Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Potential Neuroprotective Strategies using Smart Drug Delivery Systems for Alzheimer’s Disease

Author(s): Javed Khan, Shikha Yadav* and Md. Aftab Alam

Volume 24, Issue 3, 2024

Published on: 23 October, 2023

Article ID: e231023222565 Pages: 14

DOI: 10.2174/0118715265254985231012065058

Price: $65

Abstract

Background: Alzheimer's disease (AD) is the most common neurological disorder, affecting more than 50 million individuals worldwide and causing gradual but progressive cognitive decline. The rising cost of medical treatment is mostly attributable to AD. There are now mainly a few slightly symptomatic therapeutic options accessible. Although this is not the primary reason, the failure to develop effective treatments for AD is often attributed to the disease's complicated pathophysiology and the wide range of underlying ideas.

Objective: Studies undertaken over the past decade have aimed to find novel methods of overcoming these barriers and effectively delivering drugs to the central nervous system. As a result, nanotechnology provides a promising alternative to the standard means of administering anti-amyloidosis drugs, enhancing expectations for a successful treatment of Alzheimer's disease. These therapeutic implications of using nanoparticle-based approaches for the treatment of Alzheimer's disease are discussed in this paper.

Methodology: Published articles from PubMed, SciFinder, Google Scholar, ClinicalTrials.org, and the Alzheimer Association reports were carefully examined to compile information on the various strategies for combating AD. That has been studied to summarize the recent advancements and clinical studies for the treatment of Alzheimer's disease (AD). Statistics is the study and manipulation of data, including ways to gather, review, analyze, and draw conclusions from data.

Conclusion: The biology of the BBB and its processes of penetration must be carefully taken into account while creating DDSs. If we have a better grasp of the disease's mechanism, we might be able to overcome the shortcomings of current treatments for AD. Different DDSs show interesting properties for delivering medication tailored to the brain. This review paper examines the recent applications of DDSs in diverse domains. By selecting the best targeting vectors and optimizing the combination of carriers, multifunctionalized DDS may be produced, and these DDS have a significant impact on AD therapy potential. To develop DDSs with the best therapeutic efficacy and manageable side effects, experts from a variety of fields may need to contribute their efforts. Currently, the therapeutic use of nanotechnology-based DDSs appears to be a promising prospect for AD therapy, and as the pathophysiology of AD is better understood, this strategy will develop over time.

Graphical Abstract

[1]
Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[2]
Noetzli, M.; Eap, C.B. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin. Pharmacokinet., 2013, 52(4), 225-241.
[http://dx.doi.org/10.1007/s40262-013-0038-9] [PMID: 23408070]
[3]
Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 51(3), 169-188.
[http://dx.doi.org/10.5114/fn.2013.37702] [PMID: 24114635]
[4]
Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[5]
Gaugler, J.; Bryan James, T.J.; Reimer, J.; Weuve, J. 2021 Alzheimer’s Disease Facts and Figures; Alzheimer’s Dementia: Chicago, IL, USA, 2021, p. 17.
[6]
Iqubal, A.; Rahman, S.O.; Ahmed, M.; Bansal, P.; Haider, M.R.; Iqubal, M.K.; Najmi, A.K.; Pottoo, F.H.; Haque, S.E. current quest in natural bioactive compounds for Alzheimer’s disease: Multi-targeted-designed-ligand based approach with preclinical and clinical based evidence. Curr. Drug Targets, 2021, 22(6), 685-720.
[http://dx.doi.org/10.2174/18735592MTEysMjQe4] [PMID: 33302832]
[7]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease.. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[8]
Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[9]
Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci., 2019, 20(9), 2313.
[http://dx.doi.org/10.3390/ijms20092313] [PMID: 31083327]
[10]
Kaur, D.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bungau, S. Multifaceted alzheimer’s disease: Building a roadmap for advancement of novel therapies. Neurochem. Res., 2021, 46(11), 2832-2851.
[http://dx.doi.org/10.1007/s11064-021-03415-w] [PMID: 34357520]
[11]
Trottier, G.; Boström, P.J.; Lawrentschuk, N.; Fleshner, N.E. Nutraceuticals and prostate cancer prevention: A current review. Nat. Rev. Urol., 2010, 7(1), 21-30.
[http://dx.doi.org/10.1038/nrurol.2009.234] [PMID: 19997071]
[12]
Zeisel, S.H. Regulation of “Nutraceuticals”. Science, 1999, 285(5435), 1853-1855.
[http://dx.doi.org/10.1126/science.285.5435.1853] [PMID: 10515789]
[13]
Sadhukhan, P.; Saha, S.; Dutta, S.; Mahalanobish, S.; Sil, P.C. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer’s disease. Pharmacol. Res., 2018, 129, 100-114.
[http://dx.doi.org/10.1016/j.phrs.2017.11.028] [PMID: 29183770]
[14]
Ahmad, S.S.; Khalid, M.; Kamal, M.A.; Younis, K. Study of nutraceuticals and phytochemicals for the management of alzheimer’s disease: A review. Curr. Neuropharmacol., 2021, 19(11), 1884-1895.
[http://dx.doi.org/10.2174/1570159X19666210215122333] [PMID: 33588732]
[15]
Kumar Thakur, A.; Kamboj, P.; Goswami, K.; Ahuja, K. Pathophysiology and management of alzheimer’s disease: An overview. J. Anal. Pharm. Res., 2018, 7(2)
[http://dx.doi.org/10.15406/japlr.2018.07.00230]
[16]
Akhondzadeh, S.; Abbasi, S.H. Herbal medicine in the treatment of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(2), 113-118.
[http://dx.doi.org/10.1177/153331750602100211] [PMID: 16634467]
[17]
Kumar, A.; Singh, A.; Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[18]
Terry, A.V., Jr; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306(3), 821-827.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[19]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[20]
Liu, Z.; Zhang, A.; Sun, H.; Han, Y.; Kong, L.; Wang, X. Two decades of new drug discovery and development for Alzheimer’s disease. RSC Advances, 2017, 7(10), 6046-6058.
[http://dx.doi.org/10.1039/C6RA26737H]
[21]
Farina, M.; Avila, D.S.; da Rocha, J.B.T.; Aschner, M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int., 2013, 62(5), 575-594.
[http://dx.doi.org/10.1016/j.neuint.2012.12.006] [PMID: 23266600]
[22]
Bolognin, S.; Messori, L.; Zatta, P. Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med., 2009, 11(4), 223-238.
[http://dx.doi.org/10.1007/s12017-009-8102-1] [PMID: 19946766]
[23]
Savelieff, M.G.; Lee, S.; Liu, Y.; Lim, M.H. Untangling amyloid-β, Tau, and metals in Alzheimer’s disease. ACS Chem. Biol., 2013, 8(5), 856-865.
[http://dx.doi.org/10.1021/cb400080f] [PMID: 23506614]
[24]
Popescu, B.F.; Frischer, J.M.; Webb, S.M.; Tham, M.; Adiele, R.C.; Robinson, C.A.; Fitz-Gibbon, P.D.; Weigand, S.D.; Metz, I.; Nehzati, S.; George, G.N.; Pickering, I.J.; Brück, W.; Hametner, S.; Lassmann, H.; Parisi, J.E.; Yong, G.; Lucchinetti, C.F. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol., 2017, 134(1), 45-64.
[http://dx.doi.org/10.1007/s00401-017-1696-8] [PMID: 28332093]
[25]
Zheng, W.; Monnot, A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther., 2012, 133(2), 177-188.
[http://dx.doi.org/10.1016/j.pharmthera.2011.10.006] [PMID: 22115751]
[26]
Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem., 2010, 345(1-2), 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[27]
Muhoberac, B.B.; Vidal, R. Abnormal iron homeostasis and neurodegeneration. Front. Aging Neurosci., 2013, 5, 32.
[http://dx.doi.org/10.3389/fnagi.2013.00032] [PMID: 23908629]
[28]
Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis., 2005, 8(2), 171-182.
[http://dx.doi.org/10.3233/JAD-2005-8210] [PMID: 16308486]
[29]
Walton, J.R. Aluminum involvement in the progression of Alzheimer’s disease. J. Alzheimers Dis., 2013, 35(1), 7-43.
[http://dx.doi.org/10.3233/JAD-121909] [PMID: 23380995]
[30]
Campbell, A. The role of aluminum and copper on neuroinflammation and Alzheimer’s disease. J. Alzheimers Dis., 2006, 10(2-3), 165-172.
[http://dx.doi.org/10.3233/JAD-2006-102-304] [PMID: 17119285]
[31]
House, E.; Esiri, M.; Forster, G.; Ince, P.G.; Exley, C. Aluminium, iron and copper in human brain tissues donated to the medical research council’s cognitive function and ageing study. Metallomics, 2012, 4(1), 56-65.
[http://dx.doi.org/10.1039/C1MT00139F] [PMID: 22045115]
[32]
Prakash, A.; Dhaliwal, G.K.; Kumar, P.; Majeed, A.B.A. Brain biometals and Alzheimer’s disease - boon or bane? Int. J. Neurosci., 2017, 127(2), 99-108.
[http://dx.doi.org/10.3109/00207454.2016.1174118] [PMID: 27044501]
[33]
Menghani, Y.R.; Bhattad, D.M.; Chandak, K.K.; Taksande, J.R.; Umekar, M.J. Review: Pharmacological and herbal remedies in The Management of Neurodegenerative disorder (Alzheimer’s). Int. J. Pharmacog. Life Sci., 2021, 2(1), 18-27.
[http://dx.doi.org/10.33545/27072827.2021.v2.i1a.23]
[34]
Sun, X.; Jin, L.; Ling, P. Review of drugs for Alzheimer’s disease. Drug Discov. Ther., 2012, 6(6), 285-290.
[PMID: 23337815]
[35]
Nazareth, A.M. Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement. Neuropsychol., 2017, 11(2), 105-113.
[http://dx.doi.org/10.1590/1980-57642016dn11-020002] [PMID: 29213501]
[36]
Ghezzi, L.; Scarpini, E.; Galimberti, D. Disease-modifying drugs in Alzheimer’s disease. Drug Des. Devel. Ther., 2013, 7, 1471-1478.
[PMID: 24353405]
[37]
Aranda-Abreu, G.E.; Hernandez, M.E.; Manzo, J.; Garcia, L.I.; Herrera Rivero, M. Rehabilitating a brain with Alzheimer’s: A proposal. Clin. Interv. Aging, 2011, 6, 53-59.
[http://dx.doi.org/10.2147/CIA.S14008] [PMID: 21472092]
[38]
Benjamin, B.; Burns, A. Donepezil for Alzheimer’s disease. Expert Rev. Neurother., 2007, 7(10), 1243-1249.
[http://dx.doi.org/10.1586/14737175.7.10.1243] [PMID: 17939763]
[39]
Sivaraman, D.; Anbu, N.; Kabilan, N.; Kumar, M.P.; Shanmugapriya, P.; Christian, G.J. Review on current treatment strategy in Alzheimer’s disease and role of herbs in treating neurological disorders. Int J Trans Res Ind Med., 2019, 1(1), 33-43.
[40]
Ago, Y.; Koda, K.; Takuma, K.; Matsuda, T. Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J. Pharmacol. Sci., 2011, 116(1), 6-17.
[http://dx.doi.org/10.1254/jphs.11R01CR] [PMID: 21498956]
[41]
Seltzer, B. Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease. Clin. Interv. Aging, 2010, 5, 1-6.
[PMID: 20169037]
[42]
Xing, SH; Zhu, CX; Zhang, R; An, L Huperzine a in the treatment of Alzheimer's disease and vascular dementia: A meta-analysis. Evid Based Complement. Alternat. Med, 2014, 2014, 363985.
[http://dx.doi.org/10.1155/2014/363985]
[43]
Fu, L.M.; Li, J.T. A systematic review of single chinese herbs for Alzheimer’s disease treatment. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8.
[http://dx.doi.org/10.1093/ecam/nep136] [PMID: 19737808]
[44]
Bar-On, P.; Millard, C.B.; Harel, M.; Dvir, H.; Enz, A.; Sussman, J.L.; Silman, I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry, 2002, 41(11), 3555-3564.
[http://dx.doi.org/10.1021/bi020016x] [PMID: 11888271]
[45]
Kurz, A.; Farlow, M.; Lefèvre, G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer’s disease: A review. Int. J. Clin. Pract., 2009, 63(5), 799-805.
[http://dx.doi.org/10.1111/j.1742-1241.2009.02052.x] [PMID: 19392927]
[46]
Venneri, A.; Lane, R. Effects of cholinesterase inhibition on brain white matter volume in Alzheimer’s disease. Neuroreport, 2009, 20(3), 285-288.
[http://dx.doi.org/10.1097/WNR.0b013e3283207d21] [PMID: 19444953]
[47]
Muthuraju, S.; Maiti, P.; Solanki, P.; Sharma, A.K.; Amitabh; Singh, S.B.; Prasad, D.; Ilavazhagan, G. Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav. Brain Res., 2009, 203(1), 1-14.
[http://dx.doi.org/10.1016/j.bbr.2009.03.026] [PMID: 19446892]
[48]
Giacobini, E. Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochem. Res., 2003, 28(3/4), 515-522.
[http://dx.doi.org/10.1023/A:1022869222652] [PMID: 12675140]
[49]
Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in alzheimer’s disease. J. Formos. Med. Assoc., 2016, 115(1), 3-10.
[http://dx.doi.org/10.1016/j.jfma.2015.04.001] [PMID: 26220908]
[50]
Danysz, W.; Parsons, C.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: Preclinical evidence. Int. J. Geriatr. Psychiatry, 2003, 18(S1), S23-S32.
[http://dx.doi.org/10.1002/gps.938] [PMID: 12973747]
[51]
Birrenbach, G.; Speiser, P.P. Polymerized micelles and their use as adjuvants in immunology. J. Pharm. Sci., 1976, 65(12), 1763-1766.
[http://dx.doi.org/10.1002/jps.2600651217] [PMID: 1036442]
[52]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[53]
Loureiro, J.; Andrade, S.; Duarte, A.; Neves, A.; Queiroz, J.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.; Pereira, M. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules, 2017, 22(2), 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[54]
Leszek, J.; Md Ashraf, G.; Tse, W.H.; Zhang, J.; Gasiorowski, K.; Avila-Rodriguez, M.F.; Tarasov, V.V.; Barreto, G.E.; Klochkov, S.G.; Bachurin, S.O.; Aliev, G. Nanotechnology for alzheimer disease. Curr. Alzheimer Res., 2017, 14(11), 1182-1189.
[PMID: 28164767]
[55]
Jain, A.; Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control. Release, 2017, 245, 27-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.016] [PMID: 27865853]
[56]
Hadavi, D.; Poot, A.A. Biomaterials for the Treatment of Alzheimer’s Disease. Front. Bioeng. Biotechnol., 2016, 4, 49.
[http://dx.doi.org/10.3389/fbioe.2016.00049] [PMID: 27379232]
[57]
Kaur, I.P.; Garg, A.; Singla, A.K.; Aggarwal, D. Vesicular systems in ocular drug delivery: An overview. Int. J. Pharm., 2004, 269(1), 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.016] [PMID: 14698571]
[58]
Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm., 1998, 165(2), 129-168.
[http://dx.doi.org/10.1016/S0378-5173(98)00006-4]
[59]
Fonseca-Santos, B.; Chorilli, M.; Palmira Daflon Gremião, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[60]
Gastaldi, L.; Battaglia, L.; Peira, E.; Chirio, D.; Muntoni, E.; Solazzi, I.; Gallarate, M.; Dosio, F. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm., 2014, 87(3), 433-444.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[61]
Mishra, B; Patel, BB; Tiwari, S Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed.: Nanotechnol., Biol. Med., 2009, 6(1), 9-24.
[62]
Md, S.; Bhattmisra, S.K.; Zeeshan, F.; Shahzad, N.; Mujtaba, M.A.; Srikanth Meka, V.; Radhakrishnan, A.; Kesharwani, P.; Baboota, S.; Ali, J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol., 2018, 43, 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[63]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[64]
Neves, A.R.; Queiroz, J.F.; Weksler, B.; Romero, I.A.; Couraud, P.O.; Reis, S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology, 2015, 26(49), 495103.
[http://dx.doi.org/10.1088/0957-4484/26/49/495103] [PMID: 26574295]
[65]
Robinson, M.; Lee, B.Y.; Leonenko, Z. Drugs and drug delivery systems targeting amyloid-\b {eta} in Alzheimers disease. arXiv, 2017, 2017, 08313.
[66]
Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[67]
Haimov, E; Harel, Y; Polani, S; Weitman, H; Zitoun, D; Lellouche, JP; Shefi, O Metal-based nanoparticles as carriers of mTHPC drug for effective photodynamic therapy. In: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI; SPIE, 2019; 10891, pp. 125-134.
[http://dx.doi.org/10.1117/12.2508456]
[68]
Das, S.; Dowding, J.M.; Klump, K.E.; McGinnis, J.F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 2013, 8(9), 1483-1508.
[http://dx.doi.org/10.2217/nnm.13.133] [PMID: 23987111]
[69]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Khan, M.A.; Pigeon, L.; Addo, R.T.; Greig, N.H.; Midoux, P.; Pichon, C.; Kamal, M.A. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr. Alzheimer Res., 2017, 14(11), 1164-1181.
[PMID: 28482786]
[70]
Do, T.D.; Amin, F.U.; Noh, Y.; Kim, M.O.; Yoon, J. Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. J. Biomed. Nanotechnol., 2016, 12(3), 569-574.
[http://dx.doi.org/10.1166/jbn.2016.2193] [PMID: 27280254]
[71]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[72]
Bernardi, A.; Frozza, R.L.; Meneghetti, A.; Hoppe, J.B.; Oliveira Battastini, A.M.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C.G. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int. J. Nanomedicine, 2012, 7, 4927-4942.
[http://dx.doi.org/10.2147/IJN.S35333] [PMID: 23028221]
[73]
Brambilla, D.; Verpillot, R.; Le Droumaguet, B.; Nicolas, J.; Taverna, M.; Kóňa, J.; Lettiero, B.; Hashemi, S.H.; De Kimpe, L.; Canovi, M.; Gobbi, M.; Nicolas, V.; Scheper, W.; Moghimi, S.M.; Tvaroška, I.; Couvreur, P.; Andrieux, K. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano, 2012, 6(7), 5897-5908.
[http://dx.doi.org/10.1021/nn300489k] [PMID: 22686577]
[74]
Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3), e32616.
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[75]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(3), 843-866.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[76]
den Haan, J.; Morrema, T.H.J.; Rozemuller, A.J.; Bouwman, F.H.; Hoozemans, J.J.M. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s disease brains: Implications for in vivo diagnostics. Acta Neuropathol. Commun., 2018, 6(1), 75.
[http://dx.doi.org/10.1186/s40478-018-0577-2] [PMID: 30092839]
[77]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[78]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[79]
Patil, R.; Gangalum, P.R.; Wagner, S.; Portilla-Arias, J.; Ding, H.; Rekechenetskiy, A.; Konda, B.; Inoue, S.; Black, K.L.; Ljubimova, J.Y.; Holler, E. Curcumin targeted, polymalic acid‐based MRI contrast agent for the detection of Aβ plaques in Alzheimer’s disease. Macromol. Biosci., 2015, 15(9), 1212-1217.
[http://dx.doi.org/10.1002/mabi.201500062] [PMID: 26036700]
[80]
Zhang, C.; Zheng, X.; Wan, X.; Shao, X.; Liu, Q.; Zhang, Z.; Zhang, Q. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J. Control. Release, 2014, 192, 317-324.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.050] [PMID: 25102404]
[81]
Cupaioli, F.A.; Zucca, F.A.; Boraschi, D.; Zecca, L. Engineered nanoparticles. How brain friendly is this new guest? Prog. Neurobiol., 2014, 119-120, 20-38.
[http://dx.doi.org/10.1016/j.pneurobio.2014.05.002] [PMID: 24820405]
[82]
Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[83]
Karatas, H.; Aktas, Y.; Gursoy-Ozdemir, Y.; Bodur, E.; Yemisci, M.; Caban, S.; Vural, A.; Pinarbasli, O.; Capan, Y.; Fernandez-Megia, E.; Novoa-Carballal, R.; Riguera, R.; Andrieux, K.; Couvreur, P.; Dalkara, T. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci., 2009, 29(44), 13761-13769.
[http://dx.doi.org/10.1523/JNEUROSCI.4246-09.2009] [PMID: 19889988]
[84]
Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[85]
Silva, A.C.; Santos, D.; Ferreira, D.; Lopes, C.M. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: Peroral and mucosal routes. Curr. Med. Chem., 2012, 19(26), 4495-4510.
[http://dx.doi.org/10.2174/092986712803251584] [PMID: 22834821]
[86]
Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70(3), 353-363.
[http://dx.doi.org/10.1016/S0168-3659(00)00367-9] [PMID: 11182205]
[87]
Pan, H.; Marsh, J.N.; Christenson, E.T.; Soman, N.R.; Ivashyna, O.; Lanza, G.M.; Schlesinger, P.H.; Wickline, S.A. Postformulation peptide drug loading of nanostructures. In: Methods in enzymology; Academic Press, 2012; 508, pp. 17-39.
[88]
Fernandes, C.; Soni, U.; Patravale, V. Nano-interventions for neurodegenerative disorders. Pharmacol. Res., 2010, 62(2), 166-178.
[http://dx.doi.org/10.1016/j.phrs.2010.02.004] [PMID: 20153429]
[89]
Silva, A.C.; González-Mira, E.; Lobo, J.M.; Amaral, M.H. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer’s and schizophrenia. Curr. Pharm. Des., 2013, 19(41), 7185-7195.
[http://dx.doi.org/10.2174/138161281941131219123329] [PMID: 23489198]
[90]
Altinoglu, G.; Adali, T. Alzheimer’s disease targeted nano-based drug delivery systems. Curr. Drug Targets, 2020, 21(7), 628-646.
[http://dx.doi.org/10.2174/1389450120666191118123151] [PMID: 31744447]
[91]
Sivasankarapillai, V.S.; Jose, J.; Shanavas, M.S.; Marathakam, A.; Uddin, M.S.; Mathew, B. Silicon quantum dots: Promising theranostic probes for the future. Curr. Drug Targets, 2019, 20(12), 1255-1263.
[http://dx.doi.org/10.2174/1389450120666190405152315] [PMID: 30961492]
[92]
Kamigaito, O. What can be improved by nanometer composites? J. Japan Soci. Powder Powder Metall., 1991, 38(3), 315-321.
[http://dx.doi.org/10.2497/jjspm.38.315]
[93]
Thostenson, E.; Li, C.; Chou, T. Nanocomposites in context. Compos. Sci. Technol., 2005, 65(3-4), 491-516.
[http://dx.doi.org/10.1016/j.compscitech.2004.11.003]
[94]
Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 2018, 12(2), 1321-1338.
[http://dx.doi.org/10.1021/acsnano.7b07625] [PMID: 29364648]
[95]
Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[96]
Patel, D.A.; Henry, J.E.; Good, T.A. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: Role of sialic acid attachment. Brain Res., 2007, 1161, 95-105.
[http://dx.doi.org/10.1016/j.brainres.2007.05.055] [PMID: 17604005]
[97]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[98]
Lokesh Kumar, P. Design, synthesis, characterization and evaluation of newer potent apolipoprotein E4 inhibitors for the treatment of alzheimer’s disease. Int. J. Pharm. Sci. Res., 2021, 13, 1453-1464.
[99]
Balaraman, Y.; Limaye, A.R.; Levey, A.I.; Srinivasan, S. Glycogen synthase kinase 3β and Alzheimer’s disease: Pathophysiological and therapeutic significance. Cell. Mol. Life Sci., 2006, 63(11), 1226-1235.
[http://dx.doi.org/10.1007/s00018-005-5597-y] [PMID: 16568235]
[100]
Martín-Rapun, R.; De Matteis, L.; Ambrosone, A.; Garcia-Embid, S.; Gutierrez, L.; de la Fuente, J.M. Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr. Pharm. Des., 2017, 23(13), 1927-1952.
[http://dx.doi.org/10.2174/1381612822666161226151011] [PMID: 28025949]
[101]
Rissman, R.A.; De Blas, A.L.; Armstrong, D.M. GABA A receptors in aging and Alzheimer’s disease. J. Neurochem., 2007, 103(4), 1285-1292.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04832.x] [PMID: 17714455]
[102]
Rossor, M.N.; Garrett, N.J.; Johnson, A.L.; Mountjoy, C.Q.; Roth, M.; Iversen, L.L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain, 1982, 105(2), 313-330.
[http://dx.doi.org/10.1093/brain/105.2.313] [PMID: 7082992]
[103]
Mountjoy, C.Q.; Rossor, M.N.; Iversen, L.L.; Roth, M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain, 1984, 107(2), 507-518.
[http://dx.doi.org/10.1093/brain/107.2.507] [PMID: 6722514]
[104]
Lowe, S.L.; Francis, P.T.; Procter, A.W.; Palmer, A.M.; Davison, A.N.; Bowen, D.M. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain, 1988, 111(4), 785-799.
[http://dx.doi.org/10.1093/brain/111.4.785] [PMID: 3401683]
[105]
Ellison, D.W.; Beal, M.F.; Mazurek, M.F.; Bird, E.D.; Martin, J.B. A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol., 1986, 20(5), 616-621.
[http://dx.doi.org/10.1002/ana.410200510] [PMID: 2878639]
[106]
Chu, D.C.M.; Penney, J.B., Jr; Young, A.B. Cortical GABAB and GABAA receptors in Alzheimer’s disease: A quantitative autoradiographic study. Neurology, 1987, 37(9), 1454-1459.
[http://dx.doi.org/10.1212/WNL.37.9.1454] [PMID: 2819782]
[107]
Froestl, W.; Gallagher, M.; Jenkins, H.; Madrid, A.; Melcher, T.; Teichman, S.; Mondadori, C.G.; Pearlman, R. SGS742: The first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol., 2004, 68(8), 1479-1487.
[http://dx.doi.org/10.1016/j.bcp.2004.07.030] [PMID: 15451390]
[108]
Sabbagh, M.N. Drug development for Alzheimer’s disease: Where are we now and where are we headed? Am. J. Geriatr. Pharmacother., 2009, 7(3), 167-185.
[http://dx.doi.org/10.1016/j.amjopharm.2009.06.003] [PMID: 19616185]
[109]
Sternfeld, F.; Carling, R.W.; Jelley, R.A.; Ladduwahetty, T.; Merchant, K.J.; Moore, K.W.; Reeve, A.J.; Street, L.J.; O’Connor, D.; Sohal, B.; Atack, J.R.; Cook, S.; Seabrook, G.; Wafford, K.; Tattersall, F.D.; Collinson, N.; Dawson, G.R.; Castro, J.L.; MacLeod, A.M. Selective, orally active γ-aminobutyric acidA α5 receptor inverse agonists as cognition enhancers. J. Med. Chem., 2004, 47(9), 2176-2179.
[http://dx.doi.org/10.1021/jm031076j] [PMID: 15084116]
[110]
Aisen, P.S.; Saumier, D.; Briand, R.; Laurin, J.; Gervais, F.; Tremblay, P.; Garceau, D. A Phase II study targeting amyloid- with 3APS in mild-to-moderate Alzheimer disease. Neurology, 2006, 67(10), 1757-1763.
[http://dx.doi.org/10.1212/01.wnl.0000244346.08950.64] [PMID: 17082468]
[111]
Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol., 1999, 55(6), 1101-1107.
[http://dx.doi.org/10.1124/mol.55.6.1101] [PMID: 10347254]
[112]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H 3 receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181.
[http://dx.doi.org/10.1038/bjp.2008.147] [PMID: 18469850]
[113]
Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.L-H.; Brown, S.H.; Roman, S.; Lai, M.K.P. Characterization of histamine H3 receptors in Alzheimer’s Disease brain and amyloid over-expressing TASTPM mice. Br. J. Pharmacol., 2009, 157(1), 130-138.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00075.x] [PMID: 19222483]
[114]
Leurs, R.; Bakker, R.A.; Timmerman, H.; de Esch, I.J.P. The histamine H3 receptor: From gene cloning to H3 receptor drugs. Nat. Rev. Drug Discov., 2005, 4(2), 107-120.
[http://dx.doi.org/10.1038/nrd1631] [PMID: 15665857]
[115]
Langbaum, J.B.S.; Chen, K.; Lee, W.; Reschke, C.; Bandy, D.; Fleisher, A.S.; Alexander, G.E.; Foster, N.L.; Weiner, M.W.; Koeppe, R.A.; Jagust, W.J.; Reiman, E.M. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s disease neuroimaging initiative (ADNI). Neuroimage, 2009, 45(4), 1107-1116.
[http://dx.doi.org/10.1016/j.neuroimage.2008.12.072] [PMID: 19349228]
[116]
Reiman, E.M.; Caselli, R.J.; Yun, L.S.; Chen, K.; Bandy, D.; Minoshima, S.; Thibodeau, S.N.; Osborne, D. Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε 4 allele for apolipoprotein E. N. Engl. J. Med., 1996, 334(12), 752-758.
[http://dx.doi.org/10.1056/NEJM199603213341202] [PMID: 8592548]
[117]
Manning, C.A.; Stone, W.S.; Korol, D.L.; Gold, P.E. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav. Brain Res., 1998, 93(1-2), 71-76.
[http://dx.doi.org/10.1016/S0166-4328(97)00136-8] [PMID: 9659988]
[118]
Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; Lofgreen, C.; Latendresse, S.; Petrova, A.; Plymate, S.; Raskind, M.; Grimwood, K.; Veith, R.C. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry, 1999, 56(12), 1135-1140.
[http://dx.doi.org/10.1001/archpsyc.56.12.1135] [PMID: 10591291]
[119]
Costantini, L.C.; Barr, L.J.; Vogel, J.L.; Henderson, S.T. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci., 2008, 9(S2), S16.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S16] [PMID: 19090989]
[120]
Henderson, S.T.; Vogel, J.L.; Barr, L.J.; Garvin, F.; Jones, J.J.; Costantini, L.C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab., 2009, 6(1), 31.
[http://dx.doi.org/10.1186/1743-7075-6-31] [PMID: 19664276]
[121]
Nordberg, A.; Winblad, B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett., 1986, 72(1), 115-120.
[http://dx.doi.org/10.1016/0304-3940(86)90629-4] [PMID: 3808458]
[122]
Sabbagh, M.N.; Shah, F.; Reid, R.T.; Sue, L.; Connor, D.J.; Peterson, L.K.N.; Beach, T.G. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch. Neurol., 2006, 63(12), 1771-1776.
[http://dx.doi.org/10.1001/archneur.63.12.1771] [PMID: 17172618]
[123]
Kadir, A.; Almkvist, O.; Wall, A.; Långström, B.; Nordberg, A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology, 2006, 188(4), 509-520.
[http://dx.doi.org/10.1007/s00213-006-0447-7] [PMID: 16832659]
[124]
Haydar, S.N.; Ghiron, C.; Bettinetti, L.; Bothmann, H.; Comery, T.A.; Dunlop, J.; La Rosa, S.; Micco, I.; Pollastrini, M.; Quinn, J.; Roncarati, R.; Scali, C.; Valacchi, M.; Varrone, M.; Zanaletti, R. SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem., 2009, 17(14), 5247-5258.
[http://dx.doi.org/10.1016/j.bmc.2009.05.040] [PMID: 19515567]
[125]
Wong, K.; Riaz, M.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int. J. Mol. Sci., 2019, 20(2), 381.
[http://dx.doi.org/10.3390/ijms20020381] [PMID: 30658419]
[126]
Dunbar, G.C.; Kuchibhatla, R. Cognitive enhancement in man with ispronicline, a nicotinic partial agonist. J. Mol. Neurosci., 2006, 30(1-2), 169-172.
[http://dx.doi.org/10.1385/JMN:30:1:169] [PMID: 17192668]
[127]
Potter, A.; Corwin, J.; Lang, J.; Piasecki, M.; Lenox, R.; Newhouse, P.A. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology, 1999, 142(4), 334-342.
[http://dx.doi.org/10.1007/s002130050897] [PMID: 10229057]
[128]
Marighetto, A.; Valerio, S.; Desmedt, A.; Philippin, J.N.; Trocmé-Thibierge, C.; Morain, P. Comparative effects of the α7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology, 2008, 197(3), 499-508.
[http://dx.doi.org/10.1007/s00213-007-1063-x] [PMID: 18265960]
[129]
Tully, T.; Bourtchouladze, R.; Scott, R.; Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov., 2003, 2(4), 267-277.
[http://dx.doi.org/10.1038/nrd1061] [PMID: 12669026]
[130]
Barco, A.; Pittenger, C.; Kandel, E.R. CREB, memory enhancement and the treatment of memory disorders: Promises, pitfalls and prospects. Expert Opin. Ther. Targets, 2003, 7(1), 101-114.
[http://dx.doi.org/10.1517/14728222.7.1.101] [PMID: 12556206]
[131]
Vitolo, O.V.; Sant’Angelo, A.; Costanzo, V.; Battaglia, F.; Arancio, O.; Shelanski, M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci., 2002, 99(20), 13217-13221.
[http://dx.doi.org/10.1073/pnas.172504199] [PMID: 12244210]
[132]
Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp. Neurol., 2007, 203(1), 241-245.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.008] [PMID: 17007839]
[133]
Gong, B.; Vitolo, O.V.; Trinchese, F.; Liu, S.; Shelanski, M.; Arancio, O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest., 2004, 114(11), 1624-1634.
[http://dx.doi.org/10.1172/JCI22831] [PMID: 15578094]
[134]
Puzzo, D.; Staniszewski, A.; Deng, S.X.; Privitera, L.; Leznik, E.; Liu, S.; Zhang, H.; Feng, Y.; Palmeri, A.; Landry, D.W.; Arancio, O. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimer’s disease mouse model. J. Neurosci., 2009, 29(25), 8075-8086.
[http://dx.doi.org/10.1523/JNEUROSCI.0864-09.2009] [PMID: 19553447]
[135]
Xia, M.; Huang, R.; Guo, V.; Southall, N.; Cho, M.H.; Inglese, J.; Austin, C.P.; Nirenberg, M. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc. Natl. Acad. Sci., 2009, 106(7), 2412-2417.
[http://dx.doi.org/10.1073/pnas.0813020106] [PMID: 19196967]
[136]
Schultheiss, D.; Müller, S.V.; Nager, W.; Stief, C.G.; Schlote, N.; Jonas, U.; Asvestis, C.; Johannes, S.; Münte, T.F. Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: A study with event-related brain potentials. World J. Urol., 2001, 19(1), 46-50.
[http://dx.doi.org/10.1007/PL00007092] [PMID: 11289570]
[137]
Gopakumar, K.M. The Need to Curb Patents on Known Substances. Econ. Polit. Wkly., 2013, 55-57.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy