Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave-assisted Synthesis of Heterocycles and their Anti-cancer Activities

Author(s): Sasadhar Majhi* and Pankaj Kumar Mondal

Volume 10, Issue 2, 2023

Published on: 12 October, 2023

Page: [135 - 154] Pages: 20

DOI: 10.2174/0122133356264446230925173123

Price: $65

Abstract

One of the most efficient non-conventional heating methods is microwave irradiation. In organic synthesis, microwave irradiation has become a popular heating technique as it enhances product yields and purities, reduces reaction time from hours to minutes, and decreases unwanted side reactions. Microwave-assisted organic synthesis utilizes dielectric volumetric heating as an alternative activation method, which results in rapid and more selective transformations because of the uniform heat distribution. Heterocyclic compounds have a profound role in the drug discovery and development process along with their applications as agrochemicals, fungicides, herbicides, etc., making them the most prevalent form of biologically relevant molecules. Hence, enormous efforts have been made to flourish green routes for their high-yielding synthesis under microwave irradiation as a sustainable tool. Among the different clinical applications, heterocyclic compounds have received considerable attention as anti-cancer agents. Heterocyclic moieties have always been core parts of the development of anti-cancer drugs, including market-selling drugs, i.e., 5-fluorouracil, doxorubicin, methotrexate, daunorubicin, etc., and natural alkaloids, such as vinblastine and vincristine. In this review, we focus on the developments in the microwave-assisted synthesis of heterocycles and the anti-cancer activities of particular heterocycles.

Graphical Abstract

[1]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[2]
Bazureau, J.P.; Paquin, L.; Carrié, D.; L’Helgoual’ch, J.M.; Guihéneuf, S.; Coulibaly, K.W.; Burgy, G.; Komaty, S.; Limanton, E. Microwaves in heterocyclic chemistry.In: Microwaves in Organic Synthesis; Wiley‐VCH Verlag GmbH & Co. KGaA,, 2012, pp. 673-735.
[http://dx.doi.org/10.1002/9783527651313.ch16]
[3]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[4]
Virkutyte, J.; Varma, R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. (Camb.), 2011, 2(5), 837-846.
[http://dx.doi.org/10.1039/C0SC00338G]
[5]
Hayden, S.; Damm, M.; Kappe, C.O. On the importance of accurate internal temperature measurements in the microwave dielectric heating of viscous systems and polymer synthesis. Macromol. Chem. Phys., 2013, 214(4), 423-434.
[http://dx.doi.org/10.1002/macp.201200449]
[6]
Mishra, R.R.; Sharma, A.K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos., Part A Appl. Sci. Manuf., 2016, 81, 78-97.
[http://dx.doi.org/10.1016/j.compositesa.2015.10.035]
[7]
Vanier, G.S. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM). Methods Mol. Biol., 2013, 1047, 235-249.
[http://dx.doi.org/10.1007/978-1-62703-544-6_17] [PMID: 23943491]
[8]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[9]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[10]
Lew, A.; Krutzik, P.O.; Hart, M.E.; Chamberlin, A.R. Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem., 2002, 4(2), 95-105.
[http://dx.doi.org/10.1021/cc010048o] [PMID: 11886281]
[11]
Rodríguez, A.M.; Prieto, P.; de la Hoz, A.; Díaz-Ortiz, Á.; Martín, D.R.; García, J.I. Influence of polarity and activation energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen, 2015, 4(3), 308-317.
[http://dx.doi.org/10.1002/open.201402123] [PMID: 26246993]
[12]
Hu, X.L.; He, Q.W.; Long, H.; Zhang, L.X.; Wang, R.; Wang, B.L.; Feng, J.H.; Wang, Q.; Hou, J.Q.; Zhang, X.Q.; Ye, W.C.; Wang, H. Synthesis and biological evaluation of celastrol derivatives with improved cytotoxic selectivity and antitumor activities. J. Nat. Prod., 2021, 84(7), 1954-1966.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00262] [PMID: 34170694]
[13]
Ren, Q.; Li, M.; Deng, Y.; Lu, A.; Lu, J. Triptolide delivery: Nanotechnology-based carrier systems to enhance efficacy and limit toxicity. Pharmacol. Res., 2021, 165, 105377.
[http://dx.doi.org/10.1016/j.phrs.2020.105377] [PMID: 33484817]
[14]
Majhi, S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem., 2021, 25(9), 1047-1069.
[http://dx.doi.org/10.2174/1385272825666210303112302]
[15]
Majhi, S. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review. Anticancer. Agents Med. Chem., 2022, 22(19), 3219-3238.
[http://dx.doi.org/10.2174/1871520621666211015142310] [PMID: 34779372]
[16]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78, 131801.
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[17]
Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem., 2021, 77, 105665.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105665] [PMID: 34298310]
[18]
Majhi, S. Applications of Norrish type I and II reactions in the total synthesis of natural products: A review. Photochem. Photobiol. Sci., 2021, 20(10), 1357-1378.
[http://dx.doi.org/10.1007/s43630-021-00100-3] [PMID: 34537894]
[19]
Majhi, S. Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products. ChemistrySelect, 2021, 6(17), 4178-4206.
[http://dx.doi.org/10.1002/slct.202100206]
[20]
Majhi, S. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects-A decade update. ChemistrySelect, 2020, 5(40), 12450-12464.
[http://dx.doi.org/10.1002/slct.202002836]
[21]
Sinha, K.; Chowdhury, S.; Banerjee, S.; Mandal, B.; Mandal, M.; Majhi, S.; Brahmachari, G.; Ghosh, J.; Sil, P.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon, 2019, 5(8), e02107.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02107]
[22]
Majhi, S.; Saha, I. Visible Light-promoted Synthesis of Bioactive N, N-heterocycles. Curr. Green Chem., 2022, 9(3), 127-144.
[http://dx.doi.org/10.2174/2213346110666221223141323]
[23]
Majhi, S. Synthesis of bioactive natural products and their analogs at room temperature-an update. Phys. Sci. Rev., 2022.
[http://dx.doi.org/10.1515/psr-2021-0094]
[24]
Majhi, S. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules., Phys. Sci. Rev., 2022, 2022
[http://dx.doi.org/10.1515/psr-2021-0216]
[25]
Majhi, S. Applications of nanoparticles in organic synthesis under ultrasonication. In: Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability; Elsevier, 2023;, pp. 279-315.
[26]
Das, D.; Majhi, S. Nanoparticles in multicomponent reactions toward green organic synthesis. In: Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability; Elsevier, 2023;, pp. 75-102.
[27]
Dey, A.K.; Majhi, S. Samarium(III) triflate in organic synthesis: A mild and efficient catalyst. ChemistrySelect, 2023, 8(18), e202300156.
[http://dx.doi.org/10.1002/slct.202300156]
[28]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[29]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem., 2022, 4, 100606.
[http://dx.doi.org/10.1016/j.rechem.2022.100606]
[30]
Sharma, S.; Kumar, D.; Singh, G.; Monga, V.; Kumar, B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur. J. Med. Chem., 2020, 200, 112438.
[http://dx.doi.org/10.1016/j.ejmech.2020.112438] [PMID: 32485533]
[31]
Dawoud, N.T.A.; El-Fakharany, E.M.; Abdallah, A.E.; El-Gendi, H.; Lotfy, D.R. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci. Rep., 2022, 12(1), 3424.
[http://dx.doi.org/10.1038/s41598-022-07456-1] [PMID: 35236889]
[32]
Hosseinzadeh, Z.; Ramazani, A.; Razzaghi-Asl, N. Anti-cancer nitrogen-containing heterocyclic compounds. Curr. Org. Chem., 2018, 22(23), 2256-2279.
[http://dx.doi.org/10.2174/1385272822666181008142138]
[33]
Abdallah, A.E.; Eissa, S.I.; Al Ward, M.M.S.; Mabrouk, R.R.; Mehany, A.B.M.; El-Zahabi, M.A. Design, synthesis and molecular modeling of new quinazolin-4(3H)-one based VEGFR-2 kinase inhibitors for potential anticancer evaluation. Bioorg. Chem., 2021, 109, 104695.
[http://dx.doi.org/10.1016/j.bioorg.2021.104695] [PMID: 33647743]
[34]
Rodrigues, M.O.; Eberlin, M.N.; Neto, B.A.D. How and why to investigate multicomponent reactions mechanisms? A critical review. Chem. Rec., 2021, 21(10), 2762-2781.
[http://dx.doi.org/10.1002/tcr.202000165] [PMID: 33538117]
[35]
Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
[36]
Borah, P.; Borah, G.; Nath, A.C.; Latif, W.; Banik, B.K. Facile multicomponent mannich reaction towards biologically active compounds. ChemistrySelect, 2023, 8(4), e202203758.
[http://dx.doi.org/10.1002/slct.202203758]
[37]
Bosica, G.; Cachia, F.; De Nittis, R.; Mariotti, N. Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction. Molecules, 2021, 26(12), 3753.
[http://dx.doi.org/10.3390/molecules26123753] [PMID: 34202951]
[38]
Burckhardt, G.; Walter, A.; Triebel, H.; Störl, K.; Simon, H.; Störl, J.; Opitz, A.; Roemer, E.; Zimmer, C. Binding of 2-azaanthraquinone derivatives to DNA and their interference with the activity of DNA topoisomerases in vitro. Biochemistry, 1998, 37(14), 4703-4711.
[http://dx.doi.org/10.1021/bi9724220] [PMID: 9537985]
[39]
Barasch, D.; Zipori, O.; Ringel, I.; Ginsburg, I.; Samuni, A.; Katzhendler, J. Novel anthraquinone derivatives with redox-active functional groups capable of producing free radicals by metabolism: Are free radicals essential for cytotoxicity? Eur. J. Med. Chem., 1999, 34(7-8), 597-615.
[http://dx.doi.org/10.1016/S0223-5234(00)80029-X] [PMID: 11278045]
[40]
Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol., 2017, 30(1), 13-37.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00256] [PMID: 27617882]
[41]
Nguyen, H.T.; Nguyen Thi, Q.G.; Nguyen Thi, T.H.; Thi, P.H.; Le-Nhat-Thuy, G.; Dang Thi, T.A.; Le-Quang, B.; Pham-The, H.; Van Nguyen, T. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. RSC Advances, 2022, 12(34), 22004-22019.
[http://dx.doi.org/10.1039/D2RA03312G] [PMID: 36043070]
[42]
Sakya, S.M.; Cheng, H.; Lundy DeMello, K.M.; Shavnya, A.; Minich, M.L.; Rast, B.; Dutra, J.; Li, C.; Rafka, R.J.; Koss, D.A.; Li, J.; Jaynes, B.H.; Ziegler, C.B.; Mann, D.W.; Petras, C.F.; Seibel, S.B.; Silvia, A.M.; George, D.M.; Hickman, A.; Haven, M.L.; Lynch, M.P. 5-Heteroatom-substituted pyrazoles as canine COX-2 inhibitors: Part 2. Structure-activity relationship studies of 5-alkylethers and 5-thioethers. Bioorg. Med. Chem. Lett., 2006, 16(5), 1202-1206.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.110] [PMID: 16380252]
[43]
Kasımoğulları, R.; Bülbül, M.; Arslan, B.S.; Gökçe, B. Synthesis, characterization and antiglaucoma activity of some novel pyrazole derivatives of 5-amino-1,3,4-thiadiazole-2-sulfonamide. Eur. J. Med. Chem., 2010, 45(11), 4769-4773.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.041] [PMID: 20724038]
[44]
Koca, İ.; Özgür, A.; Coşkun, K.A.; Tutar, Y. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorg. Med. Chem., 2013, 21(13), 3859-3865.
[http://dx.doi.org/10.1016/j.bmc.2013.04.021] [PMID: 23664495]
[45]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem., 2013, 70, 740-749.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.042] [PMID: 24231309]
[46]
Gomha, S.M.; Edrees, M.M.; Faty, R.A.M.; Muhammad, Z.A.; Mabkhot, Y.N. Microwave-assisted one pot three-component synthesis of some novel pyrazole scaffolds as potent anticancer agents. Chem. Cent. J., 2017, 11(1), 37.
[http://dx.doi.org/10.1186/s13065-017-0266-4] [PMID: 29086808]
[47]
Raimondi, M.V.; Presentato, A.; Li Petri, G.; Buttacavoli, M.; Ribaudo, A.; De Caro, V.; Alduina, R.; Cancemi, P. New synthetic nitro-pyrrolomycins as promising antibacterial and anticancer agents. Antibiotics, 2020, 9(6), 292.
[http://dx.doi.org/10.3390/antibiotics9060292] [PMID: 32486200]
[48]
Carter, G.T.; Nietsche, J.A.; Goodman, J.J.; Torrey, M.J.; Dunne, T.S.; Borders, D.B.; Testa, R.T. LL-F42248.ALPHA., a novel chlorinated pyrrole antibiotic. J. Antibiot., 1987, 40(2), 233-236.
[http://dx.doi.org/10.7164/antibiotics.40.233] [PMID: 3570973]
[49]
Barreca, M.; Buttacavoli, M.; Di Cara, G.; D’Amico, C.; Peri, E.; Spanò, V.; Li Petri, G.; Barraja, P.; Raimondi, M.V.; Cancemi, P.; Montalbano, A. Exploring the anticancer activity and the mechanism of action of pyrrolomycins F obtained by microwave-assisted total synthesis. Eur. J. Med. Chem., 2023, 253, 115339.
[http://dx.doi.org/10.1016/j.ejmech.2023.115339] [PMID: 37054631]
[50]
Gaggero, N.; Pandini, S. Advances in chemoselective intermolecular cross-benzoin-type condensation reactions. Org. Biomol. Chem., 2017, 15(33), 6867-6887.
[http://dx.doi.org/10.1039/C7OB01662J] [PMID: 28809427]
[51]
Martina, K.; Cravotto, G.; Varma, R.S. Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up. J. Org. Chem., 2021, 86(20), 13857-13872.
[http://dx.doi.org/10.1021/acs.joc.1c00865] [PMID: 34125541]
[52]
Wong, X.K.; Yeong, K.Y. A patent review on the current developments of benzoxazoles in drug discovery. ChemMedChem, 2021, 16(21), 3237-3262.
[http://dx.doi.org/10.1002/cmdc.202100370] [PMID: 34289258]
[53]
Hue, B.T.B.; Suong, T.T.D.; De, T.Q. Solvent free, microwave-assisted synthesis and cytotoxicity evaluation of benzoxazole derivatives. Sci Tech Dev J., 2022, 25, 2594-2599.
[54]
Johnson, W.S.; Jones, A.R.; Schneider, W.P. The stobbe condensation with ethyl γ-anisoylbutyrate. A new route to some estrone intermediates. J. Am. Chem. Soc., 1950, 72(6), 2395-2401.
[http://dx.doi.org/10.1021/ja01162a013]
[55]
Devkota, L.; Lin, C.M.; Strecker, T.E.; Wang, Y.; Tidmore, J.K.; Chen, Z.; Guddneppanavar, R.; Jelinek, C.J.; Lopez, R.; Liu, L.; Hamel, E.; Mason, R.P.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Bioorg. Med. Chem., 2016, 24(5), 938-956.
[http://dx.doi.org/10.1016/j.bmc.2016.01.007] [PMID: 26852340]
[56]
Ibrahim, S.R.M.; Mohamed, G.A. Naturally occurring naphthalenes: Chemistry, biosynthesis, structural elucidation, and biological activities. Phytochem. Rev., 2016, 15(2), 279-295.
[http://dx.doi.org/10.1007/s11101-015-9413-5]
[57]
Canh Pham, E.; Truong, T.N. Design, microwave-assisted synthesis, antimicrobial and anticancer evaluation, and in silico studies of some 2-naphthamide derivatives as DHFR and VEGFR-2 inhibitors. ACS Omega, 2022, 7(37), 33614-33628.
[http://dx.doi.org/10.1021/acsomega.2c05206] [PMID: 36157776]
[58]
Obora, Y. Recent advances in α - alkylation reactions using alcohols with hydrogen borrowing methodologies. ACS Catal., 2014, 4(11), 3972-3981.
[http://dx.doi.org/10.1021/cs501269d]
[59]
Wang, H.H.; Li, Z.; Feng, Y.Y.; Yin, G.F.; Shi, T.; He, D.; Wang, X.D.; Wang, Z. Application of Pd-catalyzed C-H alkylation reaction in total syntheses of twelve amicoumacin-type natural products. Org. Lett., 2021, 23(17), 6956-6960.
[http://dx.doi.org/10.1021/acs.orglett.1c02576] [PMID: 34424725]
[60]
Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem., 2011, 46(8), 3179-3189.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.013] [PMID: 21620536]
[61]
Andac, C.A. Facile microwave synthesis of a novel phenothiazine derivative and its cytotoxic activity. Organic Communications, 2020, 13(4), 175-183.
[http://dx.doi.org/10.25135/acg.oc.86.20.10.1853]
[62]
Wentrup, C.; Mirzaei, M.S.; Kvaskoff, D.; Taherpour, A.A. When a “dimroth rearrangement” is not a dimroth rearrangement. J. Org. Chem., 2021, 86(12), 8286-8294.
[http://dx.doi.org/10.1021/acs.joc.1c00730] [PMID: 34077230]
[63]
Carvalho, M.A.; Esperança, S.; Esteves, T.; Proença, M.F. An efficient synthesis of 7,8-dihydropyrimido[5,4-d]pyrimidines. Eur. J. Org. Chem., 2007, 2007(8), 1324-1331.
[http://dx.doi.org/10.1002/ejoc.200600883]
[64]
Cheng, X.; Lv, X.; Qu, H.; Li, D.; Hu, M.; Guo, W.; Ge, G.; Dong, R. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1. Acta Pharm. Sin. B, 2017, 7(6), 657-664.
[http://dx.doi.org/10.1016/j.apsb.2017.07.004] [PMID: 29159025]
[65]
Brocklesby, K.L.; Waby, J.S.; Cawthorne, C.; Smith, G. An alternative synthesis of Vandetanib (Caprelsa™) via a microwave accelerated Dimroth rearrangement. Tetrahedron Lett., 2017, 58(15), 1467-1469.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.082] [PMID: 28413233]
[66]
Batchelor, T.T.; Gerstner, E.R.; Ye, X.; Desideri, S.; Duda, D.G.; Peereboom, D.; Lesser, G.J.; Chowdhary, S.; Wen, P.Y.; Grossman, S.; Supko, J.G. Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-β tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Neuro-oncol., 2017, 19(4), 567-575.
[PMID: 27663390]
[67]
Habib, N.S.; Soliman, R.; El-Tombary, A.A.; El-Hawash, S.A.; Shaaban, O.G. Synthesis and biological evaluation of novel series of thieno[2,3-d]pyrimidine derivatives as anticancer and antimicrobial agents. Med. Chem. Res., 2013, 22(7), 3289-3308.
[http://dx.doi.org/10.1007/s00044-012-0324-3]
[68]
Han, Q.; Yin, Z.; Sui, J.; Wang, Q.; Sun, Y. A microwave-enhanced synthesis and biological evaluation of N-Aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amines. J. Braz. Chem. Soc., 2019, 30, 1483-1497.
[http://dx.doi.org/10.21577/0103-5053.20190044]
[69]
Loidreau, Y.; Dubouilh-Benard, C.; Marchand, P.; Nourrisson, M.R.; Duflos, M.; Buquet, C.; Corbière, C.; Besson, T. Efficient new synthesis of n -arylbenzo[ b ]furo[3,2- d ]pyrimidin-4-amines and their benzo[ b ]thieno[3,2- d ]pyrimidin-4-amine analogues via a microwave-assisted dimroth rearrangement. J. Heterocycl. Chem., 2013, 50. [n/a].
[http://dx.doi.org/10.1002/jhet.1716]
[70]
Yadav, G.D.; Wagh, D.P. Claisen-schmidt condensation using green catalytic processes: A critical review. ChemistrySelect, 2020, 5(29), 9059-9085.
[http://dx.doi.org/10.1002/slct.202001737]
[71]
Kshatriya, R.; Jejurkar, V.P.; Saha, S. In memory of Prof. Venkataraman: Recent advances in the synthetic methodologies of flavones. Tetrahedron, 2018, 74(8), 811-833.
[http://dx.doi.org/10.1016/j.tet.2017.12.052]
[72]
Jaiswal, P.; Pathak, D.P.; Bansal, H.; Agarwal, U. Chalcone and their heterocyclic analogue: A review article. J. Chem. Pharm. Res., 2018, 10, 160-173.
[73]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[74]
Reddy, N.P.; Aparoy, P.; Reddy, T.C.M.; Achari, C.; Sridhar, P.R.; Reddanna, P. Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5807-5815.
[http://dx.doi.org/10.1016/j.bmc.2010.06.107] [PMID: 20667741]
[75]
Won, S.J.; Liu, C.T.; Tsao, L.T.; Weng, J.R.; Ko, H.H.; Wang, J.P.; Lin, C.N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur. J. Med. Chem., 2005, 40(1), 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.006] [PMID: 15642415]
[76]
Domínguez, J.; Charris, J.E.; Lobo, G.; Gamboa de Domínguez, N.; Moreno, M.M.; Riggione, F.; Sanchez, E.; Olson, J.; Rosenthal, P.J. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Eur. J. Med. Chem., 2001, 36(6), 555-560.
[http://dx.doi.org/10.1016/S0223-5234(01)01245-4] [PMID: 11525846]
[77]
Sivakumar, P.M.; Geetha Babu, S.K.; Mukesh, D. QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using genetic function approximation (GFA) method. Chem. Pharm. Bull. (Tokyo), 2007, 55(1), 44-49.
[http://dx.doi.org/10.1248/cpb.55.44] [PMID: 17202700]
[78]
Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O., IV. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem., 2016, 24(12), 2768-2776.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[79]
Nielsen, S.F.; Christensen, S.B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. Antileishmanial chalcones: Statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis. J. Med. Chem., 1998, 41(24), 4819-4832.
[http://dx.doi.org/10.1021/jm980410m] [PMID: 9822551]
[80]
Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res., 2015, 6(3), 114-117.
[http://dx.doi.org/10.4103/2231-4040.161507] [PMID: 26317075]
[81]
Al-Hazam, H.A.; Al-Shamkani, Z.A.; Al-Masoudia, N.A.; Saeed, B.A.; Pannecouque, C. New chalcones and thiopyrimidine analogues derived from mefenamic acid: Microwave-assisted synthesis, anti-HIV activity and cytotoxicity as antileukemic agents; De Gruyter, 2017.
[http://dx.doi.org/10.1515/znb-2016-0223]
[82]
Efimov, I.V.; Zhilyaev, D.I.; Kulikova, L.N.; Voskressensky, L.G. Cycloaddition reactions of enamines. Eur. J. Org. Chem., 2023, 26(14), e202201450.
[http://dx.doi.org/10.1002/ejoc.202201450]
[83]
Rohling, R.Y.; Tranca, I.C.; Hensen, E.J.M.; Pidko, E.A. Mechanistic Insight into the [4 + 2] Diels-Alder Cycloaddition over First Row d-Block Cation-Exchanged Faujasites. ACS Catal., 2019, 9(1), 376-391.
[http://dx.doi.org/10.1021/acscatal.8b03482] [PMID: 30775064]
[84]
Zou, X.J.; Zhang, S.W.; Liu, Y.; Liu, Z.M.; Gao, J.W.; Song, Q.L.; Pan, Y.; Zhang, J.Z.; Li, X.J. Anti-tumor metastasis and crystal structure of n1-(1,3,4-thiadiazole-2-yl)-N3-m-chlorobenzoyl-urea. Chin. J. Struct. Chem., 2011, 30, 1001-1005.
[85]
Tiwari, S.; Siddiqui, S.; Seijas, J.; Vazquez-Tato, M.; Sarkate, A.; Lokwani, D.; Nikalje, A. Microwave-assisted facile synthesis, anticancer evaluation and docking study of N-((5-(Substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl)benzamide derivatives. Molecules, 2017, 22(6), 995.
[http://dx.doi.org/10.3390/molecules22060995] [PMID: 28617341]
[86]
Sghairi, D.; Romdhani-Younes, M.; Guilloteau, V.; Petrignet, J.; Thibonnet, J. Total synthesis of enhygrolide A and analogs. Tetrahedron Lett., 2020, 61(16), 151786.
[http://dx.doi.org/10.1016/j.tetlet.2020.151786]
[87]
Tykwinski, R.R. Evolution in the palladium-catalyzed cross-coupling of sp- and sp2-hybridized carbon atoms. Angew. Chem. Int. Ed., 2003, 42(14), 1566-1568.
[http://dx.doi.org/10.1002/anie.200201617] [PMID: 12698450]
[88]
Mohajer, F.; Heravi, M.M.; Zadsirjan, V.; Poormohammad, N. Copper-free Sonogashira cross-coupling reactions: An overview. RSC Advances, 2021, 11(12), 6885-6925.
[http://dx.doi.org/10.1039/D0RA10575A] [PMID: 35423221]
[89]
Manta, S.; Kiritsis, C.; Dimopoulou, A.; Parmenopoulou, V.; Kollatos, N.; Tsotinis, A.; Komiotis, D. Unsaturation: An important structural feature to nucleosides’ antiviral activity. Antiinfect. Agents, 2014, 12(1), 2-57.
[http://dx.doi.org/10.2174/22113525113119990106]
[90]
Vivet-Boudou, V.; Isel, C.; Sleiman, M.; Smyth, R.; Ben Gaied, N.; Barhoum, P.; Laumond, G.; Bec, G.; Götte, M.; Mak, J.; Aubertin, A.M.; Burger, A.; Marquet, R. 8-Modified-2′-deoxyadenosine analogues induce delayed polymerization arrest during HIV-1 reverse transcription. PLoS One, 2011, 6(11), e27456.
[http://dx.doi.org/10.1371/journal.pone.0027456] [PMID: 22087320]
[91]
Dimopoulou, A.; Manta, S.; Parmenopoulou, V.; Kollatos, N.; Christidou, O.; Triantakonstanti, V.V.; Schols, D.; Komiotis, D. An easymicrowave-assisted synthesis of C8-alkynyl adenine pyranonucleosides as novel cytotoxic antitumor agents. Front Chem., 2015, 3, 21.
[http://dx.doi.org/10.3389/fchem.2015.00021] [PMID: 25853123]
[92]
Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[http://dx.doi.org/10.1021/acs.chemrev.7b00246] [PMID: 28535681]
[93]
Docherty, K.M.; Kulpa, C.F., Jr Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem., 2005, 7(4), 185-189.
[http://dx.doi.org/10.1039/b419172b]
[94]
Stasiewicz, M.; Mulkiewicz, E.; Tomczak-Wandzel, R.; Kumirska, J.; Siedlecka, E.M.; Gołebiowski, M.; Gajdus, J.; Czerwicka, M.; Stepnowski, P. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol. Environ. Saf., 2008, 71(1), 157-165.
[http://dx.doi.org/10.1016/j.ecoenv.2007.08.011] [PMID: 17915319]
[95]
Fortunati, A.; Risplendi, F.; Re Fiorentin, M.; Cicero, G.; Parisi, E.; Castellino, M.; Simone, E.; Iliev, B.; Schubert, T.J.S.; Russo, N.; Hernández, S. Understanding the role of imidazolium-based ionic liquids in the electrochemical CO2 reduction reaction. Commun. Chem., 2023, 6(1), 84.
[http://dx.doi.org/10.1038/s42004-023-00875-9] [PMID: 37120643]
[96]
Gwan-Hong, M.; Tae-eun, Y.; Hyun-Yeong, L.; Dal-Ho, H.; Eun-joo, L.; Jun-young, M.; Seung, M.O.; Young-Gyu, K. Synthesis and properties of ionic liquids: Imidazolium tetrafluoroborates with unsaturated side chains. Bull. Korean Chem. Soc., 2006, 27(6), 847-852.
[http://dx.doi.org/10.5012/bkcs.2006.27.6.847]
[97]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[98]
Alqurashy, B.A. Ecofriendly microwave-assisted preparation, characterization and antitumor activity of some propylimidazolium-based Ionic liquids derivatives. J. Taibah Univ. Sci., 2020, 14(1), 1457-1462.
[http://dx.doi.org/10.1080/16583655.2020.1829395]
[99]
Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett., 2012, 53(35), 4687-4691.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.086]
[100]
Roopan, S.M.; Bharathi, A.; Priya, D.D. Microwave assisted synthesis and its cytotoxicity study of 4H-Pyrano[2,3-a]acridine-3-carbonitrile intermediate: Experiment design for optimization using response surface methodology. Proceedings., 2019, 41, 12.
[101]
Kumari, M.; Gupta, S.K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP) - An endeavor to diminish probable cancer risk. Sci. Rep., 2019, 9(1), 18339.
[http://dx.doi.org/10.1038/s41598-019-54902-8] [PMID: 31797998]
[102]
Segovia, C.; Lebrêne, A.; Levacher, V.; Oudeyer, S.; Brière, J.F. Enantioselective catalytic transformations of barbituric acid derivatives. Catalysts, 2019, 9(2), 131.
[http://dx.doi.org/10.3390/catal9020131]
[103]
Liao, Y.J.; Hsu, S.M.; Chien, C.Y.; Wang, Y.H.; Hsu, M.H.; Suk, F.M. Treatment with a new barbituric acid derivative exerts antiproliferative and antimigratory effects against sorafenib resistance in hepatocellular carcinoma. Molecules, 2020, 25(12), 2856.
[http://dx.doi.org/10.3390/molecules25122856] [PMID: 32575795]
[104]
Liu, H-J.; Huang, X.; Shen, Q-K.; Deng, H.; Li, Z.; Quan, Z-S. Design, synthesis, and anticancer activity evaluation of hybrids of azoles and barbituric acids. Iran. J. Pharm. Res., 2021, 20(2), 144-155.
[PMID: 34567152]
[105]
Khatun, M.K.; Al-Reza, S.M.; Sattar, M.A. Synthesis of bioactive barbituric acid derivatives using microwave irradiation method. Int. J. Adv. Res. Chem. Sci., 2016, 3, 21-26.
[106]
Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1132-1148.
[http://dx.doi.org/10.1080/21691401.2019.1573824] [PMID: 30942110]
[107]
Mermer, A. The importance of rhodanine scaffold in medicinal chemistry: A comprehensive overview. Mini Rev. Med. Chem., 2021, 21(6), 738-789.
[http://dx.doi.org/10.2174/1389557521666201217144954] [PMID: 33334286]
[108]
Harshitharaj, P.K.; Kumar, R.; Ravi, S. Synthesis, cytotoxic activity and molecular docking study of Bis-Rhodanine derivative. J. Chem. Pharm. Sci., 2016, 9, 2478.
[109]
Wenglowsky, S.; Ahrendt, K.A.; Buckmelter, A.J.; Feng, B.; Gloor, S.L.; Gradl, S.; Grina, J.; Hansen, J.D.; Laird, E.R.; Lunghofer, P.; Mathieu, S.; Moreno, D.; Newhouse, B.; Ren, L.; Risom, T.; Rudolph, J.; Seo, J.; Sturgis, H.L.; Voegtli, W.C.; Wen, Z. Pyrazolopyridine inhibitors of B-RafV600E. Part 2: Structure-activity relationships. Bioorg. Med. Chem. Lett., 2011, 21(18), 5533-5537.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.097] [PMID: 21802293]
[110]
Patil, S.G.; Bhadke, V.V.; Bagul, R.R. Synthesis of pyrazolo [3,4-b] pyridines using basic ionic liquid [bmIm]OH. J. Chem. Pharm. Res., 2012, 4, 2751-2754.
[111]
Dipti, K.D.; Amit, R.T.; Vipul, B.K.; Viresh, H.S. Advances in the synthesis of pyrazolo[3,4-b]pyridines. Curr. Org. Chem., 2012, 16, 400-417.
[http://dx.doi.org/10.2174/138527212799499912]
[112]
Abu-Hashem, A.A.; Gouda, M.A. Synthesis, anti-inflammatory and analgesic evaluation of certain new 3a,4,9,9a-tetrahydro-4,9-benzenobenz[f]isoindole-1,3-diones. Arch. Pharm., 2011, 344(8), 543-551.
[http://dx.doi.org/10.1002/ardp.201100020] [PMID: 21681809]
[113]
Tuccinardi, T.; Zizzari, A.T.; Brullo, C.; Daniele, S.; Musumeci, F.; Schenone, S.; Trincavelli, M.L.; Martini, C.; Martinelli, A.; Giorgi, G.; Botta, M. Substituted pyrazolo[3,4-b]pyridines as human A1 adenosine antagonists: Developments in understanding the receptor stereoselectivity. Org. Biomol. Chem., 2011, 9(12), 4448-4455.
[http://dx.doi.org/10.1039/c0ob01064b] [PMID: 21390354]
[114]
Hassaneen, H.M.E. Chemistry of the enaminone of 1-acetylnaphthalene under microwave irradiation using chitosan as a green catalyst. Molecules, 2011, 16(1), 609-623.
[http://dx.doi.org/10.3390/molecules16010609] [PMID: 21242941]
[115]
El-Borai, M.A.; Rizk, H.F.; Beltagy, D.M.; El-Deeb, I.Y. Microwave-assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities. Eur. J. Med. Chem., 2013, 66, 415-422.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.043] [PMID: 23831694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy