Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Role of Polyphenols, their Nano-formulations, and Biomaterials in Diabetic Wound Healing

Author(s): Nasr A. Emad, Iqra Zai, Saeem Ahmad, Jayamenti Pandit, Mohd Ashif Khan and Yasmin Sultana*

Volume 24, Issue 6, 2024

Published on: 10 October, 2023

Page: [626 - 641] Pages: 16

DOI: 10.2174/0118715303242310230927104709

Price: $65

Abstract

A diabetic wound is one of the major complications arising from hyperglycemia, neuropathy, and oxidative stress in diabetic patients. Finding effective treatments for diabetic wounds has been difficult owing to the complex pathophysiology of diabetic wound environments. Chronic wounds are notoriously difficult to treat with conventional wound care methods. In recent years, polyphenols found in plants have received much interest as a potential treatment for diabetic wounds. Their key benefits are their safety and the fact that they act through many molecular routes to treat diabetic wounds. However, problems with their formulation development, including lipophilicity, light sensitivity, limited membrane permeability, rapid systemic elimination, and enzymatic degradation, prevented them from gaining clinical attention. This article highlights and discusses the mechanism of polyphenols and various polyphenol-based drug delivery systems used till now to treat diabetic wounds. The consideration that should be taken in polyphenols-based nano-formulations and their prospect for diabetic wounds are also discussed briefly.

Graphical Abstract

[1]
Kurahashi, T.; Fujii, J. Roles of antioxidative enzymes in wound healing. J. Dev. Biol., 2015, 3(2), 57-70.
[http://dx.doi.org/10.3390/jdb3020057]
[2]
Ibrahim, N.; Wong, S.; Mohamed, I.; Mohamed, N.; Chin, K.Y.; Ima-Nirwana, S.; Shuid, A. Wound healing properties of selected natural products. Int. J. Environ. Res. Public Health, 2018, 15(11), 2360.
[http://dx.doi.org/10.3390/ijerph15112360] [PMID: 30366427]
[3]
Baranoski, S.; Ayello, E. Wound Care Essentials: Practice Principles; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008.
[4]
Zhao, W.; Zhang, X.; Zhang, R.; Zhang, K.; Li, Y.; Xu, F.J. Self-Assembled Herbal Medicine Encapsulated by an Oxidation-Sensitive Supramolecular Hydrogel for Chronic Wound Treatment. ACS Appl. Mater. Interfaces, 2020, 12(51), 56898-56907.
[http://dx.doi.org/10.1021/acsami.0c19492] [PMID: 33296174]
[5]
Guimarães, I. Sara, Baptista-Silva M.P; A.L.O. Polyphenols: A promising avenue in therapeutic solutions for wound care. Appl. Sci. (Basel), 2021, 11, 1230.
[http://dx.doi.org/10.3390/app11031230]
[6]
Global Wound Care Market by Product. Wound Care Market by Product (Dressings (Foam, Film, Hydrocolloid, Collagen), Devices (NPWT, Assessment, Debridement), Graft, Matrix, Suture, Stapler), Wound (DFUs, Trauma, Surgical, Burn), End User (Hospitals, Clinics) & Region - Global Forecast to 2027. 2022. Avaialble From: https://www.researchandmarkets.com/reports/5317370/wound-care-market-by-product-dressings-foam
[7]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[8]
Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem., 2006, 52(4), 601-623.
[http://dx.doi.org/10.1373/clinchem.2005.061408] [PMID: 16484333]
[9]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[10]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[11]
Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials (Basel), 2021, 14(15), 4135.
[http://dx.doi.org/10.3390/ma14154135] [PMID: 34361329]
[12]
Beatty, S.; Koh, H.H.; Phil, M.; Henson, D.; Boulton, M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol., 2000, 45(2), 115-134.
[http://dx.doi.org/10.1016/S0039-6257(00)00140-5] [PMID: 11033038]
[13]
Kong, M.; Xie, K.; Lv, M.; Li, J.; Yao, J.; Yan, K.; Wu, X.; Xu, Y.; Ye, D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed. Pharmacother., 2021, 133, 110975.
[http://dx.doi.org/10.1016/j.biopha.2020.110975] [PMID: 33212375]
[14]
Gorain, B.; Pandey, M.; Leng, N.H.; Yan, C.W.; Nie, K.W.; Kaur, S.J.; Marshall, V.; Sisinthy, S.P.; Panneerselvam, J.; Molugulu, N.; Kesharwani, P.; Choudhury, H. Advanced drug delivery systems containing herbal components for wound healing. Int. J. Pharm., 2022, 617, 121617.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121617] [PMID: 35218900]
[15]
Grune, T.; Schröder, P.; Biesalski, H. Low molecular weight antioxidants. The Handbook of Environmental Chemistry; Springer Open: London, 2005.
[16]
Tabrez, S.; Jabir, N.R.; Adhami, V.M.; Khan, M.I.; Moulay, M.; Kamal, M.A.; Mukhtar, H. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: Successes and challenges. Nanomedicine (Lond.), 2020, 15(11), 1147-1162.
[http://dx.doi.org/10.2217/nnm-2019-0398] [PMID: 32292109]
[17]
Chen, L.; Gnanaraj, C.; Arulselvan, P.; El-Seedi, H.; Teng, H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends Food Sci. Technol., 2019, 85, 149-162.
[http://dx.doi.org/10.1016/j.tifs.2018.11.026]
[18]
Grgić J.; Šelo, G.; Planinić M.; Tišma, M.; Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 2020, 9(10), 923.
[http://dx.doi.org/10.3390/antiox9100923] [PMID: 32993196]
[19]
Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: Scope and advancement. Nanomedicine (Lond.), 2015, 10(16), 2593-2612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]
[20]
Naskar, A.; Kim, K. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics, 2020, 12(6), 499.
[http://dx.doi.org/10.3390/pharmaceutics12060499] [PMID: 32486142]
[21]
Zhang, X.; Li, Z.; Yang, P.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Polyphenol scaffolds in tissue engineering. Mater. Horiz., 2021, 8(1), 145-167.
[http://dx.doi.org/10.1039/D0MH01317J] [PMID: 34821294]
[22]
Liu, M.; Duan, X.P.; Li, Y.M.; Yang, D.P.; Long, Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C, 2017, 76, 1413-1423.
[http://dx.doi.org/10.1016/j.msec.2017.03.034] [PMID: 28482508]
[23]
Memic, A.; Abdullah, T.; Mohammed, H.S. Joshi, Navare, K.; Colombani, T.; Bencherif, S.A. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl. Bio Mater., 2019, 2(3), 952-969.
[http://dx.doi.org/10.1021/acsabm.8b00637] [PMID: 35021385]
[24]
Aramwit, P. Introduction to biomaterials for wound healing. Wound Heal Biomater., 2016, 2, 3-38.
[25]
Shavandi, A.; Bekhit, A.E.D.A.; Saeedi, P.; Izadifar, Z.; Bekhit, A.A.; Khademhosseini, A. Polyphenol uses in biomaterials engineering. Biomaterials, 2018, 167, 91-106.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.018] [PMID: 29567389]
[26]
Marisa, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends Food Sci. Technol., 2020, 105, 454-467.
[http://dx.doi.org/10.1016/j.tifs.2019.03.011]
[27]
Rambaran, T.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Applied Sci, 2020, 2(8), 1335.
[http://dx.doi.org/10.1007/s42452-020-3110-8]
[28]
Pool, H. Quintanar, D: Figueroa, J.D.D: Marinho, M.C: Bechara, J.E.H: Godínez, L.A. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids Surf. B Biointer., 2013, 114C, 82-84.
[29]
Tavano, L.; Muzzalupo, R.; Picci, N.; de Cindio, B. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids Surf. B Biointerfaces, 2014, 114, 82-88.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.058] [PMID: 24176886]
[30]
Sahiner, N.; Sagbas, S.; Sahiner, M.; Silan, C.; Aktas, N.; Turk, M. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. Int. J. Biol. Macromol., 2016, 82, 150-159.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.057] [PMID: 26526171]
[31]
Mahfoudhi, N.; Ksouri, R.; Hamdi, S. Nanoemulsions as potential delivery systems for bioactive compounds in food systems: Preparation, characterization, and applications in food industry. Nanotechnol. Agri-Food Ind., 2016, 3, 365-403.
[http://dx.doi.org/10.1016/B978-0-12-804306-6.00011-8]
[32]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[33]
Chellappan, D.K.; Yenese, Y.; Wei, C.C.; Gupta, G. Nanotechnology and diabetic wound healing: A Review. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 87-95.
[PMID: 28427246]
[34]
Janis, J.E.; Harrison, B. Wound Healing. Plast. Reconstr. Surg., 2014, 133(2), 199e-207e.
[http://dx.doi.org/10.1097/01.prs.0000437224.02985.f9] [PMID: 24469191]
[35]
Cristina, A.; Gonzalez, D.O. Wound healing - A literature review. An. Bras. Dermatol., 2016, (91), 614-620.
[36]
Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound healing. J. Chin. Med. Assoc., 2018, 81(2), 94-101.
[http://dx.doi.org/10.1016/j.jcma.2017.11.002] [PMID: 29169897]
[37]
Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother., 2019, 112, 108615.
[http://dx.doi.org/10.1016/j.biopha.2019.108615] [PMID: 30784919]
[38]
Mohandas, A.; Anisha, B.S.; Chennazhi, K.P.; Jayakumar, R. Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf. B Biointerfaces, 2015, 127, 105-113.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.024] [PMID: 25660093]
[39]
Uccioli, L.; Izzo, V.; Meloni, M.; Vainieri, E.; Specialist, M.; Ruotolo, V. Non-healing foot ulcers in diabetic patients: General and local interfering conditions and management options with advanced wound dressings. J. Wound Care, 2015, 24(4), 35-42.
[40]
Morgan, C.; Nigam, Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis, 2013, 16(3), 493-502.
[http://dx.doi.org/10.1007/s10456-013-9341-1] [PMID: 23417553]
[41]
Smith, R.A. Nanotechnology in the future treatment of diabetic wounds. Rev. Diabet. Stud., 2020, 16(1), 1-12.
[http://dx.doi.org/10.1900/RDS.2020.16.1] [PMID: 32876648]
[42]
Peppa, M.; Stavroulakis, P.; Raptis, S.A. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen., 2009, 17(4), 461-472.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00518.x] [PMID: 19614910]
[43]
Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation, 2006, 114(6), 597-605.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621854] [PMID: 16894049]
[44]
Fujimori, E. Cross-linking and fluorescence changes of collagen by glycation and oxidation. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1989, 998(2), 105-110.
[http://dx.doi.org/10.1016/0167-4838(89)90260-4] [PMID: 2506934]
[45]
Niu, Y.; Xie, T.; Ge, K.; Lin, Y.; Lu, S. Effects of extracellular matrix glycosylation on proliferation and apoptosis of human dermal fibroblasts via the receptor for advanced glycosylated end products. Am. J. Dermatopathol., 2008, 30(4), 344-351.
[http://dx.doi.org/10.1097/DAD.0b013e31816a8c5b] [PMID: 18645306]
[46]
Medina-Cruz, D.; Saleh, B.; Vernet-Crua, A.; Ajo, A.; Roy, A.K.; Webster, T.J. Drug-delivery nanocarriers for skin wound-healing applications. Wound Healing, Tissue Repair, and Regeneration in Diabetes; Academic Press: Massachusetts, 2020.
[http://dx.doi.org/10.1016/B978-0-12-816413-6.00022-8]
[47]
Las, H. K.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release, 2020, 328, 532-550.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.039] [PMID: 32971198]
[48]
Negut, I.; Grumezescu, V.; Grumezescu, A. Treatment strategies for infected wounds. Molecules, 2018, 23(9), 2392.
[http://dx.doi.org/10.3390/molecules23092392] [PMID: 30231567]
[49]
Soehnlein, O.; Steffens, S.; Hidalgo, A.; Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol., 2017, 17(4), 248-261.
[http://dx.doi.org/10.1038/nri.2017.10] [PMID: 28287106]
[50]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[51]
Agyare, C.; Akindele, A.J.; Steenkamp, V. Natural Products and/or Isolated Compounds on Wound Healing. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-3.
[http://dx.doi.org/10.1155/2019/4594965] [PMID: 31186659]
[52]
Akrawi, S.H.; Gorain, B.; Nair, A.B.; Choudhury, H.; Pandey, M.; Shah, J.N.; Venugopala, K.N. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics, 2020, 12(9), 893.
[http://dx.doi.org/10.3390/pharmaceutics12090893] [PMID: 32962195]
[53]
Bendary, E.; Francis, R.R.; Ali, H.M.G.; Sarwat, M.I.; El Hady, S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann. Agric. Sci., 2013, 58(2), 173-181.
[http://dx.doi.org/10.1016/j.aoas.2013.07.002]
[54]
Tiza, N.; Thato, M.; Raymond, D.; Jeremy, K.; Burtram, C.F. Additive antibacterial activity of naringenin and antibiotic combinations against multidrug resistant Staphylococcus aureus. Afr. J. Microbiol. Res., 2015, 9(23), 1513-1518.
[http://dx.doi.org/10.5897/AJMR2015.7514]
[55]
Song, H-S.; Bhatia, S.K.; Gurav, R.; Choi, T-R.; Kim, H.J.; Park, Y-L.; Han, Y-H.; Park, J.Y.; Sun, M.L.; Park, S.L.; Lee, H.S.; Kim, W. Naringenin as an antibacterial reagent controlling of biofilm formation and fatty acid metabolism in MRSA. bioRxiv, 2020, 983049.
[56]
Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Mfotie, N.E.; Coopoosamy, R.M.; Van Staden, J. Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. S. Afr. J. Bot., 2019, 126, 232-240.
[http://dx.doi.org/10.1016/j.sajb.2019.07.013]
[57]
Coppo, E.; Marchese, A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol., 2014, 15(4), 380-390.
[http://dx.doi.org/10.2174/138920101504140825121142] [PMID: 25312620]
[58]
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[59]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules, 2016, 21(5), 623.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[60]
Choudhary, A.; Kant, V.; Jangir, B.L.; Joshi, V.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. Eur. J. Pharmacol., 2020, 880, 173172.
[http://dx.doi.org/10.1016/j.ejphar.2020.173172] [PMID: 32407724]
[61]
Shi, G.J.; Li, Y.; Cao, Q.H.; Wu, H.X.; Tang, X.Y.; Gao, X.H.; Yu, J.Q.; Chen, Z.; Yang, Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother., 2019, 109(109), 1085-1099.
[http://dx.doi.org/10.1016/j.biopha.2018.10.130] [PMID: 30551359]
[62]
Pal, A.; Tripathi, A. Demonstration of bactericidal and synergistic activity of quercetin with meropenem among pathogenic carbapenem resistant Escherichia coli and Klebsiella pneumoniae. Microb. Pathog., 2020, 143, 104120.
[http://dx.doi.org/10.1016/j.micpath.2020.104120] [PMID: 32169488]
[63]
Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot., 2018, 81(1), 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[64]
Hendra, R.; Ahmad, S.; Sukari, A.; Shukor, M.Y.; Oskoueian, E. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int. J. Mol. Sci., 2011, 12(6), 3422-3431.
[http://dx.doi.org/10.3390/ijms12063422] [PMID: 21747685]
[65]
Hossion, A.M.L.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasaki, K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J. Med. Chem., 2011, 54(11), 3686-3703.
[http://dx.doi.org/10.1021/jm200010x] [PMID: 21534606]
[66]
Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J. Exp. Biol., 2016, 54(3), 187-195.
[PMID: 27145632]
[67]
Chu, J.; Shi, P.; Yan, W.; Fu, J.; Yang, Z.; He, C.; Deng, X.; Liu, H. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale, 2018, 10(20), 9547-9560.
[http://dx.doi.org/10.1039/C8NR02538J] [PMID: 29745944]
[68]
Jangde, R.; Srivastava, S.; Singh, M.R.; Singh, D. In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int. J. Biol. Macromol., 2018, 115, 1211-1217.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.010] [PMID: 29730004]
[69]
Jangde, R.; Singh, D.; Singh, D.; Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[70]
Jee, J.P.; Pangeni, R.; Jha, S.K.; Byun, Y.; Park, J.W. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int. J. Nanomedicine, 2019, 14, 5449-5475.
[http://dx.doi.org/10.2147/IJN.S213883] [PMID: 31409998]
[71]
Badhwar, R.; Mangla, B.; Neupane, Y.R.; Khanna, K.; Popli, H. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. Nanotechnology, 2021, 32(50), 505102.
[http://dx.doi.org/10.1088/1361-6528/ac2536] [PMID: 34500444]
[72]
Taskan, M.; Yuce, H.; Karatas, O.; Gevrek, F. Topical quercetin gel application improved wound healing in wistar rats. Annal Med Res, 2019, 26(10), 2397-2404.
[http://dx.doi.org/10.5455/annalsmedres.2019.05.289]
[73]
Rajendra, J.; Rajnikant, P.; Manju, S.; Deependra, S. Understanding the role of response surface methodology in development of quercetin loaded phytocomplex for wound healing. Asian J. Pharm., 2016, 10(4), S575.
[74]
Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Role of flavonoids in management of inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Academic Press: Massachusetts, 2019.
[http://dx.doi.org/10.1016/B978-0-12-813820-5.00018-0]
[75]
Kandhare, A.D.; Alam, J.; Patil, M.V.K.; Sinha, A.; Bodhankar, S.L.; Kandhare, A.D. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm. Biol., 2016, 54(3), 419-432.
[http://dx.doi.org/10.3109/13880209.2015.1038755] [PMID: 25894211]
[76]
Li, S.; Zhang, Y.; Sun, Y.; Zhang, G.; Bai, J.; Guo, J.; Su, X.; Du, H.; Cao, X.; Yang, J.; Wang, T. Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutr. Diabetes, 2019, 9(1), 28.
[http://dx.doi.org/10.1038/s41387-019-0095-8] [PMID: 31591391]
[77]
Du, Y.; Ma, J.; Fan, Y.; Wang, X.; Zheng, S.; Feng, J.; Li, J.; Fan, Z.; Li, G.; Ye, Q. Naringenin: A promising therapeutic agent against organ fibrosis. Oxid. Med. Cell. Longev., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/1210675] [PMID: 34804359]
[78]
Yeo, E.; Jia, C.; Chieng, Y.; Choudhury, H.; Pandey, M.; Gorain, B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound  Fabrication, characterization and comparative in vitro evaluations. Curr. Res. Pharmacol. Drug Discov., 2021, 2, 100019.
[79]
Salehi, M.; Ehterami, A.; Farzamfar, S.; Vaez, A.; Ebrahimi-Barough, S. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Deliv. Transl. Res., 2021, 11(1), 142-153.
[http://dx.doi.org/10.1007/s13346-020-00731-6] [PMID: 32086788]
[80]
Şenyüz, Ş .; Batur, Ş .; Daylan, B. Özdemİr, EM. Wound healing effect of naringin gel in alloxan induced diabetic mice. J. Fac. Pharm. Ankara., 2020, 44(3), 397-414.
[81]
Cucuz, V.; Cvejic, J.; Gojkovic-Bukarica, L. Clinical trials of resveratrol efficacy and safety. Vojnosanit. Pregl., 2021, 79(6), 613-618.
[82]
Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 2019, 24(22), 4132.
[http://dx.doi.org/10.3390/molecules24224132] [PMID: 31731614]
[83]
Eroğlu, İ.; Gökçe, E.H.; Tsapis, N.; Tanrıverdi, S.T.; Gökçe, G.; Fattal, E.; Özer, Ö. Evaluation of characteristics and in vitro antioxidant properties of RSV loaded hyaluronic acid–DPPC microparticles as a wound healing system. Colloids Surf. B Biointerfaces, 2015, 126, 50-57.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.006]
[84]
Hu, J.; Liu, X.; Chi, J.; Che, K.; Ma, X.; Qiu, M.; Fu, Z.; Wang, Y.; Wang, Y.; Wang, W. Resveratrol enhances wound healing in Type 1 diabetes mellitus by promoting the expression of extracellular vesicle-carried MicroRNA-129 derived from mesenchymal stem cells. J. Proteome Res., 2022, 21(2), 313-324.
[http://dx.doi.org/10.1021/acs.jproteome.1c00248] [PMID: 35076227]
[85]
Wang, W.; Yang, C.; Wang, X.; Zhou, L.; Lao, G.; Liu, D.; Wang, C.; Hu, M.; Zeng, T.; Yan, L.; Ren, M. MicroRNA-129 and -335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression. Diabetes, 2018, 67(8), 1627-1638.
[http://dx.doi.org/10.2337/db17-1238] [PMID: 29748291]
[86]
Amanat, S.; Taymouri, S.; Varshosaz, J.; Minaiyan, M.; Talebi, A. Carboxymethyl cellulose-based wafer enriched with resveratrol-loaded nanoparticles for enhanced wound healing. Drug Deliv. Transl. Res., 2020, 10(5), 1241-1254.
[http://dx.doi.org/10.1007/s13346-020-00711-w] [PMID: 31981141]
[87]
Zu, Y.; Overby, H.; Ren, G.; Fan, Z.; Zhao, L.; Wang, S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids Surf. B Biointerfaces, 2018, 164, 414-423.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.044] [PMID: 29433059]
[88]
Günal, M.Y. Ayla, Ş. The effects of topical liposomal resveratrol on incisional and excisional wound healing process. Turkderm-Turk. Arch. Dermatol. Venereol., 2019, 53, 128-134.
[89]
Berce, C.; Muresan, M.S.; Soritau, O.; Petrushev, B.; Tefas, L.; Rigo, I.; Ungureanu, G.; Catoi, C.; Irimie, A.; Tomuleasa, C. Cutaneous wound healing using polymeric surgical dressings based on chitosan, sodium hyaluronate and resveratrol. A preclinical experimental study. Colloids Surf. B Biointerfaces, 2018, 163, 155-166.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.041] [PMID: 29291501]
[90]
Gokce, E.H. Tuncay Tanrıverdi, S.; Eroglu, I.; Tsapis, N.; Gokce, G.; Tekmen, I.; Fattal, E.; Ozer, O. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur. J. Pharm. Biopharm., 2017, 119, 17-27.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.027] [PMID: 28461085]
[91]
De Pieri, A.; Ocorr, K.; Jerreld, K.; Lamoca, M.; Hitzl, W.; Wuertz-Kozak, K. Resveratrol microencapsulation into electrosprayed polymeric carriers for the treatment of chronic, non-healing wounds. Pharmaceutics, 2022, 14(4), 853.
[http://dx.doi.org/10.3390/pharmaceutics14040853] [PMID: 35456686]
[92]
Otero-Pazos, P.; Rodríguez-Bernaldo de Quirós, A.; Sendón, R.; Benito-Peña, E.; González-Vallejo, V.; Moreno-Bondi, M.C.; Angulo, I.; Paseiro-Losada, P. Active food packaging based on molecularly imprinted polymers: Study of the release kinetics of ferulic acid. J. Agric. Food Chem., 2014, 62(46), 11215-11221.
[http://dx.doi.org/10.1021/jf5035042] [PMID: 25369799]
[93]
de Oliveira Silva, E.; Batista, R. Ferulic acid and naturally occurring compounds bearing a feruloyl moiety: A review on their structures, occurrence, and potential health benefits. Compr. Rev. Food Sci. Food Saf., 2017, 16(4), 580-616.
[http://dx.doi.org/10.1111/1541-4337.12266] [PMID: 33371567]
[94]
Ghaisas, M.M.; Kshirsagar, S.B.; Sahane, R.S. Evaluation of wound healing activity of ferulic acid in diabetic rats. Int. Wound J., 2014, 11(5), 523-532.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01119.x] [PMID: 23236955]
[95]
Anand, S.; Pandey, P.; Begum, M.Y.; Chidambaram, K.; Arya, D.K.; Gupta, R.K.; Sankhwar, R.; Jaiswal, S.; Thakur, S.; Rajinikanth, P.S. Electrospun biomimetic multifunctional nanofibers loaded with ferulic acid for enhanced antimicrobial and wound-healing activities in STZ-induced diabetic rats. Pharmaceuticals (Basel), 2022, 15(3), 302.
[http://dx.doi.org/10.3390/ph15030302] [PMID: 35337100]
[96]
Bairagi, U.; Mittal, P.; Singh, J.; Mishra, B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev. Ind. Pharm., 2018, 44(11), 1783-1796.
[http://dx.doi.org/10.1080/03639045.2018.1496448] [PMID: 29973105]
[97]
Das, S.; Wong, A.B.H. Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci. Rep., 2020, 10(1), 12288.
[http://dx.doi.org/10.1038/s41598-020-68732-6] [PMID: 32703966]
[98]
Sivakumar, S.; Murali, R.; Arathanaikotti, D.; Gopinath, A.; Senthilkumar, C.; Kesavan, S.; Madhan, B. Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing. Int. J. Biol. Macromol., 2021, 177, 463-473.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.124] [PMID: 33609580]
[99]
Carbone, C.; Caddeo, C.; Grimaudo, M.A.; Manno, D.E.; Serra, A.; Musumeci, T. Ferulic acid-NLC with Lavandula essential oil: A possible strategy for wound-healing? Nanomaterials (Basel), 2020, 10(5), 898.
[http://dx.doi.org/10.3390/nano10050898] [PMID: 32397093]
[100]
Kumar, C.S.; Soloman, A.M.; Thangam, R.; Perumal, R.K.; Gopinath, A.; Madhan, B. Ferulic acid‐loaded collagen hydrolysate and polycaprolactone nanofibres for tissue engineering applications. IET Nanobiotechnol., 2020, 14(3), 202-209.
[http://dx.doi.org/10.1049/iet-nbt.2019.0281] [PMID: 32338628]
[101]
Balasubramaniam, M.P.; Murugan, P.; Chenthamara, D.; Ramakrishnan, S.G.; Salim, A.; Lin, F.H.; Robert, B.; Subramaniam, S. Synthesis of chitosan-ferulic acid conjugated poly(vinyl alcohol) polymer film for an improved wound healing. Mater. Today Commun., 2020, 25, 101510.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101510]
[102]
Phan, T.T.; See, P.; Lee, S.T.; Chan, S.Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J. Trauma, 2001, 51(5), 927-931.
[http://dx.doi.org/10.1097/00005373-200111000-00017] [PMID: 11706342]
[103]
Madhyastha, R.; Madhyastha, H.; Nakajima, Y.; Omura, S.; Maruyama, M. Curcumin facilitates fibrinolysis and cellular migration during wound healing by modulating urokinase plasminogen activator expression. Pathophysiol. Haemost. Thromb., 2010, 37(2-4), 59-66.
[http://dx.doi.org/10.1159/000321375] [PMID: 21071923]
[104]
Demirovic, D.; Rattan, S.I.S. Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro. Biogerontology, 2011, 12(5), 437-444.
[http://dx.doi.org/10.1007/s10522-011-9326-7] [PMID: 21380847]
[105]
Venkatasubbu, G.D.; Anusuya, T. Investigation on Curcumin nanocomposite for wound dressing. Int. J. Biol. Macromol., 2017, 98, 366-378.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.002] [PMID: 28167107]
[106]
Yen, Y.H.; Pu, C.M.; Liu, C.W.; Chen, Y.C.; Chen, Y.C.; Liang, C.J.; Hsieh, J.H.; Huang, H.F.; Chen, Y.L. Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α MMP-9, α-SMA, and collagen. Int. Wound J., 2018, 15(4), 605-617.
[http://dx.doi.org/10.1111/iwj.12904] [PMID: 29659146]
[107]
Mani, H.; Sidhu, G.S.; Kumari, R.; Gaddipati, J.P.; Seth, P.; Maheshwari, R.K. Curcumin differentially regulates TGF-β1, its receptors and nitric oxide synthase during impaired wound healing. Biofactors, 2002, 16(1-2), 29-43.
[http://dx.doi.org/10.1002/biof.5520160104] [PMID: 12515914]
[108]
Sidhu, G.S.; Mani, H.; Gaddipati, J.P.; Singh, A.K.; Seth, P.; Banaudha, K.K.; Patnaik, G.K.; Maheshwari, R.K. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen., 1999, 7(5), 362-374.
[http://dx.doi.org/10.1046/j.1524-475X.1999.00362.x] [PMID: 10564565]
[109]
Panchatcharam, M.; Miriyala, S.; Gayathri, V.S.; Suguna, L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol. Cell. Biochem., 2006, 290(1-2), 87-96.
[http://dx.doi.org/10.1007/s11010-006-9170-2] [PMID: 16770527]
[110]
Wahlang, B.; Pawar, Y.B.; Bansal, A.K. Identification of permeability-related hurdles in oral delivery of curcumin using the CaCo2 cell model. Eur. J. Pharm. Biopharm., 2011, 77(2), 275-282.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.006] [PMID: 21147222]
[111]
Sharma, M.; Sahu, K.; Singh, S.P.; Jain, B. Wound healing activity of curcumin conjugated to hyaluronic acid: In vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 1009-1017.
[http://dx.doi.org/10.1080/21691401.2017.1358731] [PMID: 28754055]
[112]
Agarwal, Y.; Rajinikanth, P.S.; Ranjan, S.; Tiwari, U.; Balasubramnaiam, J.; Pandey, P.; Arya, D.K.; Anand, S.; Deepak, P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in vitro and in vivo studies. Int. J. Biol. Macromol., 2021, 176, 376-386.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.025] [PMID: 33561460]
[113]
Akbar, M.U.; Zia, K.M.; Akash, M.S.H.; Nazir, A.; Zuber, M.; Ibrahim, M. In vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int. J. Biol. Macromol., 2018, 120(Pt B), 2418-2430.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.010] [PMID: 30195611]
[114]
Liu, J.; Chen, Z.; Wang, J.; Li, R.; Li, T.; Chang, M.; Yan, F.; Wang, Y. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl. Mater. Interfaces, 2018, 10(19), 16315-16326.
[http://dx.doi.org/10.1021/acsami.8b03868] [PMID: 29687718]
[115]
Li, F.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. J. Biomater. Appl., 2019, 34(4), 476-486.
[http://dx.doi.org/10.1177/0885328219860929] [PMID: 31280635]
[116]
Shah, S.A.; Sohail, M.; Minhas, M.U.; Khan, S.; Hussain, Z.; Mahmood, A.; Kousar, M.; Thu, H.E.; Abbasi, M.; Kashif, M.R. Curcumin-laden hyaluronic acid-co-Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. Int. J. Biol. Macromol., 2021, 185, 350-368.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.119] [PMID: 34171251]
[117]
Xia, S.; Weng, T.; Jin, R.; Yang, M.; Yu, M.; Zhang, W. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds. Burns Trauma, 2022, 10, 10.
[118]
Liao, H.T.; Lai, Y.T.; Kuo, C.Y.; Chen, J.P. A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing. Mater. Sci. Eng. C, 2021, 120, 111689.
[http://dx.doi.org/10.1016/j.msec.2020.111689] [PMID: 33545851]
[119]
Shende, P.; Gupta, H. Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing. Life Sci., 2020, 253, 117588.
[http://dx.doi.org/10.1016/j.lfs.2020.117588] [PMID: 32220621]
[120]
Kamar, S.S.; Abdel-Kader, D.H.; Rashed, L.A. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann. Anat., 2019, 222, 94-102.
[http://dx.doi.org/10.1016/j.aanat.2018.11.005] [PMID: 30521949]
[121]
Pham, L.; Dang, L.H.; Truong, M.D.; Nguyen, T.H.; Le, L.; Le, V.T.; Nam, N.D.; Bach, L.G.; Nguyen, V.T.; Tran, N.Q. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed. Pharmacother., 2019, 117, 109183.
[http://dx.doi.org/10.1016/j.biopha.2019.109183] [PMID: 31261029]
[122]
Najafloo, R.; Behyari, M.; Imani, R.; Nour, S. A mini-review of Thymol incorporated materials: Applications in antibacterial wound dressing. J. Drug Deliv. Sci. Technol., 2020, 60(March), 101904.
[http://dx.doi.org/10.1016/j.jddst.2020.101904]
[123]
Xu, Z.; Hsia, H.C. The impact of microbial communities on wound healing: A review. Ann. Plast. Surg., 2018, 81(1), 113-123.
[http://dx.doi.org/10.1097/SAP.0000000000001450] [PMID: 29746280]
[124]
Riella, K.R.; Marinho, R.R.; Santos, J.S.; Pereira-Filho, R.N.; Cardoso, J.C.; Albuquerque-Junior, R.L.C.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol., 2012, 143(2), 656-663.
[http://dx.doi.org/10.1016/j.jep.2012.07.028] [PMID: 22885071]
[125]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005] [PMID: 15917549]
[126]
Wang, L.H.; Zhang, Z.H.; Zeng, X.A.; Gong, D.M.; Wang, M.S. Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: Membrane damage and genomic DNA binding. Anal. Bioanal. Chem., 2017, 409(6), 1615-1625.
[http://dx.doi.org/10.1007/s00216-016-0102-z] [PMID: 27900434]
[127]
Imran, M.; Rauf, A.; Shah, Z.A.; Saeed, F.; Imran, A.; Arshad, M.U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D.G.; Mubarak, M.S. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res., 2019, 33(2), 263-275.
[http://dx.doi.org/10.1002/ptr.6227] [PMID: 30402931]
[128]
Ghosh, P.K.; Gaba, A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci., 2013, 16(5), 760-820.
[http://dx.doi.org/10.18433/J3831V] [PMID: 24393557]
[129]
Özay, Y.; Güzel, S. Yumrutaş Ö.; Pehlivanoğlu, B.; Erdoğdu, İ.H.; Yildirim, Z.; Türk, B.A.; Darcan, S. Wound healing effect of kaempferol in diabetic and nondiabetic Rats. J. Surg. Res., 2019, 233, 284-296.
[http://dx.doi.org/10.1016/j.jss.2018.08.009] [PMID: 30502261]
[130]
Chen, L.Y.; Huang, C.N.; Liao, C.K.; Chang, H.M.; Kuan, Y.H.; Tseng, T.J.; Yen, K.J.; Yang, K.L.; Lin, H.C. Effects of rutin on wound healing in hyperglycemic rats. Antioxidants, 2020, 9(11), 1122.
[http://dx.doi.org/10.3390/antiox9111122] [PMID: 33202817]
[131]
Asfour, M.H.; Elmotasem, H.; Mostafa, D.M.; Salama, A.A.A. Chitosan based pickering emulsion as a promising approach for topical application of rutin in a solubilized form intended for wound healing: In vivo and in vivo study. Int. J. Pharm., 2017, 534(1-2), 325-338.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.044] [PMID: 29074391]
[132]
Kaliamurthi, S.; Selvaraj, G.; Thirugnanasambandam, R.; Thangavel, B. Topical delivery of nano-encapsulated rutoside medication for diabetic foot ulcer in rat model. Nanosci. Nanotechnol. Asia, 2018, 8(1), 116-129.
[http://dx.doi.org/10.2174/2210681207666170213141559]
[133]
Vabeiryureilai, M. Lalrinzuali, K.; Jagetia, G.C. NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds. Burns, 2022, 48(1), 132-145.
[http://dx.doi.org/10.1016/j.burns.2021.04.016] [PMID: 33972147]
[134]
Wang, L.; He, T.; Fu, A.; Mao, Z.; Yi, L.; Tang, S. Hesperidin enhances angiogenesis via modulating expression of growth and inflammatory factor in diabetic foot ulcer in rats. Eur. J. Inflamm., 2018, 16.
[135]
Bagher, Z.; Ehterami, A.; Safdel, M.H.; Khastar, H.; Semiari, H.; Asefnejad, A.; Davachi, S.M.; Mirzaii, M.; Salehi, M. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug Deliv. Sci. Technol., 2020, 55, 101379.
[http://dx.doi.org/10.1016/j.jddst.2019.101379]
[136]
Huang, Y.W.; Zhu, Q.Q.; Yang, X.Y.; Xu, H.H.; Sun, B. Wang, X.J.; Sheng, J. Wound healing can be improved by] (-)-epigallocatechin gallate through targeting Notch in streptozotocin induced diabetic mice. FASEB J., 2019, 33(1), 953-964.
[http://dx.doi.org/10.1096/fj.201800337R] [PMID: 30070931]
[137]
Sun, M.; Xie, Q.; Cai, X.; Liu, Z.; Wang, Y.; Dong, X.; Xu, Y. Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice. Int. J. Biol. Macromol., 2020, 148, 777-784.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.198] [PMID: 31978475]
[138]
Gámez, E.; Elizondo-Castillo, H.; Tascon, J.; García-Salinas, S.; Navascues, N.; Mendoza, G.; Arruebo, M.; Irusta, S. Antibacterial effect of thymol loaded SBA-15 nanorods incorporated in PCL electrospun fibers. Nanomaterials (Basel), 2020, 10(4), 616.
[http://dx.doi.org/10.3390/nano10040616] [PMID: 32230766]
[139]
Ezhilarasu, H.; Vishalli, D.; Dheen, S.T.; Bay, B.H.; Srinivasan, D.K. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials (Basel), 2020, 10(6), 1234.
[http://dx.doi.org/10.3390/nano10061234] [PMID: 32630377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy