H.; Keil, A.; Patole, S. Probiotic sepsis in preterm neonates—a systematic review. Eur. J. Pediatr., 2022, 181(6), 2249-2262.
[http://dx.doi.org/10.1007/s00431-022-04452-5] [PMID: 35348825]
[42]
Seghesio, E.; De Geyter, C.; Vandenplas, Y. Probiotics in the prevention and treatment of necrotizing enterocolitis. Pediatr. Gastroenterol. Hepatol. Nutr., 2021, 24(3), 245-255.
[http://dx.doi.org/10.5223/pghn.2021.24.3.245] [PMID: 34046327]
[43]
Qu, Y.; Guo, S.; Liu, Y.; Wang, G.; Wu, H. Association between probiotics and bronchopulmonary dysplasia in preterm infants. Sci. Rep., 2021, 11(1), 17060.
[http://dx.doi.org/10.1038/s41598-021-96489-z] [PMID: 34426616]
[44]
Fan, S.; Zhang, K.; Zhang, J.; Zhang, L.; Liu, L.; Lv, A.; Ma, Y.; Fang, X.; Zheng, F.; Wu, Z.; Zhang, J. Analysis of the effect of phototherapy on intestinal probiotics and metabolism in newborns with jaundice. Front Pediatr., 2022, 10878473.
[http://dx.doi.org/10.3389/fped.2022.878473] [PMID: 36275061]
[45]
Carucci, L.; Coppola, S.; Luzzetti, A.; Giglio, V.; Vanderhoof, J.; Berni Canani, R. The role of probiotics and postbiotics in modulating the gut microbiome-immune system axis in the pediatric age. Minerva Pediatr., 2021, 73(2), 115-127.
[http://dx.doi.org/10.23736/S2724-5276.21.06188-0] [PMID: 33880903]
[46]
Sestito, S.; D’Auria, E.; Baldassarre, M.E.; Salvatore, S.; Tallarico, V.; Stefanelli, E.; Tarsitano, F.; Concolino, D.; Pensabene, L. The role of prebiotics and probiotics in prevention of allergic diseases in infants. Front Pediatr., 2020, 8583946.
[http://dx.doi.org/10.3389/fped.2020.583946] [PMID: 33415087]
[47]
Zhou, L.; Ding, C.; Wu, J.; Chen, X.; Ng, D.M.; Wang, H.; Zhang, Y.; Shi, N. Probiotics and synbiotics show clinical efficacy in treating gestational diabetes mellitus: A meta-analysis. Prim. Care Diabetes, 2021, 15(6), 937-947.
[http://dx.doi.org/10.1016/j.pcd.2021.08.005] [PMID: 34417122]
[48]
Martín-Peláez, S.; Cano-Ibáñez, N.; Pinto-Gallardo, M.; Amezcua-Prieto, C. The impact of probiotics, prebiotics, and synbiotics during pregnancy or lactation on the intestinal microbiota of children born by cesarean section: A systematic review. Nutrients, 2022, 14(2), 341.
[http://dx.doi.org/10.3390/nu14020341] [PMID: 35057522]
[49]
Sheyholislami, H.; Connor, K.L. Are probiotics and prebiotics safe for use during pregnancy and lactation? a systematic review and meta-analysis. Nutrients, 2021, 13(7), 2382.
[http://dx.doi.org/10.3390/nu13072382] [PMID: 34371892]
[50]
Serce, P.O.; Benzer, D.; Gursoy, T.; Karatekin, G.; Ovali, F. Synbiotics use for preventing sepsis and necrotizing enterocolitis in very low birth weight neonates: A randomized controlled trial. Clin. Exp. Pediatr, 2020, 63(6), 226-231.
[http://dx.doi.org/10.3345/cep.2019.00381] [PMID: 32023397]
[51]
De Cosmi, V.; Mazzocchi, A.; Agostoni, C.; Visioli, F. Fructooligosaccharides: From breast milk components to potential supplements. a systematic review. Adv. Nutr., 2022, 13(1), 318-327.
[http://dx.doi.org/10.1093/advances/nmab102] [PMID: 34555852]
[52]
Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics— a step beyond pre- and probiotics. Nutrients, 2020, 12(8), 2189.
[http://dx.doi.org/10.3390/nu12082189] [PMID: 32717965]
[53]
Sanidad, K.Z.; Zeng, M.Y. Neonatal gut microbiome and immunity. Curr. Opin. Microbiol., 2020, 56, 30-37.
[http://dx.doi.org/10.1016/j.mib.2020.05.011] [PMID: 32634598]
[54]
Morniroli, D.; Vizzari, G.; Consales, A.; Mosca, F.; Giannì, M.L. Postbiotic supplementation for children and newborn’s health. Nutrients, 2021, 13(3), 781.
[http://dx.doi.org/10.3390/nu13030781] [PMID: 33673553]
[55]
Gao, Y.; Nanan, R.; Macia, L.; Tan, J.; Sominsky, L.; Quinn, T.P.; O’Hely, M.; Ponsonby, A.L.; Tang, M.L.K.; Collier, F.; Strickland, D.H.; Dhar, P.; Brix, S.; Phipps, S.; Sly, P.D.; Ranganathan, S.; Stokholm, J.; Kristiansen, K.; Gray, L.E.K.; Vuillermin, P. The maternal gut microbiome during pregnancy and offspring allergy and asthma. J. Allergy Clin. Immunol., 2021, 148(3), 669-678.
[http://dx.doi.org/10.1016/j.jaci.2021.07.011] [PMID: 34310928]
[56]
Groer, M.W.; Miller, E.M.; D’Agata, A.; Ho, T.T.B.; Dutra, S.V.; Yoo, J.Y.; Yee, A.L.; Gilbert, J.A.; Dishaw, L.J. Contributors to dysbiosis in very-low-birth-weight infants. J. Obstet. Gynecol. Neonatal Nurs., 2020, 49(3), 232-242.
[http://dx.doi.org/10.1016/j.jogn.2020.02.003] [PMID: 32247727]
[57]
Sun, T.; Yu, H.; Fu, J. Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants. Front Pediatr., 2021, 9762545.
[http://dx.doi.org/10.3389/fped.2021.762545] [PMID: 34966701]
[58]
Tay, C.J.X.; Ta, L.D.H.; Ow Yeong, Y.X.; Yap, G.C.; Chu, J.J.H.; Lee, B.W.; Tham, E.H. Role of upper respiratory microbiota and virome in childhood rhinitis and wheeze: collegium internationale allergologicum update 2021. Int. Arch. Allergy Immunol., 2021, 182(4), 265-276.
[http://dx.doi.org/10.1159/000513325] [PMID: 33588407]
[59]
Brewer, M.R.; Maffei, D.; Cerise, J.; Ahn, S.; DeVoti, J.; Codipilly, C.; Lee, A.; Weinberger, B. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia. J. Matern. Fetal Neonatal Med., 2021, 34(19), 3220-3226.
[http://dx.doi.org/10.1080/14767058.2019.1681961] [PMID: 31736368]
[60]
Zhang, D.; Li, S.; Wang, N.; Tan, H.Y.; Zhang, Z.; Feng, Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol., 2020, 11, 301.
[http://dx.doi.org/10.3389/fmicb.2020.00301] [PMID: 32158441]
[61]
Françoise, A.; Héry-Arnaud, G. The microbiome in cystic fibrosis pulmonary disease. Genes, 2020, 11(5), 536.
[http://dx.doi.org/10.3390/genes11050536] [PMID: 32403302]
[62]
Shah, R.; Bunyavanich, S. The airway microbiome and pediatric asthma. Curr. Opin. Pediatr., 2021, 33(6), 639-647.
[http://dx.doi.org/10.1097/MOP.0000000000001054] [PMID: 34412069]
[63]
Negi, S.; Hashimoto-Hill, S.; Alenghat, T. Neonatal microbiota-epithelial interactions that impact infection. Front. Microbiol., 2022, 13, 955051.
[http://dx.doi.org/10.3389/fmicb.2022.955051] [PMID: 36090061]
[64]
Reyman, M; van Houten, MA; Watson, RL; Chu, MLJN; Arp, K; de Waal, WJ; Schiering, I; Plötz, FB; Willems, RJL; van Schaik, W; Sanders, EAM; Bogaert, D Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A randomized trial. Nat. Commun., 2022, 13(1), 893.
[65]
Dornelles, L.V.; Procianoy, R.S.; Roesch, L.F.W.; Corso, A.L.; Dobbler, P.T.; Mai, V.; Silveira, R.C. Meconium microbiota predicts clinical early-onset neonatal sepsis in preterm neonates. J. Matern. Fetal Neonatal Med., 2022, 35(10), 1935-1943.
[http://dx.doi.org/10.1080/14767058.2020.1774870] [PMID: 32508165]
[66]
Stojanov, M.; Das, S.; Odent, M.; Engel, P.; Baud, D. Home or hospital birth: the neonatal microbiota perspective. Lancet Microbe, 2022, 3(4), e247.
[http://dx.doi.org/10.1016/S2666-5247(21)00355-4] [PMID: 35544060]
[67]
Cuna, A.; Morowitz, M.J.; Ahmed, I.; Umar, S.; Sampath, V. Dynamics of the preterm gut microbiome in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 320(4), G411-G419.
[http://dx.doi.org/10.1152/ajpgi.00399.2020] [PMID: 33439103]
[68]
Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek, 2020, 113(12), 2019-2040.
[http://dx.doi.org/10.1007/s10482-020-01474-7] [PMID: 33136284]
[69]
Zafman, K.B.; Bergh, E.P.; Cohen, N.; Odom, E.; Fox, N.S. The effect of microbiome exposure at birth on pediatric outcomes using a twin cohort discordant for microbiome exposure at birth. J. Matern. Fetal Neonatal Med., 2021, 34(20), 3355-3361.
[http://dx.doi.org/10.1080/14767058.2019.1684469] [PMID: 31739712]
[70]
Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The role of microbiota in infant health: From early life to adulthood. Front. Immunol., 2021, 12708472.
[http://dx.doi.org/10.3389/fimmu.2021.708472] [PMID: 34691021]
[71]
Kaan, A.M.M.; Kahharova, D.; Zaura, E. Acquisition and establishment of the oral microbiota. Periodontol. 2000, 2021, 86(1), 123-141.
[http://dx.doi.org/10.1111/prd.12366] [PMID: 33690935]
[72]
Ficara, M.; Pietrella, E.; Spada, C.; Della, C.M.E.; Lucaccioni, L.; Iughetti, L.; Berardi, A. Changes of intestinal microbiota in early life. J. Matern. Fetal Neonatal Med., 2020, 33(6), 1036-1043.
[http://dx.doi.org/10.1080/14767058.2018.1506760] [PMID: 30058404]
[73]
Iddrisu, I.; Monteagudo-Mera, A.; Poveda, C.; Pyle, S.; Shahzad, M.; Andrews, S.; Walton, G.E. Malnutrition and gut microbiota in children. Nutrients, 2021, 13(8), 2727.
[http://dx.doi.org/10.3390/nu13082727] [PMID: 34444887]
[74]
Wilson, B.C.; Butler, É.M.; Grigg, C.P.; Derraik, J.G.B.; Chiavaroli, V.; Walker, N.; Thampi, S.; Creagh, C.; Reynolds, A.J.; Vatanen, T.; O’Sullivan, J.M.; Cutfield, W.S. Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: A pilot randomised placebo-controlled trial. EBioMedicine, 2021, 69103443.
[http://dx.doi.org/10.1016/j.ebiom.2021.103443] [PMID: 34186487]
[75]
Piersigilli, F.; Van Grambezen, B.; Hocq, C.; Danhaive, O. Nutrients and microbiota in lung diseases of prematurity: The placenta-gut-lung triangle. Nutrients, 2020, 12(2), 469.
[http://dx.doi.org/10.3390/nu12020469] [PMID: 32069822]
[76]
Keogh, C.E.; Kim, D.H.J.; Pusceddu, M.M.; Knotts, T.A.; Rabasa, G.; Sladek, J.A.; Hsieh, M.T.; Honeycutt, M.; Brust-Mascher, I.; Barboza, M.; Gareau, M.G. Myelin as a regulator of development of the microbiota-gut-brain axis. Brain Behav. Immun., 2021, 91, 437-450.
[http://dx.doi.org/10.1016/j.bbi.2020.11.001] [PMID: 33157256]
[77]
Singh, A.; Mittal, M. Neonatal microbiome – a brief review. J. Matern. Fetal Neonatal Med., 2020, 33(22), 3841-3848.
[http://dx.doi.org/10.1080/14767058.2019.1583738] [PMID: 30835585]
[78]
Saheb Kashaf, S.; Proctor, D.M.; Deming, C.; Saary, P.; Hölzer, M.; Mullikin, J.; Thomas, J.; Young, A.; Bouffard, G.; Barnabas, B.; Brooks, S.; Han, J.; Ho, S.; Kim, J.; Legaspi, R.; Maduro, Q.; Marfani, H.; Montemayor, C.; Riebow, N.; Schandler, K.; Schmidt, B.; Sison, C.; Stantripop, M.; Black, S.; Dekhtyar, M.; Masiello, C.; McDowell, J.; Park, M.; Thomas, P.; Vemulapalli, M.; Taylor, M.E.; Kong, H.H.; Segre, J.A.; Almeida, A.; Finn, R.D. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol., 2021, 7(1), 169-179.
[http://dx.doi.org/10.1038/s41564-021-01011-w] [PMID: 34952941]
[79]
Tarracchini, C.; Milani, C.; Longhi, G.; Fontana, F.; Mancabelli, L.; Pintus, R.; Lugli, G.A.; Alessandri, G.; Anzalone, R.; Viappiani, A.; Turroni, F.; Mussap, M.; Dessì, A.; Cesare Marincola, F.; Noto, A.; De Magistris, A.; Vincent, M.; Bernasconi, S.; Picaud, J.C.; Fanos, V.; Ventura, M. Unraveling the microbiome of necrotizing enterocolitis: Insights in novel microbial and metabolomic biomarkers. Microbiol. Spectr., 2021, 9(2), e01176-e21.
[http://dx.doi.org/10.1128/Spectrum.01176-21] [PMID: 34704805]
[80]
Rao, C.; Coyte, K.Z.; Bainter, W.; Geha, R.S.; Martin, C.R.; Rakoff-Nahoum, S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature, 2021, 591(7851), 633-638.
[http://dx.doi.org/10.1038/s41586-021-03241-8] [PMID: 33627867]
[81]
Navarro-Tapia, E.; Sebastiani, G.; Sailer, S.; Almeida Toledano, L.; Serra-Delgado, M.; García-Algar, Ó.; Andreu-Fernández, V. Probiotic supplementation during the perinatal and infant period: Effects on gut dysbiosis and disease. Nutrients, 2020, 12(8), 2243.
[http://dx.doi.org/10.3390/nu12082243] [PMID: 32727119]
[82]
Huang, L.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Impacts of gut microbiota on gestational diabetes mellitus: A comprehensive review. Eur. J. Nutr., 2021, 60(5), 2343-2360.
[http://dx.doi.org/10.1007/s00394-021-02483-6] [PMID: 33512587]
[83]
Matusheski, N.V.; Caffrey, A.; Christensen, L.; Mezgec, S.; Surendran, S.; Hjorth, M.F.; McNulty, H.; Pentieva, K.; Roager, H.M.; Seljak, B.K.; Vimaleswaran, K.S.; Remmers, M.; Péter, S. Diets, nutrients, genes and the microbiome: Recent advances in personalised nutrition. Br. J. Nutr., 2021, 126(10), 1489-1497.
[http://dx.doi.org/10.1017/S0007114521000374] [PMID: 33509307]
[84]
Lajqi, T.; Pöschl, J.; Frommhold, D.; Hudalla, H. The role of microbiota in neutrophil regulation and adaptation in newborns. Front. Immunol., 2020, 11, 568685.
[http://dx.doi.org/10.3389/fimmu.2020.568685] [PMID: 33133082]
[85]
Zhou, H.; Sun, L.; Zhang, S.; Zhao, X.; Gang, X.; Wang, G. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol., 2021, 58(3), 249-265.
[http://dx.doi.org/10.1007/s00592-020-01563-z] [PMID: 32712802]
[86]
a) Musso, P.; Chiappini, E.; Bernardini, R. Human microbiome and allergic diseases in children: pathogenetic role and therapeutic options. Curr. Pediatr. Rev., 2020, 16(2), 89-94.;
b) Toca, M.D.C.; Burgos, F.; Fernández, A.; Giglio, N.; Orsi, M.; Sosa, P.; Tabaccp, O.; Ursino, F.; Ussher, F.; Vinderola, G. Gut ecosystem during infancy: The role of “biotics”. Arch. Argent. Pediatr., 2020, 118(4), 278-285.
[PMID: 32677792]
[87]
Neu, J. Necrotizing enterocolitis: A multi-omic approach and the role of the microbiome. Dig. Dis. Sci., 2020, 65(3), 789-796.
[http://dx.doi.org/10.1007/s10620-020-06104-w] [PMID: 32008132]
[88]
Davis, J.A.; Baumgartel, K.; Morowitz, M.J.; Giangrasso, V.; Demirci, J.R. The role of human milk in decreasing necrotizing enterocolitis through modulation of the infant gut microbiome: A scoping review. J. Hum. Lact., 2020, 36(4), 647-656.
[http://dx.doi.org/10.1177/0890334420950260] [PMID: 32845798]
[89]
Harrison, I.S.; Monir, R.L.; Neu, J.; Schoch, J.J. Neonatal sepsis and the skin microbiome. J. Perinatol., 2022, 42(11), 1429-1433.
[http://dx.doi.org/10.1038/s41372-022-01451-0] [PMID: 35817842]
[90]
Cortez, R.V.; Fernandes, A.; Sparvoli, L.G.; Padilha, M.; Feferbaum, R.; Neto, C.M.; Taddei, C.R. Impact of oropharyngeal administration of colostrum in preterm newborns’ oral microbiome. Nutrients, 2021, 13(12), 4224.
[http://dx.doi.org/10.3390/nu13124224] [PMID: 34959775]
[91]
Lee, J.K.F.; Hern Tan, L.T.; Ramadas, A.; Ab Mutalib, N.S.; Lee, L.H. Exploring the role of gut bacteria in health and disease in preterm neonates. Int. J. Environ. Res. Public Health, 2020, 17(19), 6963.
[http://dx.doi.org/10.3390/ijerph17196963] [PMID: 32977611]
[92]
Consales, A.; Cerasani, J.; Sorrentino, G.; Morniroli, D.; Colombo, L.; Mosca, F.; Giannì, M.L. The hidden universe of human milk microbiome: Origin, composition, determinants, role, and future perspectives. Eur. J. Pediatr., 2022, 181(5), 1811-1820.
[http://dx.doi.org/10.1007/s00431-022-04383-1] [PMID: 35124754]
[93]
Zhang, Y.; Choi, S.H.; Nogoy, K.M.; Liang, S. Review: The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal, 2021, 15(8), 100316.
[http://dx.doi.org/10.1016/j.animal.2021.100316] [PMID: 34293582]
[94]
Gürdeniz, G.; Ernst, M.; Rago, D.; Kim, M.; Courraud, J.; Stokholm, J.; Bønnelykke, K.; Björkbom, A.; Trivedi, U.; Sørensen, S.J.; Brix, S.; Hougaard, D.; Rasmussen, M.; Cohen, A.S.; Bisgaard, H.; Chawes, B. Neonatal metabolome of caesarean section and risk of childhood asthma. Eur. Respir. J., 2022, 59(6), 2102406.
[http://dx.doi.org/10.1183/13993003.02406-2021] [PMID: 34887324]
[95]
Guo, J.; Ren, C.; Han, X.; Huang, W.; You, Y.; Zhan, J. Role of IgA in the early-life establishment of the gut microbiota and immunity: Implications for constructing a healthy start. Gut Microbes, 2021, 13(1), 1908101.
[http://dx.doi.org/10.1080/19490976.2021.1908101] [PMID: 33870860]
[96]
Casado, F.; Morty, R.E. The emergence of preclinical studies on the role of the microbiome in lung development and experimental animal models of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(2), L402-L404.
[http://dx.doi.org/10.1152/ajplung.00509.2019] [PMID: 31967848]
[97]
Wang, T.; Udomkittivorakul, N.; Bonfield, M.; Nadeem, A.; Gray, J.; Deshmukh, H. Early life antibiotic exposure and host health: Role of the microbiota–immune interaction. Semin. Perinatol., 2020, 44(8), 151323.
[http://dx.doi.org/10.1016/j.semperi.2020.151323] [PMID: 33187735]
[98]
Sealschott, SD; Pickler, RH; Fortney, CA; Bailey, MT Integrative review of gut microbiota and expression of symptoms associated with neonatal abstinence syndrome. Nurs. Res., 2020, 69(S5), S66-S78.
[99]
Bresesti, I.; Salvatore, S.; Valetti, G.; Baj, A.; Giaroni, C.; Agosti, M. The microbiota-gut axis in premature infants: Physio-pathological implications. Cells, 2022, 11(3), 379.
[http://dx.doi.org/10.3390/cells11030379] [PMID: 35159189]
[100]
Man, B.; Koenig, M.D.; Bernabe, B.P.; Nagelli, U.; Tussing-Humphreys, L. The role of the gut microbiota in the prevention and management of gestational diabetes mellitus. J. Perinat. Neonatal Nurs., 2020, 34(3), 195-198.
[http://dx.doi.org/10.1097/JPN.0000000000000497] [PMID: 32697535]
[101]
Lei, W.T.; Huang, K.Y.; Jhong, J.H.; Chen, C.H.; Weng, S.L. Metagenomic analysis of the gut microbiome composition associated with vitamin D supplementation in Taiwanese infants. Sci. Rep., 2021, 11(1), 2856.
[http://dx.doi.org/10.1038/s41598-021-82584-8] [PMID: 33536562]
[102]
Miyoshi, J.; Hisamatsu, T. The impact of maternal exposure to antibiotics on the development of child gut microbiome. Immunol. Med., 2022, 45(2), 63-68.
[http://dx.doi.org/10.1080/25785826.2021.1963189] [PMID: 34392799]
[103]
Méndez, C.S.; Bueno, S.M.; Kalergis, A.M. Contribution of gut microbiota to immune tolerance in infants. J. Immunol. Res., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/7823316] [PMID: 34993254]
[104]
Pammi, M.; Hollister, E.; Neu, J. Gut injury and the microbiome in neonates. Clin. Perinatol., 2020, 47(2), 369-382.
[http://dx.doi.org/10.1016/j.clp.2020.02.010] [PMID: 32439117]
[105]
Sassin, A.M.; Johnson, G.J.; Goulding, A.N.; Aagaard, K.M. Crucial nuances in understanding (mis)associations between the neonatal microbiome and Cesarean delivery. Trends Mol. Med., 2022, 28(10), 806-822.
[http://dx.doi.org/10.1016/j.molmed.2022.07.005] [PMID: 36085277]
[106]
Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen, 2022, 11(1), e1260.
[http://dx.doi.org/10.1002/mbo3.1260] [PMID: 35212478]
[107]
Calatayud Arroyo, M.; García Barrera, T.; Callejón Leblic, B.; Arias Borrego, A.; Collado, M.C. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. Environ. Pollut., 2021, 269115994.
[http://dx.doi.org/10.1016/j.envpol.2020.115994] [PMID: 33310490]
[108]
García-Mantrana, I.; Selma-Royo, M.; González, S.; Parra-Llorca, A.; Martínez-Costa, C.; Collado, M.C. Distinct maternal microbiota clusters are associated with diet during pregnancy: Impact on neonatal microbiota and infant growth during the first 18 months of life. Gut Microbes, 2020, 11(4), 962-978.
[http://dx.doi.org/10.1080/19490976.2020.1730294] [PMID: 32167021]
[109]
Westaway, J.A.F.; Huerlimann, R.; Kandasamy, Y.; Miller, C.M.; Norton, R.; Staunton, K.M.; Watson, D.; Rudd, D. The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge. Pediatr. Res., 2022, 92(1), 142-150.
[http://dx.doi.org/10.1038/s41390-021-01738-6] [PMID: 34621029]
[110]
Koerner, R.; Groer, M.; Prescott, S. Scoping review of the relationship between gestational diabetes mellitus and the neonatal and infant gut microbiome. J. Obstet. Gynecol. Neonatal Nurs., 2022, 51(5), 502-516.
[http://dx.doi.org/10.1016/j.jogn.2022.06.037] [PMID: 35839839]
[111]
Moossavi, S.; Fehr, K.; Derakhshani, H.; Sbihi, H.; Robertson, B.; Bode, L.; Brook, J.; Turvey, S.E.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Sears, M.R.; Khafipour, E.; Subbarao, P.; Azad, M.B. Human milk fungi: Environmental determinants and inter-kingdom associations with milk bacteria in the CHILD Cohort Study. BMC Microbiol., 2020, 20(1), 146.
[http://dx.doi.org/10.1186/s12866-020-01829-0] [PMID: 32503420]
[112]
Shah, P.A.; Govindarajan, V.; Diggikar, S.; Rangaiah, A.; Devadas, S.; Kariyappa, M. Exploring the skin mycobiome in very preterm babies during the early neonatal period in a neonatal intensive care unit of India. Trop. Doct., 2022, 52(2), 362-364.
[http://dx.doi.org/10.1177/00494755221077520] [PMID: 35125017]
[113]
Willis, K.A.; Peters, B.M.; Pierre, J.F. A stable cutaneous mycobiome exists from birth. Pediatr. Res., 2020, 88(2), 153-154.
[http://dx.doi.org/10.1038/s41390-020-0959-6] [PMID: 32408339]
[114]
Wang, Y.R.; Zhu, T.; Kong, F.Q.; Duan, Y.Y.; Galzote, C.; Quan, Z.X. Infant mode of delivery shapes the skin mycobiome of prepubescent children. Microbiol. Spectr., 2022, 10(5), e02267-e22.
[http://dx.doi.org/10.1128/spectrum.02267-22] [PMID: 36073919]
[115]
Gutierrez, M.W.; van Tilburg Bernardes, E.; Changirwa, D.; McDonald, B.; Arrieta, M.C. “Molding” immunity—modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunol., 2022, 15(4), 573-583.
[http://dx.doi.org/10.1038/s41385-022-00515-w] [PMID: 35474360]
[116]
Fragkou, P.C.; Karaviti, D.; Zemlin, M.; Skevaki, C. Impact of early life nutrition on children’s immune system and noncommunicable diseases through its effects on the bacterial microbiome, virome and mycobiome. Front. Immunol., 2021, 12644269.
[http://dx.doi.org/10.3389/fimmu.2021.644269] [PMID: 33815397]
[117]
Ruotsalainen, A.L.; Tejesvi, M.V.; Vänni, P.; Suokas, M.; Tossavainen, P.; Pirttilä, A.M.; Talvensaari-Mattila, A.; Nissi, R. Child type 1 diabetes associated with mother vaginal bacteriome and mycobiome. Med. Microbiol. Immunol., 2022, 211(4), 185-194.
[http://dx.doi.org/10.1007/s00430-022-00741-w] [PMID: 35701558]
[118]
Paul, A.A.; Hoffman, K.L.; Hagan, J.L.; Sampath, V.; Petrosino, J.F.; Pammi, M. Fungal cutaneous microbiome and host determinants in preterm and term neonates. Pediatr. Res., 2020, 88(2), 225-233.
[http://dx.doi.org/10.1038/s41390-019-0719-7] [PMID: 31816621]
[119]
A James, S.; Phillips, S.; Telatin, A.; Baker, D.; Ansorge, R.; Clarke, P.; J Hall, L.; R Carding, S. Preterm infants harbour a rapidly changing mycobiota that includes Candida Pathobionts. J. Fungi (Basel), 2020, 6(4), 273.
[http://dx.doi.org/10.3390/jof6040273] [PMID: 33182444]
[120]
Liang, G.; Zhao, C.; Zhang, H.; Mattei, L.; Sherrill-Mix, S.; Bittinger, K.; Kessler, L.R.; Wu, G.D.; Baldassano, R.N.; DeRusso, P.; Ford, E.; Elovitz, M.A.; Kelly, M.S.; Patel, M.Z.; Mazhani, T.; Gerber, J.S.; Kelly, A.; Zemel, B.S.; Bushman, F.D. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature, 2020, 581(7809), 470-474.
[http://dx.doi.org/10.1038/s41586-020-2192-1] [PMID: 32461640]
[121]
Bushman, F.D.; Liang, G. Breastfeeding influences the neonatal virome. Nature, 2021.
[http://dx.doi.org/10.1038/d41586-021-01112-w] [PMID: 34002074]
[122]
Gupta, P.; Singh, M.P.; Goyal, K. Diversity of vaginal microbiome in pregnancy: Deciphering the obscurity. Front. Public Health, 2020, 8, 326.
[http://dx.doi.org/10.3389/fpubh.2020.00326] [PMID: 32793540]
[123]
Bushman, F.; Liang, G. Assembly of the virome in newborn human infants. Curr. Opin. Virol., 2021, 48, 17-22.
[http://dx.doi.org/10.1016/j.coviro.2021.03.004] [PMID: 33813257]
[124]
Nantel-Fortier, N.; Gauthier, M.; L’Homme, Y.; Lachapelle, V.; Fravalo, P.; Brassard, J. The swine enteric virome in a commercial production system and its association with neonatal diarrhea. Vet. Microbiol., 2022, 266, 109366.
[http://dx.doi.org/10.1016/j.vetmic.2022.109366] [PMID: 35176608]
[125]
Vizzari, G.; Morniroli, D.; Ceroni, F.; Verduci, E.; Consales, A.; Colombo, L.; Cerasani, J.; Mosca, F.; Giannì, M.L. Human milk, more than simple nourishment. Children, 2021, 8(10), 863.
[http://dx.doi.org/10.3390/children8100863] [PMID: 34682128]
[126]
Shareefdeen, H.; Hill, C. The gut virome in health and disease: New insights and associations. Curr. Opin. Gastroenterol., 2022, 38(6), 549-554.
[http://dx.doi.org/10.1097/MOG.0000000000000885] [PMID: 36165045]
[127]
Taboada, B.; Morán, P.; Serrano-Vázquez, A.; Iša, P.; Rojas-Velázquez, L.; Pérez-Juárez, H.; López, S.; Torres, J.; Ximenez, C.; Arias, C.F. The gut virome of healthy children during the first year of life is diverse and dynamic. PLoS One, 2021, 16(4), e0240958.
[http://dx.doi.org/10.1371/journal.pone.0240958] [PMID: 33852569]
[128]
Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Sevuk Ozumut, S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human milk virome analysis: Changing pattern regarding mode of delivery, birth weight, and lactational stage. Nutrients, 2021, 13(6), 1779.
[http://dx.doi.org/10.3390/nu13061779] [PMID: 34071061]
[129]
Kaelin, E.A.; Rodriguez, C.; Hall-Moore, C.; Hoffmann, J.A.; Linneman, L.A.; Ndao, I.M.; Warner, B.B.; Tarr, P.I.; Holtz, L.R.; Lim, E.S. Longitudinal gut virome analysis identifies specific viral signatures that precede necrotizing enterocolitis onset in preterm infants. Nat. Microbiol., 2022, 7(5), 653-662.
[http://dx.doi.org/10.1038/s41564-022-01096-x] [PMID: 35449461]
[130]
Romano-Keeler, J.; Sun, J. The first 1000 days: Assembly of the neonatal microbiome and its impact on health outcomes. Newborn, 2022, 1(2), 219-226.
[http://dx.doi.org/10.5005/jp-journals-11002-0028] [PMID: 36237439]
[131]
Kirschen, G.W.; Panda, S.; Burd, I. Congenital infection influence on early brain development through the gut-brain axis. Front. Neurosci., 2022, 16, 894955.
[http://dx.doi.org/10.3389/fnins.2022.894955] [PMID: 35844234]
[132]
Romano-Keeler, J.; Zhang, J.; Sun, J. COVID-19 and the neonatal microbiome: Will the pandemic cost infants their microbes? Gut Microbes, 2021, 13(1), 1912562.
[http://dx.doi.org/10.1080/19490976.2021.1912562] [PMID: 33960272]
[133]
Chapman, J.A.; Stewart, C.J. Methodological challenges in neonatal microbiome research. Gut Microbes, 2023, 15(1), 2183687.
[http://dx.doi.org/10.1080/19490976.2023.2183687] [PMID: 36843005]
[134]
Dominguez-Bello, M.G.; Godoy-Vitorino, F.; Knight, R.; Blaser, M.J. Role of the microbiome in human development. Gut, 2019, 68(6), 1108-1114.
[http://dx.doi.org/10.1136/gutjnl-2018-317503] [PMID: 30670574]
[135]
Morreale, C.; Giaroni, C.; Baj, A.; Folgori, L.; Barcellini, L.; Dhami, A.; Agosti, M.; Bresesti, I. Effects of perinatal antibiotic exposure and neonatal gut microbiota. Antibiotics, 2023, 12(2), 258.
[http://dx.doi.org/10.3390/antibiotics12020258] [PMID: 36830169]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy