Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave-Assisted Synthesis of Biologically Relevant Six-Membered N-Heterocycles

Author(s): Monika Kamboj*, Sangeeta Bajpai, Garima Pandey, Monika Yadav and Bimal K. Banik

Volume 10, Issue 2, 2023

Published on: 22 November, 2023

Page: [122 - 134] Pages: 13

DOI: 10.2174/0122133356268693231114052121

Price: $65

Abstract

One of the most efficient non-conventional heating methods is microwave irradiation. In organic synthesis, microwave irradiation has become a popular heating technique as it enhances product yields and purities, reduces reaction time from hours to minutes, and decreases unwanted side reactions. Microwave-assisted organic synthesis utilizes dielectric volumetric heating as an alternative activation method, which results in rapid and more selective transformations because of the uniform heat distribution. Heterocyclic compounds have a profound role in the drug discovery and development process along with their applications as agrochemicals, fungicides, herbicides, etc., making them the most prevalent form of biologically relevant molecules. Hence, enormous efforts have been made to flourish green routes for their high-yielding synthesis under microwave irradiation as a sustainable tool. Among the different clinical applications, heterocyclic compounds have received considerable attention as anti-cancer agents. Heterocyclic moieties have always been core parts of the development of anti-cancer drugs, including market-selling drugs, i.e., 5-fluorouracil, doxorubicin, methotrexate, daunorubicin, etc., and natural alkaloids, such as vinblastine and vincristine. In this review, we focus on the developments in the microwave-assisted synthesis of heterocycles and the anti-cancer activities of particular heterocycles.

Next »
[1]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[2]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[3]
Bose, A.K.M.; Ghosh, M.S. Microwave-induced organic reaction enhancement chemistry. 2. simplified techniques. J. Org. Chem., 1991, 56(25), 6968-6970.
[http://dx.doi.org/10.1021/jo00025a004]
[4]
Xu, Q.; Chao, B.; Wang, Y.; Dittmer, D.C. Tellurium in the “no-solvent” organic synthesis of allylic alcohols. Tetrahedron, 1997, 53(36), 12131-12146.
[http://dx.doi.org/10.1016/S0040-4020(97)00547-4]
[5]
Raner, K.D.; Strauss, C.R. Influence of microwaves on the rate of esterification of 2,4,6-trimethylbenzoic acid with 2-propanol. J. Org. Chem., 1992, 57(23), 6231-6234.
[http://dx.doi.org/10.1021/jo00049a034]
[6]
Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51(38), 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R]
[7]
Baghurst, D.R.; Mingos, D.M.P. Design and application of a reflux modification for the synthesis of organometallic compounds using microwave dielectric loss heating effects. J. Organomet. Chem., 1990, 384(3), C57-C60.
[http://dx.doi.org/10.1016/0022-328X(90)87135-Z]
[8]
Anastas, P.T.; Warner, J.C. Principles of green chemistry. green chemistry. Theory Pract., 1998, 29, 14821-14842.
[9]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[10]
Santagada, V.; Frecentese, F.; Perissutti, E.; Fiorino, F.; Severino, B.; Caliendo, G. Microwave assisted synthesis: A new technology in drug discovery. Mini Rev. Med. Chem., 2009, 9(3), 340-358.
[http://dx.doi.org/10.2174/1389557510909030340] [PMID: 19275727]
[11]
Tiwari, S.; Talreja, S. Green chemistry and microwave irradiation technique: A review. J. Pharm. Res. Int., 2022, 34(39A), 74-79.
[http://dx.doi.org/10.9734/jpri/2022/v34i39A36240]
[12]
Garella, D.; Borretto, E.; Di Stilo, A.; Martina, K.; Cravotto, G.; Cintas, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 2013, 4(10), 1323-1343.
[http://dx.doi.org/10.1039/c3md00152k]
[13]
Colombo, M.; Peretto, I. Chemistry strategies in early drug discovery: An overview of recent trends. Drug Discov. Today, 2008, 13(15-16), 677-684.
[http://dx.doi.org/10.1016/j.drudis.2008.03.007] [PMID: 18675762]
[14]
Takkellapati, S. Microwave-assisted chemical transformations. Curr. Org. Chem., 2013, 17(20), 2305-2322.
[http://dx.doi.org/10.2174/13852728113179990042]
[15]
Victoria Gómez, M.; Aranda, A.I.; Moreno, A.; Cossío, F.P.; de Cózar, A.; Díaz-Ortiz, Á.; de la Hoz, A.; Prieto, P. Microwave-assisted reactions of nitroheterocycles with dienes. Diels–Alder and tandem hetero Diels–Alder/[3,3] sigmatropic shift. Tetrahedron, 2009, 65(27), 5328-5336.
[http://dx.doi.org/10.1016/j.tet.2009.04.065]
[16]
Montel, S.; Bouyssi, D.; Balme, G. An efficient and general microwave-assisted copper-catalyzed conia-ene reaction of terminal and internal alkynes tethered to a wide variety of carbonucleophiles. Adv. Synth. Catal., 2010, 352(13), 2315-2320.
[http://dx.doi.org/10.1002/adsc.201000351]
[17]
Declerck, V.; Martinez, J.; Lamaty, F. Microwave-assisted copper-catalyzed heck reaction in PEG Solvent. Synlett, 2006, 18, 3029-3032.
[18]
Raut, C.N.; Bharambe, S.M.; Pawar, Y.A.; Mahulikar, P.P. Microwave-mediated synthesis and antibacterial activity of some novel 2-(substituted biphenyl) benzimidazoles via Suzuki-Miyaura cross coupling reaction and their N -substituted derivatives. J. Heterocycl. Chem., 2011, 48(2), 419-425.
[http://dx.doi.org/10.1002/jhet.610]
[19]
Dong, X.; Liu, T.; Chen, J.; Ying, H.; Hu, Y. Microwave-assisted mannich reaction of 2-hydroxy-chalcones. Synth. Commun., 2009, 39(4), 733-742.
[http://dx.doi.org/10.1080/00397910802431107]
[20]
Bose, A.K.; Banik, B.K.; Barakat, K.J.; Manhas, M.S. Simplified rapid hydrogenation under microwave irradiation: Selective transformations of β-Lactams1. Synlett, 1993, 1993(8), 575-576.
[http://dx.doi.org/10.1055/s-1993-22534]
[21]
Van Baelen, G.; Maes, B.U.W. Study of the microwave-assisted hydrolysis of nitriles and esters and the implementation of this system in rapid microwave-assisted Pd-catalyzed amination. Tetrahedron, 2008, 64(23), 5604-5619.
[http://dx.doi.org/10.1016/j.tet.2008.03.028]
[22]
Tanji, K.; Koshio, J.; Sugimoto, O. Microwave-assisted dehydration and chlorination using phosphonium salt. Synth. Commun., 2005, 35(15), 1983-1987.
[http://dx.doi.org/10.1081/SCC-200066639]
[23]
Shi, H.; Zhu, W.; Li, H.; Liu, H.; Zhang, M.; Yan, Y.; Wang, Z. Microwave-accelerated esterification of salicylic acid using Brönsted acidic ionic liquids as catalysts. Catal. Commun., 2010, 11(7), 588-591.
[http://dx.doi.org/10.1016/j.catcom.2009.12.025]
[24]
Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K] [PMID: 20419202]
[25]
Pillai, U.R.; Sahle-Demessie, E.; Varma, R.S. Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile. Tetrahedron Lett., 2002, 43(16), 2909-2911.
[http://dx.doi.org/10.1016/S0040-4039(02)00426-4]
[26]
Schmoger, C.; Stolle, A.; Bonrath, W.; Ondruschka, B. Microwave-assisted organic reduction reactions. Curr. Org. Chem., 2011, 15(2), 151-167.
[http://dx.doi.org/10.2174/138527211793979808]
[27]
Rahayu, D.U.C.; Al-Laily, R.S.; Khalwani, D.A.; Anjani, A.; Handayani, S.; Saepudin, E.; Dianhar, H.; Sugita, P. Microwave-assisted synthesis of 4-Methyl coumarins, their antioxidant and antibacterial activities. Rasayan J. Chem., 2022, 15(2), 1053-1062.
[http://dx.doi.org/10.31788/RJC.2022.1526780]
[28]
Ibrahim, H.M.; Behbehani, H.; Makhseed, S.; Elnagdi, M.H. Acylation of heteroaromatic amines: Facile and efficient synthesis of a new class of 1,2,3-triazolo[4,5-b]pyridine and pyrazolo[4,3-b]pyridine derivatives. Molecules, 2011, 16(5), 3723-3739.
[http://dx.doi.org/10.3390/molecules16053723] [PMID: 21544037]
[29]
Das, S.; Banik, R.; Kumar, B.; Roy, S.; Noorussabah, K.; Amhad, K.; Sukul, P.K. A green approach for organic transformations using microwave reactor. Curr. Org. Synth., 2019, 16(5), 730-764.
[http://dx.doi.org/10.2174/1570179416666190412160048] [PMID: 31984890]
[30]
Bandyopadhyay, D.; Banik, B.K. Synthesis of medicinally privileged heterocycles through dielectric heating. Curr. Med. Chem., 2018, 24(41), 4596-4626.
[http://dx.doi.org/10.2174/0929867324666170223152137] [PMID: 28240166]
[31]
Saber, A.; Marzag, H.; Benhida, R.; Bougrin, K. Microwave-assisted cycloaddition reactions in carbo- and heterocyclic chemistry. Curr. Org. Chem., 2014, 18(16), 2139-2180.
[http://dx.doi.org/10.2174/1385272819666140407213427]
[32]
Hoz, A.; Díaz-Ortiz, A.; Moreno, A.; Sanchéz-Migallón, A.; Prieto, P.; Carrillo, J.; Vázquez, E.; Gómez, M.; Herrero, M. Microwave-assisted reactions in heterocyclic compounds with applications in medicinal and supramolecular chemistry. Comb. Chem. High Throughput Screen., 2007, 10(10), 877-902.
[http://dx.doi.org/10.2174/138620707783220347] [PMID: 18288949]
[33]
Donate, P.M. Green synthesis from biomass. Chem. Biol. Technol. Agric., 2014, 1(1), 4.
[http://dx.doi.org/10.1186/s40538-014-0004-2]
[34]
Bansode, D.; Goel, T.; Jain, N.V. Conventional vs. microwave-assisted synthesis: A comparative study on the synthesis of tri-substituted imidazoles. Curr. Microw. Chem., 2022, 9(2), 105-108.
[http://dx.doi.org/10.2174/2213335610666230105154742]
[35]
Kamanna, K.; Khatavi, S.Y. Microwave-accelerated carbon-carbon and carbon-heteroatom bond formation via multi-component reactions: A brief overview. Curr. Microw. Chem., 2020, 7(1), 23-39.
[http://dx.doi.org/10.2174/2213346107666200218124147]
[36]
Ghosh, S.; Mukhopadhyay, C. Microwave syntheses: A modern day approach towards sustainable chemistry. Curr. Microw. Chem., 2018, 4(4), 287-305.
[http://dx.doi.org/10.2174/2213335604666170830122722]
[37]
Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C. Microwave induced green chemistry approach towards the synthesis of heterocyclic compounds via c-n bond forming reactions. Curr. Microw. Chem., 2021, 8(3), 204-214.
[http://dx.doi.org/10.2174/2213335608666210923144201]
[38]
Singh, R.; Prakash, C. Microwave-assisted synthesis of fluorinated heterocycles. Curr. Green Chem., 2022, 9(3), 145-161.
[http://dx.doi.org/10.2174/2213346110666221223140653]
[39]
Karmakar, R.; Mukhopadhyay, C. Green synthetic approach: A well-organized eco-friendly tool for synthesis of bio-active fused heterocyclic compounds. Curr. Green Chem., 2023, 10(1), 5-24.
[http://dx.doi.org/10.2174/2213346110666230120154516]
[40]
Kruithof, A.; Ruijter, E.; Orru, V.A. Microwave-assisted multicomponent synthesis of heterocycles. Curr. Org. Chem., 2011, 15(2), 204-236.
[http://dx.doi.org/10.2174/138527211793979817]
[41]
Kranjc, K.; Kocevar, M. Microwave-Assisted Organic Synthesis: General Considerations and Transformations of Heterocyclic Compounds. Curr. Org. Chem., 2010, 14(10), 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[42]
Jiang, B.; Shi, F.; Tu, S.J. Microwave-assisted multicomponent reactions in the heterocyclic chemistry. Curr. Org. Chem., 2010, 14(4), 357-378.
[http://dx.doi.org/10.2174/138527210790231892]
[43]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[44]
Kamboj, M.; Bajpai, S.; Yadav, M.; Singh, S. Microwave radiations: A green approach to the synthesis of five- membered heterocyclic compounds. Curr. Green Chem., 2023, 10(1), 57-72.
[http://dx.doi.org/10.2174/2213346110666230102095423]
[45]
Kamboj, M.; Bajpai, S.; Banik, B.K. Microwave-induced reactions for pyrrole synthesis. Curr. Org. Chem., 2023, 27(7), 559-567.
[http://dx.doi.org/10.2174/1385272827666230508124450]
[46]
Sakhuja, R.; Panda, S. Microwave assisted synthesis of five membered azaheterocyclic systems. Curr. Org. Chem., 2012, 16(6), 789-828.
[http://dx.doi.org/10.2174/138527212799958011]
[47]
Nagender, P.; Malla Reddy, G.; Naresh Kumar, R.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2905-2908.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.084] [PMID: 24835633]
[48]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives, 2015. drug des. J. Med. Chem., 2015, 1(1), 1-11.
[49]
Lohray, B.B.; Lohray, V.B.; Srivastava, B.K.; Kapadnis, P.B.; Pandya, P. Novel tetrahydro-thieno pyridyl oxazolidinone: An antibacterial agent. Bioorg. Med. Chem., 2004, 12(17), 4557-4564.
[http://dx.doi.org/10.1016/j.bmc.2004.07.019] [PMID: 15358283]
[50]
Thompson, A.M.; Bridges, A.J.; Fry, D.W.; Kraker, A.J.; Denny, W.A. Tyrosine kinase inhibitors. 7. 7-amino-4-(phenylamino)- and 7-amino-4-[(phenylmethyl)amino]pyrido[4,3-d]pyrimidines: a new class of inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor. J. Med. Chem., 1995, 38(19), 3780-3788.
[http://dx.doi.org/10.1021/jm00019a007] [PMID: 7562908]
[51]
Rewcastle, G.W.; Palmer, B.D.; Thompson, A.M.; Bridges, A.J.; Cody, D.R.; Zhou, H.; Fry, D.W.; McMichael, A.; Denny, W.A. Tyrosine kinase inhibitors. 10. Isomeric 4-[(3-bromophenyl)amino]pyrido[d]-pyrimidines are potent ATP binding site inhibitors of the tyrosine kinase function of the epidermal growth factor receptor. J. Med. Chem., 1996, 39(9), 1823-1835.
[http://dx.doi.org/10.1021/jm9508651] [PMID: 8627606]
[52]
Smaill, J.B.; Palmer, B.D.; Rewcastle, G.W.; Denny, W.A.; McNamara, D.J.; Dobrusin, E.M.; Bridges, A.J.; Zhou, H.; Showalter, H.D.H.; Winters, R.T.; Leopold, W.R.; Fry, D.W.; Nelson, J.M.; Slintak, V.; Elliot, W.L.; Roberts, B.J.; Vincent, P.W.; Patmore, S.J. Tyrosine kinase inhibitors. 15. 4-(Phenylamino)quinazoline and 4-(phenylamino)pyrido[d]pyrimidine acrylamides as irreversible inhibitors of the ATP binding site of the epidermal growth factor receptor. J. Med. Chem., 1999, 42(10), 1803-1815.
[http://dx.doi.org/10.1021/jm9806603] [PMID: 10346932]
[53]
Merja, B. C.; Joshi, A. M.; Parikh, K. A.; Parikh, A. R. Synthesis and biological evaluation of pyrido. 1 pyrimidine and isoxazoline derivatives,, 2004, 909-912.
[54]
Chaki, H.; Yamabe, H.; Sugano, M.; Morita, S.; Bessho, T.; Tabata, R.; Saito, K.I.; Egawa, M.; Tobe, A.; Morinaka, Y. Design and syntheses of 4-acylaminopyridine derivatives: Novel high affinity choline uptake enhancers II. Bioorg. Med. Chem. Lett., 1995, 5(14), 1495-1500.
[http://dx.doi.org/10.1016/0960-894X(95)00242-L]
[55]
Kazak, D. V.; Dikusar, E. A.; Akishina, E. A.; Alexeev, R. S.; Bumagin, N. A.; Potkin, V. I. Synthesis and properties of esters and amides of pyridine-and 1, 2-azolcarbonic acids. Vescì. Akademìì. navuk. Belarusì. Seryâ. himičnyh. navuk., 2021, 57(2), 185-194.
[http://dx.doi.org/10.29235/1561-8331-2021-57-2-185-194]
[56]
Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2018, 145, 35-40.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.038] [PMID: 29316536]
[57]
Desai, N.C.; Rajpara, K.M.; Joshi, V.V. Synthesis of pyrazole encompassing 2-pyridone derivatives as antibacterial agents. Bioorg. Med. Chem. Lett., 2013, 23(9), 2714-2717.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.077] [PMID: 23511017]
[58]
Chen, W.; Zhan, P.; Rai, D.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Zhou, Z.; Liu, H.; Liu, X. Discovery of 2-pyridone derivatives as potent HIV-1 NNRTIs using molecular hybridization based on crystallographic overlays. Bioorg. Med. Chem., 2014, 22(6), 1863-1872.
[http://dx.doi.org/10.1016/j.bmc.2014.01.054] [PMID: 24581546]
[59]
Martinez-Gualda, B.; Pu, S.Y.; Froeyen, M.; Herdewijn, P.; Einav, S.; De Jonghe, S. Structure-activity relationship study of the pyridine moiety of isothiazolo[4,3-b]pyridines as antiviral agents targeting cyclin G-associated kinase. Bioorg. Med. Chem., 2020, 28(1), 115188.
[http://dx.doi.org/10.1016/j.bmc.2019.115188] [PMID: 31757682]
[60]
Bayramoğlu, D.; Gürel, G.; Sinağ A.; Güllü, M. Thermal conversion of glycerol to value-added chemicals: pyridine derivatives by one-pot microwave-assisted synthesis. Turk. J. Chem., 2014, 38(4), 661-670.
[http://dx.doi.org/10.3906/kim-1312-47]
[61]
Abd El-Lateef, H.M.; Abdelhamid, A.A.; Khalaf, M.M.; Gouda, M.; Elkanzi, N.A.A.; El-Shamy, H.; Ali, A.M. Green synthesis of novel pyridines via one-pot multicomponent reaction and their anti-inflammatory evaluation. ACS Omega, 2023, 8(12), 11326-11334.
[http://dx.doi.org/10.1021/acsomega.3c00066] [PMID: 37008112]
[62]
Shekarrao, K.; Kaishap, P.P.; Saddanapu, V.; Addlagatta, A.; Gogoi, S.; Boruah, R.C. Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Advances, 2014, 4(46), 24001-24006.
[http://dx.doi.org/10.1039/C4RA02865A]
[63]
Amariucai-Mantu, D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave assisted reactions of azaheterocycles formedicinal chemistry applications. Molecules, 2020, 25(3), 716.
[http://dx.doi.org/10.3390/molecules25030716] [PMID: 32046020]
[64]
Mehta, S.; Swarnkar, N.; Vyas, R.; Vardia, J.; Punjabi, P.B.; Ameta, S.C. Microwave assisted synthesis of some pyridine derivatives containing mercaptotriazole and thiazolidinone as a new class of antimicrobial agents. Phosphorus Sulfur Silicon Relat. Elem., 2007, 183(1), 105-114.
[http://dx.doi.org/10.1080/10426500701557138]
[65]
Su, W.; Guo, S.; Hong, Z.; Chen, R. Microwave-assisted novel synthesis of amino-thieno[3,2-b]pyridines under solvent-free conditions. Tetrahedron Lett., 2010, 51(43), 5718-5720.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.075]
[66]
Linder, I.; Gerhard, M.; Schefzig, L.; Andrä, M.; Bentz, C.; Reissig, H.U.; Zimmer, R. A modular synthesis of functionalized pyridines through lewis-acid-mediated and microwave-assisted cycloadditions between azapyrylium intermediates and alkynes. Eur. J. Org. Chem., 2011, 2011(30), 6070-6077.
[http://dx.doi.org/10.1002/ejoc.201100765]
[67]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New J. Chem., 2018, 42(1), 184-197.
[http://dx.doi.org/10.1039/C7NJ03742B]
[68]
Kumar, K.S.; Robert, A.R.; Kerru, N.; Maddila, S. A novel, swift, and effective green synthesis of morpholino-pyridine analogues in microwave irradiation conditions. Results in Chemistry, 2023, 5, 100692.
[http://dx.doi.org/10.1016/j.rechem.2022.100692]
[69]
Daştan, A.; Kulkarni, A.; Török, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches †. Green Chem., 2012, 14(1), 17-37.
[http://dx.doi.org/10.1039/C1GC15837F]
[70]
Harris, J.E.G.; Pope, W.J. CXXII.—isoQuinoline and the isoquinoline-reds. J. Chem. Soc. Trans., 1922, 121(0), 1029-1033.
[http://dx.doi.org/10.1039/CT9222101029]
[71]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[72]
Green, G.R.; Evans, J.M.; Vong, A.K.; Katritzky, A.R.; Rees, C.W.; Scriven, E.F. Comprehensive Heterocyclic Chemistry II; Pergamon Press, 1995, Vol. 5, p. 469.
[73]
Nagatsu, T. Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci. Res., 1997, 29(2), 99-111.
[http://dx.doi.org/10.1016/S0168-0102(97)00083-7] [PMID: 9359458]
[74]
O’Niel, M.J.; Smith, M.; Heckelman, P.E. The Merck Index; Merck & Co. Incorp,; , 2001, p. 1785.
[75]
Rajasekaran, G.; Sarma, K.V.L. Analysis of the Neutral-Current Interaction in the Inclusive Neutrino Reaction; Pramana J;; Phys, 2022, p. 96.
[76]
Yang, D.; Burugupalli, S.; Daniel, D.; Chen, Y. Microwave-assisted one-pot synthesis of isoquinolines, furopyridines, and thienopyridines by palladium-catalyzed sequential coupling-imination-annulation of 2-bromoarylaldehydes with terminal acetylenes and ammonium acetate. J. Org. Chem., 2012, 77(9), 4466-4472.
[http://dx.doi.org/10.1021/jo300494a] [PMID: 22494334]
[77]
Xue, D.; Chen, H.; Xu, Y.; Yu, H.; Yu, L.; Li, W.; Xie, Q.; Shao, L. Microwave-assisted synthesis of hydroxyl-containing isoquinolines by metal-free radical cyclization of vinyl isocyanides with alcohols. Org. Biomol. Chem., 2017, 15(47), 10044-10052.
[http://dx.doi.org/10.1039/C7OB02221B] [PMID: 29165470]
[78]
Xu, J.; Li, Y.; Meng, J.P.; Lei, J.; Chen, Z.Z.; Tang, D.Y.; Zhu, J.; Xu, Z.G. Efficient microwave-assisted synthesis of fused benzoxazepine–isoquinoline derivatives via an Ugi reaction/tautomerization/intramolecular SNAr reaction sequence. Tetrahedron Lett., 2017, 58(16), 1640-1643.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.036]
[79]
Xu, X.; Feng, H.; Van der Eycken, E.V. Microwave-assisted palladium-catalyzed reductive cyclization/ring-opening/aromatization cascade of oxazolidines to isoquinolines. Org. Lett., 2021, 23(16), 6578-6582.
[http://dx.doi.org/10.1021/acs.orglett.1c02416] [PMID: 34379418]
[80]
Varma, R.S. Solvent-free organic syntheses. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e]
[81]
Oliver Kappe, C. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[82]
Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[83]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[84]
Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Takeuchi, Y.; Hamaguchi, M.; Aisaka, K.; Hidaka, T. Dihydropyrimidines: Novel calcium antagonists with potent and long-lasting vasodilative and anti-hypertensive activity. J. Med. Chem., 1989, 32(10), 2399-2406.
[http://dx.doi.org/10.1021/jm00130a029] [PMID: 2552119]
[85]
Atwal, K.S.; Rovnyak, G.C.; Kimball, S.D.; Floyd, D.M.; Moreland, S.; Swanson, B.N.; Gougoutas, J.Z.; Schwartz, J.; Smillie, K.M.; Malley, M.F. Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem., 1990, 33(9), 2629-2635.
[http://dx.doi.org/10.1021/jm00171a044] [PMID: 2391701]
[86]
Monier, M.; Abdel-Latif, D.; El-Mekabaty, A.; Elattar, K.M. Bicyclic 6 + 6 Systems: Advances in the chemistry of heterocyclic compounds incorporated pyrimido[1,2-a]Pyrimidine Skeleton. Mini Rev. Org. Chem., 2020, 17(6), 717-739.
[http://dx.doi.org/10.2174/1389557519666190925161145]
[87]
Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. New solvent-free organic synthesis using focused microwaves. Synthesis, 1998, 1998(9), 1213-1234.
[http://dx.doi.org/10.1055/s-1998-6083]
[88]
Foroughifar, N.; Khaledi, A.M.; Shariatzadeh, S.M.; Masoudnia, M. A convenient synthesis by microwave assisted high-speed and antibacterial activity of ethyl-4-aryl-6-methyl-2-oxo (or thioxo)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylate derivatives without solvent. Asian J. Chem., 2002, 14(2), 782.
[89]
Bose, A.K.; Banik, B.K.; Lavlinskaia, N.; Jayaraman, M.; Manhas, M.S. MORE Chemistry in a Microwave. Chemtech, 1997, 27(9), 18-23.
[90]
Kumar, K. Microwave-assisted diversified synthesis of pyrimidines: An overview. J. Heterocycl. Chem., 2022, 59(2), 205-238.
[http://dx.doi.org/10.1002/jhet.4376]
[91]
Sahoo, B.M.; Banik, B.K.; Kumar, B.V.V.R.; Panda, K.C.; Tiwari, A.; Tiwari, V.; Singh, S.; Kumar, M. Microwave induced green synthesis: Sustainable technology for efficient development of bioactive pyrimidine scaffolds. Curr. Med. Chem., 2023, 30(9), 1029-1059.
[http://dx.doi.org/10.2174/0929867329666220622150013] [PMID: 35733315]
[92]
Kumar, A.; Siwach, A.; Verma, P. An overview of the synthetic route to the marketed formulations of pyrimidine: A review. Mini Rev. Med. Chem., 2022, 22(6), 884-903.
[http://dx.doi.org/10.2174/1389557521666211008153329] [PMID: 34629043]
[93]
Prieur, V.; Rubio-Martínez, J.; Font-Bardia, M.; Guillaumet, G.; Pujol, M.D. Microwave-assisted synthesis of substituted pyrrolo[2,3- d]pyrimidines. Eur. J. Org. Chem., 2014, 2014(7), 1514-1524.
[http://dx.doi.org/10.1002/ejoc.201301496]
[94]
Martinho, L.A.; Andrade, C.K.Z. A greener approach for the synthesis of pyrido[2,3- d]pyrimidine derivatives in glycerol under microwave heating. J. Heterocycl. Chem., 2022, 59(8), 1417-1429.
[http://dx.doi.org/10.1002/jhet.4483]
[95]
Bayramoglu, D.; Gullu, M. An Efficient Synthetic Method for the Synthesis of Novel Pyrimido., 2021.
[96]
Wang, J.; Zhu, S.; Liu, Y.; Zhu, X.; Shi, K.; Li, X.; Zhu, S. Microwave-assisted multicomponent reaction: An efficient synthesis of indolyl substituted and spiroxindole pyrido[2,3- d]pyrimidine derivatives. Synth. Commun., 2022, 52(1), 85-95.
[http://dx.doi.org/10.1080/00397911.2021.2001019]
[97]
Qureshi, F.; Nawaz, M.; Hisaindee, S.; Almofty, S.A.; Ansari, M.A.; Jamal, Q.M.S.; Ullah, N.; Taha, M.; Alshehri, O.; Huwaimel, B.; Bin Break, M.K. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19. Arab. J. Chem., 2022, 15(12), 104366.
[http://dx.doi.org/10.1016/j.arabjc.2022.104366] [PMID: 36276298]
[98]
Khan, A.; Alam, M.T.; Iqbal, A.; Siddiqui, T.; Ali, A. Microwave-assisted one-pot multicomponent synthesis of steroidal pyrido[2,3-d]pyrimidines and their possible implications in drug development. Steroids, 2023, 190, 109154.
[http://dx.doi.org/10.1016/j.steroids.2022.109154] [PMID: 36521632]
[99]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[100]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[101]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[102]
Al-Abdullah, E.S.; Al-Obaid, A.R.M.; Al-Deeb, O.A.; Habib, E.E.; El-Emam, A.A. Synthesis of novel 6-phenyl-2,4-disubstituted pyrimidine-5-carbonitriles as potential antimicrobial agents. Eur. J. Med. Chem., 2011, 46(9), 4642-4647.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.003] [PMID: 21849221]
[103]
Deshmukh, M.B.; Salunkhe, S.M.; Patil, D.R.; Anbhule, P.V. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem., 2009, 44(6), 2651-2654.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.018] [PMID: 19036478]
[104]
Wang, X.D.; Wei, W.; Wang, P.F.; Tang, Y.T.; Deng, R.C.; Li, B.; Zhou, S.S.; Zhang, J.W.; Zhang, L.; Xiao, Z.P.; Ouyang, H.; Zhu, H.L. Novel 3-arylfuran-2(5H)-one-fluoroquinolone hybrid: Design, synthesis and evaluation as antibacterial agent. Bioorg. Med. Chem., 2014, 22(14), 3620-3628.
[http://dx.doi.org/10.1016/j.bmc.2014.05.018] [PMID: 24882676]
[105]
Wang, R.; Yin, X.; Zhang, Y.; Yan, W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur. J. Med. Chem., 2018, 156, 580-586.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.025] [PMID: 30025351]
[106]
Kaur, R.; Kumar, K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem., 2021, 215, 113220.
[http://dx.doi.org/10.1016/j.ejmech.2021.113220] [PMID: 33609889]
[107]
Tople, M.S.; Patel, N.B.; Patel, P.P. Microwave irradiation for the synthesis of quinoline scaffolds: a review. J. Indian Chem. Soc., 2023, 20(1), 1-28.
[http://dx.doi.org/10.1007/s13738-022-02648-y]
[108]
Robert Khumalo, M.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3,4- b]-quinolines under green conditions. RSC Advances, 2019, 9(53), 30768-30772.
[http://dx.doi.org/10.1039/C9RA04604F] [PMID: 35529349]
[109]
Rao, M.S.; Sarkar, S.; Hussain, S. Microwave-assisted synthesis of 3-aminoarylquinolines from 2-nitrobenzaldehyde and indole via SnCl2-mediated reduction and facile indole ring opening. Tetrahedron Lett., 2019, 60(18), 1221-1225.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.047]
[110]
Nesaragi, A.R.; Kamble, R.R.; Bayannavar, P.K.; Shaikh, S.K.J.; Hoolageri, S.R.; Kodasi, B.; Joshi, S.D.; Kumbar, V.M. Microwave assisted regioselective synthesis of quinoline appended triazoles as potent antitubercular and antifungal agents via copper (I). Bioorg. Med. Chem. Lett., 2021, 41, 127984.
[http://dx.doi.org/10.1016/j.bmcl.2021.127984] [PMID: 33766768]
[111]
Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Nossier, E.S.; Rasslan, F.; Srour, A.M.; Sakhuja, R.; Ibrahim, T.S.; Abdel-samii, Z.K.M.; Al-Mahmoudy, A.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem., 2021, 114, 105117.
[http://dx.doi.org/10.1016/j.bioorg.2021.105117] [PMID: 34214752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy