[1]
Wang, F; Wang, B; Wang, L; Xiong, Z-Y; Gao, W; Li, P. Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. J. Pharm. Biomed. Anal., 2017, 138, 70-79.
[2]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[3]
Izzo, A.A. Interactions between herbs and conventional drugs: Overview of the clinical data. Med. Princ. Pract., 2012.
[4]
Patel, K.; Patel, D.K. Health Benefits of Avicularin in the Medicine Against Cancerous Disorders and other Complications: Biological Importance, Therapeutic Benefit and Analytical Aspects. Curr. Cancer Ther. Rev., 2022, 18, 41-50.
[5]
Patel, K.; Husain, G.M.; Katiyar, D.K.; Prasad, S.K.; Patel, D.K. Sophoricoside: Bioactive Compounds from Sophora japonica, their Role in Disease Prevention and Treatment. Curr. Tradit. Med., 2021, 7, 180-188.
[6]
Skalicka-Woźniak, K.; Georgiev, M.I.; Orhan, I.E. Adulteration of herbal sexual enhancers and slimmers: The wish for better sexual well-being and perfect body can be risky. Food Chem. Toxicol., 2017, 108, 355-364.
[7]
Khazdair, M.R.; Gholamnezhad, Z.; Rezaee, R.; Boskabady, M.H. Immuno-modulatory and anti-inflammatory effects of Thymus vulgaris, Zataria multiflora, and Portulaca oleracea and their constituents. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2021, 1, 100010
[8]
Zhu, J.; Zhang, Z.; Wang, R.; Huang, X.; Zhou, Y.; Zhang, K. Nanoparticles derived from Scutellaria barbata and Hedytois diffusa herb pair and their anti-cancer activity. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 2, 100048
[9]
Li, S.; Wu, D.; Lv, G.; Zhao, J. Carbohydrates analysis in herbal glycomics. TrAC Trends Anal Chem, 2013, 52, 155-169.
[10]
Nkwocha, C.C.; Ogugofor, M.O.; Chukwuma, I.F.; Njoku, O.U. Identification and characterization of phytochemicals and constituents in Desmodium velutinum stem using high-performance liquid chromatography (HPLC). Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 3, 100090
[11]
Osifo, M.; Ihim, S.A.; Ani, N.; Nworu, C.S.; Akah, P. Wound healing and anti-inflammatory activities of Ceiba pentendra (l.) Gaertn. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 3, 100077
[12]
Patel, D.K.; Patel, K. Therapeutic Importance and Pharmacological Activities of Karanjin in the Medicine for the Treatment of Human Disorders: A Review through Scientific Data Analysis. Curr. Drug Ther., 2022.
[13]
Patel, K.; Patel, D.K. Health Beneficial Potential of Pectolinarigenin on Human Diseases: An Updated Review of Medicinal Importance and Pharmacological Activity. Nat. Prod. J., 2021, 11, 3-12.
[14]
Thongkhao, K.; Prombutara, P.; Phadungcharoen, T.; Wiwatcharakornkul, W.; Tungphatthong, C.; Sukrong, M. Integrative approaches for unmasking hidden species in herbal dietary supplement products: What is in the capsule? J. Food Compos. Anal., 2020, 93, 103616
[15]
Iwara, I.A.; Mboso, E.O.; Eteng, O.E.; Elot, K.N.; Igile, G.O.; Ebong, P.E. Peristrophe bicalyculata extract and quercetin ameliorate high fat diet- streptozotocin-induced type ii diabetes in Wistar rats. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 2, 100060
[16]
Wijayagunawardane, M.P.B.; Wijerathne, C.U.B.; Herath, C.B. Indigenous Herbal Recipes for Treatment of Liver Cirrhosis. Procedia Chem., 2015, 14, 270-276.
[17]
Cranz, H.; Anquez-Traxler, C. TradReg 2013: Regulation of herbal and traditional medicinal products – European and global strategies – International symposium. J. Ethnopharmacol., 2014, 158, 495-497.
[18]
Feng, X.; Nie, L.; He, Q.; Yu, S.; Yao, S. Making natural products as magnetic particles and fluids: A simple strategy based on ferromagnetic organic compounds with the structural nucleus of isoquinoline alkaloids. J. Mol. Liq., 2019, 296, 111852
[19]
Luo, T; Li, Z; Deng, X-M; Jiang, K; Liu, D; Zhang, H-H Isolation, synthesis and bioactivity evaluation of isoquinoline alkaloids from Corydalis hendersonii Hemsl. against gastric cancer in vitro and in vivo. Bioorg. Med. Chem., 2022, 60, 116705
[20]
Patel, K.; Gadewar, M.; Tripathi, R.; Prasad, S.K.; Patel, D.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “ Harmine. Asian Pac. J. Trop. Biomed., 2012, 2, 660-664.
[21]
Plazas, E.; Avila, M.M.C.; Muñoz, D.R.; Cuca, S.L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol. Res., 2022, 177, 106126
[22]
Zhou, S.; Huang, G.; Chen, G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg. Med. Chem. Lett., 2021, 41, 128009
[23]
Patel, K.; Laloo, D.; Singh, G.K.; Gadewar, M.; Patel, D.K. A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chin. J. Integr. Med., 2017, 1-13.
[24]
Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc., 2022, 48, 1407-1415.
[25]
Khodajou-Masouleh, H.; Mashhadi Akbar Boojar, M.; Khavari-Nejad, S.; Karimi, G. Induction of apoptosis by Oleracein A and Oleracein B in HepG2 cancerous cells is mediated by ceramide generation, caspase-9/caspase-3 pathway activation, and oxidative damage. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 2, 100047
[26]
Salminen, K.A.; Meyer, A.; Jerabkova, L.; Korhonen, L.E.; Rahnasto, M.; Juvonen, R.O. Inhibition of human drug metabolizing cytochrome P450 enzymes by plant isoquinoline alkaloids. Phytomedicine, 2011, 18, 533-538.
[27]
Kapadia, N.; Harding, W.W. C4 phenyl aporphines with selective h5-HT2B receptor affinity. Bioorg. Med. Chem. Lett., 2015, 25, 3451-3454.
[28]
Pecic, S.; McAnuff, M.A.; Harding, W.W. Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations. J. Enzyme Inhib. Med. Chem., 2011, 26, 46-55.
[29]
Karki, A.; Juarez, R.; Namballa, H.K.; Alberts, I.; Harding, W.W. Identification of C10 nitrogen-containing aporphines with dopamine D1 versus D5 receptor selectivity. Bioorg. Med. Chem. Lett., 2020, 30, 127053
[30]
Pecic, S.; Makkar, P.; Chaudhary, S.; Reddy, B.V.; Navarro, H.A.; Harding, W.W. Affinity of aporphines for the human 5-HT2A receptor: Insights from homology modeling and molecular docking studies. Bioorg. Med. Chem., 2010, 18, 5562-5575.
[31]
Ponnala, S.; Kapadia, N.; Madapa, S.; Alberts, I.L.; Harding, W.W. Synthesis and evaluation of aporphine analogs containing C1 allyl isosteres at the h5-HT2A receptor. Bioorg. Med. Chem. Lett., 2015, 25, 5102-5106.
[32]
Chaudhary, S.; Pecic, S.; LeGendre, O.; Harding, W.W. Microwave-assisted direct biaryl coupling: first application to the synthesis of aporphines. Tetrahedron Lett., 2009, 50, 2437-2439.
[33]
Indra, B.; Tadano, T.; Nakagawasai, O.; Arai, Y.; Yasuhara, H.; Ohizumi, Y. Suppressive effect of nantenine, isolated from Nandina domestica Thunberg. on the 5-hydroxy-L-tryptophan plus clorgyline-induced head-twitch response in mice. Life Sci., 2002, 70, 2647-2656.
[34]
Shoji, N.; Umeyama, A.; Takemoto, T.; Ohizumi, Y. Serotonergic Receptor Antagonist from Nandina domestica Thunberg. J. Pharm. Sci., 1984, 73, 568-570.
[35]
Ribeiro, R.D.A.; Garcez do Carmo, L.; Vladimirova, I.; Jurkiewicz, N.H.; Jurkiewicz, A. Nantenine blocks muscle contraction and Ca2+ transient induced by noradrenaline and K+ in rat vas deferens. Eur. J. Pharmacol., 2003, 470, 37-43.
[36]
Tsuchida, H.; Ohizumi, Y. (+)-Nantenine isolated from Nandina domestica Thunb. inhibits adrenergic pressor responses in pithed rats. Eur. J. Pharmacol., 2003, 477, 53-58.
[37]
Kaur, J.; Famta, P.; Famta, M.; Mehta, M.; Satija, S.; Sharma, N. Potential anti-epileptic phytoconstituents: An updated review. J. Ethnopharmacol., 2021, 268, 113565
[38]
Ribeiro, R de A. Rodríguez de Lores Arnaiz G. Nantenine and papaverine differentially modify synaptosomal membrane enzymes. Phytomedicine, 2000, 7, 313-323.
[39]
de A. Ribeiro R;Rodríguez de Lores Arnaiz G. In vitro dose dependent inverse effect of nantenine on synaptosomal membrane K+-p-NPPase activity. Phytomedicine, 2001, 8, 107-111.
[40]
Ribeiro, R.A.; Leite, J.R. Nantenine alkaloid presents anticonvulsant effect on two classical animal models. Phytomedicine, 2003, 10, 563-568.
[41]
Fantegrossi, WE; Kiessel, CL; Leach, PT; Martin, C; Van; Karabenick, RL; Chen, X Nantenine: an antagonist of the behavioral and physiological effects of MDMA in mice. Psychopharmacology (Berl.), 2004, 173, 270-277.
[42]
Kapadia, N; Harding, W. Aporphine Alkaloids as Ligands for Serotonin Receptors., 2016.
[43]
Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci., 2018, 14, 341-357.
[44]
Chen, J.; Gao, K.; Liu, T.; Zhao, H.; Wang, J.; Wu, H. Aporphine Alkaloids: A Kind of Alkaloids’ Extract Source, Chemical Constitution and Pharmacological Actions in Different Botany. Asian J. Chem., 2013, 25, 10015-10027.
[45]
Indra, B.; Matsunaga, K.; Hoshino, O.; Suzuki, M.; Ogasawara, H.; Ohizumi, Y. Structure–activity relationship studies with (±)-nantenine derivatives for α1-adrenoceptor antagonist activity. Eur. J. Pharmacol., 2002, 437, 173-178.
[46]
Chaudhary, S.; Pecic, S.; LeGendre, O.; Navarro, H.A.; Harding, W.W. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners. Bioorg. Med. Chem. Lett., 2009, 19, 2530-2532.
[47]
Ponnala, S.; Kapadia, N.; Navarro, H.A.; Harding, W.W. Aporphinoid Antagonists of 5-HT 2A Receptors: Further Evaluation of Ring A Substituents and the Size of Ring C. Chem. Biol. Drug Des., 2014, 84, 558-566.
[48]
Chaudhary, S.; Ponnala, S.; LeGendre, O.; Gonzales, J.A.; Navarro, H.A.; Harding, W.W. New aporphinoid 5-HT2A and α1A antagonists via structural manipulations of nantenine. Bioorg. Med. Chem., 2011, 19, 5861-5868.
[49]
Ponnala, S.; Gonzales, J.; Kapadia, N.; Navarro, H.A.; Harding, W.W. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: Identification of a new aporphine with 5-HT2A antagonist activity. Bioorg. Med. Chem. Lett., 2014, 24, 1664-1667.
[50]
Philipov, S.; Ivanovska, N.; Istatkova, R.; Velikova, M.; Tuleva, P. Phytochemical study and cytotoxic activity of alkaloids from Uvaria chamae P. Beauv. Pharmazie, 2000, 55, 688-689.
[51]
Qin, J; Zhang, S-Y; Zhang, Y-B; Chen, L-F; Chen, N-H; Wu, Z-N Two new isoquinoline alkaloids from the seeds of Nandina domestica. Nat. Prod. Res., 2021, 35, 3254-3260.
[52]
Sun, R.; Jiang, H.; Zhang, W.; Yang, K.; Wang, C.; Fan, L. Cytotoxicity of Aporphine, Protoberberine, and Protopine Alkaloids from Dicranostigma leptopodum (Maxim.) Fedde. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-6.
[53]
Ponnala, S.; Chaudhary, S.; González-Sarrias, A.; Seeram, N.P.; Harding, W.W. Cytotoxicity of aporphines in human colon cancer cell lines HCT-116 and Caco-2: An SAR study. Bioorg. Med. Chem. Lett., 2011, 21, 4462-4464.
[54]
Orallo, F. Acute Cardiovascular Effects of (+)-Nantenine, an Alkaloid Isolated from Platycapnos spicata, in Anaesthetised Normotensive Rats. Planta Med., 2004, 70, 117-126.
[55]
Ueki, T.; Akaishi, T.; Okumura, H.; Abe, K. Extract from Nandina domestica Inhibits Lipopolysaccharide-Induced Cyclooxygenase-2 Expression in Human Pulmonary Epithelial A549 Cells. Biol. Pharm. Bull., 2012, 35, 1041-1047.
[56]
Orallo, F.; Alzueta, A.F. Preliminary Study of the Vasorelaxant Effects of (+)-Nantenine, an Alkaloid Isolated from Platycapnos spicata, in Rat Aorta. Planta Med., 2001, 67, 800-806.
[57]
Indra, B.; Matsunaga, K.; Hoshino, O.; Suzuki, M.; Ogasawara, H.; Ishiguro, M. Structure–activity relationship on (±)-nantenine derivatives in antiserotonergic activities in rat aorta. Can. J. Physiol. Pharmacol., 2002, 80, 198-204.
[58]
LeGendre, O.; Pecic, S.; Chaudhary, S.; Zimmerman, S.M.; Fantegrossi, W.E.; Harding, W.W. Synthetic studies and pharmacological evaluations on the MDMA (‘Ecstasy’) antagonist nantenine. Bioorg. Med. Chem. Lett., 2010, 20, 628-631.
[59]
Ueki, T.; Akaishi, T.; Okumura, H.; Morioka, T.; Abe, K. Biphasic Tracheal Relaxation Induced by Higenamine and Nantenine From Nandina domestica THUNBERG. J. Pharmacol. Sci., 2011, 115, 254-257.
[60]
Orallo, F. Pharmacological Effects of (+)-Nantenine, an Alkaloid Isolated From Platycapnos spicata, in Several Rat Isolated Tissues. Planta Med., 2003, 69, 135-142.
[61]
Tsukiyama, M.; Akaishi, T.; Ueki, T.; Okumura, H.; Abe, K. The Extract from Nandina domestica THUNBERG Inhibits Histamine- and Serotonin-Induced Contraction in Isolated Guinea Pig Trachea. Biol. Pharm. Bull., 2007, 30, 2063-2068.
[62]
Correa, J; Ríos, C; del Rosario Castillo, A; Romero, L; Ortega-Barría, E; Coley, P Minor Alkaloids From Guatteria dumetorum with Antileishmanial Activity. Planta Med., 2006, 72, 270-272.
[63]
Kiryakov, H.; Iskrenova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids from Corydalis bulbosa. Planta Med., 1981, 43, 51-55.
[64]
Kiryakov, H.; Iskrenova, E.; Daskalova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids of Corydalis slivenensis. Planta Med., 1982, 44, 168-170.
[65]
Peng, C-Y.; Liu, J-Q.; Zhang, R.; Shu, J-C. A new alkaloid from the fruit of Nandina domestica Thunb. Nat. Prod. Res., 2014, 28, 1159-1164.
[66]
Kiryakov, H.; Iskrenova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids from Corydalis marschalliana. Planta Med., 1981, 41, 298-302.
[67]
Lall, N.; Kishore, N.; Bodiba, D.; More, G.; Tshikalange, E.; Kikuchi, H. Alkaloids from aerial parts of Annona senegalensis against Streptococcus mutans. Nat. Prod. Res., 2017, 31, 1944-1947.
[68]
Iwasa, K.; Takahashi, T.; Nishiyama, Y.; Moriyasu, M.; Sugiura, M.; Takeuchi, A. Online Structural Elucidation of Alkaloids and Other Constituents in Crude Extracts and Cultured Cells of Nandina domestica by Combination of LC-MS/MS, LC-NMR, and LC-CD Analyses. J. Nat. Prod., 2008, 71, 1376-1385.
[69]
Hu, T.; Zhang, X.; Ma, S.; Cheng, Y.; Yao, X. Zhongguo Zhongyao Zazhi, 2009, 34, 1917-1920. [Chemical constituents from Corydalis yanhusuo
[70]
Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem., 2021, 226, 113839
[71]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health Benefits of Furanocoumarins ‘Psoralidin’ An Active Phytochemical of Psoralea corylifolia: The Present, Past and Future Scenario. Curr. Bioact. Compd., 2019, 15, 369-376.
[72]
Patel, K.; Singh, G.K.; Patel, D.K. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin. J. Integr. Med., 2018, 24, 551-560.
[73]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7, 360-366.
[74]
Patel, D.K.; Patel, K. Potential therapeutic applications of Eudesmin in medicine: An overview on Medicinal importance, Pharmacological Activities and analytical prospects. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 100175.
[75]
Patel, D.K. Biological Importance, Therapeutic Benefit, and Medicinal Importance of Flavonoid, Cirsiliol for the Development of Remedies against Human Disorders. Curr. Bioact. Compd., 2022, 18.
[76]
Alyami, H.S.; Orabi, M.A.A.; Aldhabbah, F.M.; Alturki, H.N.; Aburas, W.I.; Alfayez, A.I. Knowledge about COVID-19 and beliefs about and use of herbal products during the COVID-19 pandemic: A cross-sectional study in Saudi Arabia. Saudi Pharm. J., 2020, 28, 1326-1332.
[77]
Jung, J.; Hermanns-Clausen, M.; Weinmann, W. Anorectic sibutramine detected in a Chinese herbal drug for weight loss. Forensic Sci. Int., 2006, 161, 221-222.
[78]
Patel, D.K. Biological Importance, Therapeutic Benefit and Analytical Aspects of Bioactive Flavonoid Pectolinarin in the Nature. Drug Metab. Lett., 2021, 14, 117-125.
[79]
Patel, D.K. Biological Importance of a Biflavonoid ‘Bilobetin’ in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects. Infect. Disord. Drug Targets, 2022, 22.
[80]
WU X-M;XU J-Y. Current natural products with antihypertensive activity. Chin. J. Nat. Med., 2015, 13, 721-729.