Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Mini-Review Article

An Update on the Pathways and Aspects of Epilepsy Treatment Targets

Author(s): Ruksar Sande, Pravin Kale, Angel Godad* and Gaurav Doshi

Volume 18, Issue 3, 2023

Published on: 10 October, 2023

Article ID: e101023221992 Pages: 18

DOI: 10.2174/0115743624252836230924075249

Price: $65

Abstract

Epilepsy is a neurological disorder characterized by spontaneously occurring seizures known for several decades. Despite the availability of current anti-epileptic drugs, including Phenytoin, Valproate, Carbamazepine, Lamotrigine, Gabapentin, Vigabatrin, etc., a considerable 30 % of the epileptic population are drug-resistant to the available conventional medications. This suggests a need to find new drug therapy for the management of epilepsy. Moreover, prolonged use of a single drug or monotherapy can also lead to therapeutic failure owing to the inability of a single drug to exert the desired anti-epileptic effect. Hence, on the basis of the knowledge and understanding regarding the existing targets, novel agents having the ability to show therapeutic effects should be studied and investigated further. This article emphasizes the need to investigate and repurpose drug molecules for the management of epilepsy. The review elaborates on the potential targets, including Glutamate, EAAT (Excitatory nucleotide) Channel and mTOR (Mammalian Target of Rapamycin) pathway. Moreover, the discussion on the EAAT (Excitatory Amino Acid Transporters), RAS (Renin Angiotensin System), NHE (Na+/H+ exchangers), HCN (Hyperpolarization-activated cyclic nucleotide) targets and treatment approach has been supported by literature that sheds light on evidence which is validated via suitable preclinical and clinical studies.

Graphical Abstract

[1]
Steriade C, French J, Devinsky O. Epilepsy: Key experimental therapeutics in early clinical development. Expert Opin Investig Drugs 2020; 29(4): 373-83.
[http://dx.doi.org/10.1080/13543784.2020.1743678] [PMID: 32172604]
[2]
Scharfman HE. Epilepsy.Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders. 2014; pp. 263-1.
[3]
Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep 2007; 7(4): 348-54.
[http://dx.doi.org/10.1007/s11910-007-0053-z] [PMID: 17618543]
[4]
Boison D, Rho JM. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology 2020; 167: 107741.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107741] [PMID: 31419398]
[5]
Epilepsy-an overviewScience Direct Topics. Available from: https://www.sciencedirect.com/topics/pharmacology-toxicolog y-and-pharmaceutical-science/epilepsy (Accessed on: 2022 Jun 14).
[6]
Kwan P, Brodie MJ. Emerging drugs for epilepsy. Expert Opin Emerg Drugs 2007; 12(3): 407-22.
[http://dx.doi.org/10.1517/14728214.12.3.407] [PMID: 17874969]
[7]
Manford M. Recent advances in epilepsy. J Neurol 2017; 264(8): 1811-24.
[http://dx.doi.org/10.1007/s00415-017-8394-2] [PMID: 28120042]
[8]
Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013; 12(10): 757-76.
[http://dx.doi.org/10.1038/nrd4126] [PMID: 24052047]
[9]
Aneja S, Sharma S. Newer anti-epileptic drugs. Indian Pediatr 2013; 50(11): 1033-40.
[http://dx.doi.org/10.1007/s13312-013-0284-9] [PMID: 24382900]
[10]
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019; 393(10172): 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[11]
Tao S, Sun J, Hao F, et al. Effects of sodium valproate combined with lamotrigine on quality of life and serum inflammatory factors in patients with poststroke secondary epilepsy. J Stroke Cerebrovasc Dis 2020; 29(5): 104644.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104644] [PMID: 32081495]
[12]
Glauser TA, Cnaan A, Shinnar S, et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: Initial monotherapy outcomes at 12 months. Epilepsia 2013; 54(1): 141-55.
[http://dx.doi.org/10.1111/epi.12028] [PMID: 23167925]
[13]
Stringer JL, Higgins MG. Interaction of phenobarbital and phenytoin in an experimental model of seizures in rats. Epilepsia 1994; 35(1): 216-20.
[http://dx.doi.org/10.1111/j.1528-1157.1994.tb02936.x] [PMID: 8112250]
[14]
Demchenko IT, Zhilyaev SY, Alekseeva OS, Krivchenko AI, Piantadosi CA, Gasier HG. Increased antiseizure effectiveness with tiagabine combined with sodium channel antagonists in mice exposed to hyperbaric oxygen. Neurotoxicity Research 2019; 36(3)
[http://dx.doi.org/10.1007/s12640-019-00063-5]
[15]
Doose DR, Brodie MJ, Wilson EA, et al. Topiramate and lamotrigine pharmacokinetics during repetitive monotherapy and combination therapy in epilepsy patients. Epilepsia 2003; 44(7): 917-22.
[http://dx.doi.org/10.1046/j.1528-1157.2003.64402.x] [PMID: 12823574]
[16]
Bernus I, Dickinson RG, Hooper WD, Eadie MJ. The mechanism of the carbamazepine-valproate interaction in humans. Br J Clin Pharmacol 1997; 44(1): 21-7.
[http://dx.doi.org/10.1046/j.1365-2125.1997.00607.x] [PMID: 9241092]
[17]
Wei CX, Bian M, Gong GH. Current research on antiepileptic compounds. Molecules 2015; 20(11): 20741-76.
[http://dx.doi.org/10.3390/molecules201119714] [PMID: 26610448]
[18]
Kim K, Lee SG, Kegelman TP, et al. Role of Excitatory Amino Acid Transporter-2 (EAAT2) and glutamate in neurodegeneration: Oppor-tunities for developing novel therapeutics. J Cell Physiol 2011; 226(10): 2484-93.
[http://dx.doi.org/10.1002/jcp.22609] [PMID: 21792905]
[19]
Sarac S, Afzal S, Broholm H, Madsen FF, Ploug T, Laursen H. Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. Acta Pathol Microbiol Scand Suppl 2009; 117(4): 291-301.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02443.x] [PMID: 19338517]
[20]
Green JL, dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193: 114786.
[http://dx.doi.org/10.1016/j.bcp.2021.114786] [PMID: 34571003]
[21]
Neves MF, Cunha AR, Cunha MR, Gismondi RA, Oigman W. The role of Renin–Angiotensin–Aldosterone system and its new components in arterial stiffness and vascular aging. High Blood Press Cardiovasc Prev 2018; 25(2): 137-45.
[http://dx.doi.org/10.1007/s40292-018-0252-5] [PMID: 29476451]
[22]
Liang JJ, Huang LF, Chen XM, Pan SQ, Lu ZN, Xiao ZM. Amiloride suppresses pilocarpine-induced seizures via ASICs other than NHE in rats. Int J Clin Exp Pathol 2015; 8: 14507.
[PMID: 4713556]
[23]
DiFrancesco JC, Barbuti A, Milanesi R, et al. Recessive loss-of-function mutation in the pacemaker HCN2 channel causing increased neuronal excitability in a patient with idiopathic generalized epilepsy. J Neurosci 2011; 31(48): 17327-37.
[http://dx.doi.org/10.1523/JNEUROSCI.3727-11.2011] [PMID: 22131395]
[24]
DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci 2015; 6: 174.
[http://dx.doi.org/10.3389/fncel.2015.00071] [PMID: 25805968]
[25]
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: Opportunities for precision medicine. Brain Commun 2021; 3(4): fcab222.
[http://dx.doi.org/10.1093/braincomms/fcab222] [PMID: 34632383]
[26]
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18(3): 185-201.
[http://dx.doi.org/10.1080/14737175.2018.1428562] [PMID: 29338461]
[27]
Vishnoi S, Raisuddin S, Parvez S. Glutamate excitotoxicity and oxidative stress in epilepsy: Modulatory role of melatonin. J Environ Pathol Toxicol Oncol 2016; 35(4): 365-74.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2016016399] [PMID: 27992316]
[28]
Hanada T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules 2020; 10(3): 464.
[http://dx.doi.org/10.3390/biom10030464] [PMID: 32197322]
[29]
Löscher W. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 1998; 54(6): 721-41.
[http://dx.doi.org/10.1016/S0301-0082(97)00092-0] [PMID: 9560847]
[30]
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer’s disease. Epilepsia 2021; 62(7): 1485-93.
[http://dx.doi.org/10.1111/epi.16918] [PMID: 33971019]
[31]
Fitsanakis VA, Au C, Erikson KM, Aschner M. The effects of manganese on glutamate, dopamine and γ-aminobutyric acid regulation. Neurochem Int 2006; 48(6-7): 426-33.
[http://dx.doi.org/10.1016/j.neuint.2005.10.012] [PMID: 16513220]
[32]
Marvin JS, Borghuis BG, Tian L, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature Methods 2013; 10: 162-70.
[http://dx.doi.org/10.1038/nmeth.2333]
[33]
Rico EP, de Oliveira DL, Rosemberg DB, et al. Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain. Brain Res Bull 2010; 81(4-5): 517-23.
[http://dx.doi.org/10.1016/j.brainresbull.2009.11.011] [PMID: 19941938]
[34]
Abulseoud OA, Camsari UM, Ruby CL, Kasasbeh A, Choi S, Choi DS. Attenuation of ethanol withdrawal by ceftriaxone-induced upregulation of glutamate transporter EAAT2. Neuropsychopharmacology 2014; 39(7): 1674-84. https://pubmed.ncbi.nlm.nih.gov/24452391/
[http://dx.doi.org/10.1038/npp.2014.14] [PMID: 24452391]
[35]
Kalra J, Prakash A, Kumar P, Majeed ABA. Cerebroprotective effects of RAS inhibitors: Beyond their cardio-renal actions. J Renin Angiotensin Aldosterone Syst 2015; 16(3): 459-68. https://pubmed.ncbi.nlm.nih.gov/25944853/
[http://dx.doi.org/10.1177/1470320315583582] [PMID: 25944853]
[36]
Gouveia TLF, Frangiotti MIB, de Brito JMV, et al. The levels of renin–angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 2012; 61(1): 54-62.
[http://dx.doi.org/10.1016/j.neuint.2012.04.012] [PMID: 22542773]
[37]
Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. International Journal of Molecular Sciences 2020; 21: 4471.
[http://dx.doi.org/10.3390/ijms21124471]
[38]
Guimond MO, Gallo-Payet N. The angiotensin II Type 2 receptor in brain functions: An update. Int J Hypertens 2012; 2012: 351758.
[http://dx.doi.org/10.1155/2012/351758] [PMID: 23320146] [PMCID: PMC3540774]
[39]
Krasniqi S, Daci A. Role of the angiotensin pathway and its target therapy in epilepsy management. Int J Mol Sci 2019; 20.
[http://dx.doi.org/10.3390/ijms20030726] [PMID: 6386974]
[40]
Rusek M, Czuczwar SJ. A review of clinically significant drug-drug interactions involving angiotensin II receptor antagonists and antiepileptic drugs 2020.https://www.tandfonline.com/doi/abs/10.1080/17425255.2020.1763955
[http://dx.doi.org/10.1080/17425255.2020.1763955]
[41]
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2014; 466(1): 61-76. Available from: https://pubmed.ncbi.nlm.nih.gov/24337822/
[http://dx.doi.org/10.1007/s00424-013-1408-8] [PMID: 24337822]
[42]
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol 2016; 138-140: 19-35.
[43]
Ali A, Ahmad FJ, Pillai KK, Vohora D. Amiloride protects against pentylenetetrazole-induced kindling in mice. Br J Pharmacol 2005; 145(7): 880-4.
[http://dx.doi.org/10.1038/sj.bjp.0706291] [PMID: 15951829]
[44]
Attaphitaya S, Park K, Melvin JE. Molecular cloning and functional expression of a rat Na+/H+ exchanger (NHE5) highly expressed in brain. J Biol Chem 1999; 274(7): 4383-8.
[http://dx.doi.org/10.1074/jbc.274.7.4383] [PMID: 9933642]
[45]
Liang LL, Huang LF, Chen XM, Pan SQ. Amiloride suppresses pilocarpine-induced seizures via ASICs other than NHE in rats. Int J Clin Exp Path 2015; 8(11): 14507-13. Available from: https://www.researchgate.net/publication/317088852_Amiloride_suppresses_pilocarpine-induced_seizures_via_ASICs_other_than_NHE_in_rats
[46]
Balducci V, Credi C, Sacconi L, Romanelli MN, Sartiani L, Cerbai E. The HCN channel as a pharmacological target: Why, where, and how to block it. Prog Biophys Mol Biol 2021; 166: 173-81.
[http://dx.doi.org/10.1016/j.pbiomolbio.2021.07.010] [PMID: 34303730]
[47]
Kharouf Q, Pinares-Garcia P, Romanelli MN, Reid CA. Testing broad-spectrum and isoform-preferring HCN channel blockers for anti-convulsant properties in mice. Epilepsy Res 2020; 168: 106484.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106484] [PMID: 33099130]
[48]
Kessi M, Peng J, Duan H, et al. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15: 807202.
[http://dx.doi.org/10.3389/fnmol.2022.807202] [PMID: 35663267]
[49]
Concepcion FA, Khan MN, Ju Wang J-D, et al. HCN Channel Phosphorylation Sites Mapped by Mass Spectrometry in Human Epilepsy Patients and in an Animal Model of Temporal Lobe Epilepsy. Neuroscience 2021; 460: 13-30.
[http://dx.doi.org/10.1016/j.neuroscience.2021.01.038] [PMID: 33571596]
[50]
DiFrancesco JC, Castellotti B, Milanesi R, et al. HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 2019; 153: 49-58. Available from: https://pubmed.ncbi.nlm.nih.gov/30986657/
[http://dx.doi.org/10.1016/j.eplepsyres.2019.04.004]
[51]
DiFrancesco JC, Castellotti B, Milanesi R, et al. HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 2019; 153: 49-58.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.04.004] [PMID: 30986657]
[52]
Curatolo P, Moavero R. mTOR inhibitors as a new therapeutic option for epilepsy. Expert Rev Neurother 2013; 13(6): 627-38.
[http://dx.doi.org/10.1586/ern.13.49] [PMID: 23739000]
[53]
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107: 333-43.
[http://dx.doi.org/10.1016/j.phrs.2016.03.039] [PMID: 27049136]
[54]
Zhao XF, Liao Y, Alam MM, et al. Microglial mTOR is Neuronal Protective and Antiepileptogenic in the Pilocarpine Model of Temporal Lobe Epilepsy. J Neurosci 2020; 40(40): 7593-608.
[http://dx.doi.org/10.1523/JNEUROSCI.2754-19.2020] [PMID: 32868461]
[55]
Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia. J Neurosci 2019; 39(14): 2762-73.
[http://dx.doi.org/10.1523/JNEUROSCI.2260-18.2019] [PMID: 30700531]
[56]
Schreiber KH, Arriola Apelo SI, Yu D, et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat Commun 2019; 10(1): 3194.
[http://dx.doi.org/10.1038/s41467-019-11174-0] [PMID: 31324799]
[57]
Hussein AM, Ghalwash M, Magdy K, Abulseoud OA. Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. J Epilepsy Res 2016; 6: 8.
[58]
Jelenkovic AV, Jovanovic MD, Stanimirovic DD, et al. Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med (Maywood) 2008; 233(11): 1389-94.
[http://dx.doi.org/10.3181/0803-RM-83]
[59]
Chen RC, Huang YH, How SW. Systemic penicillin as an experimental model of epilepsy. Exp Neurol 1986; 92(3): 533-40.
[http://dx.doi.org/10.1016/0014-4886(86)90295-5] [PMID: 3709733]
[60]
Bo GP, Mainardi P, Benassi E, et al. Parenteral penicillin model of epilepsy in the rat: a reappraisal. Methods Find Exp Clin Pharmacol 1986; 8(8): 491-6.
[PMID: 3747642]
[61]
Miller RG, Mitchell JD, Moore DH. 2012. Available from: https://pubmed.ncbi.nlm.nih.gov/22419278/
[62]
Sámano C, Nistri A. Mechanism of Neuroprotection Against Experimental Spinal Cord Injury by Riluzole or Methylprednisolone. Neurochem Res 2019; 44(1): 200-13.
[http://dx.doi.org/10.1007/s11064-017-2459-6] [PMID: 29290040]
[63]
Pacheco-Rojas DO, Delgado-Ramírez M, Villatoro-Gómez K, et al. Riluzole inhibits Kv4.2 channels acting on the closed and closed inactivated states. Eur J Pharmacol 2021; 899: 174026.
[http://dx.doi.org/10.1016/j.ejphar.2021.174026] [PMID: 33722592]
[64]
Mazzone GL, Nistri A. Delayed neuroprotection by riluzole against excitotoxic damage evoked by kainate on rat organotypic spinal cord cultures. Neuroscience 2011; 190: 318-27.
[http://dx.doi.org/10.1016/j.neuroscience.2011.06.013] [PMID: 21689734]
[65]
Zgrajka W, Nieoczym D, Czuczwar M, et al. Evidences for pharmacokinetic interaction of riluzole and topiramate with pilocarpine in pilocarpine-induced seizures in rats. Epilepsy Res 2010; 88(2-3): 269-74.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.11.010] [PMID: 20015615]
[66]
Borowicz KK, Sekowski A, Drelewska E, Czuczwar SJ. Riluzole enhances the anti-seizure action of conventional antiepileptic drugs against pentetrazole-induced convulsions in mice. Pol J Pharmacol 2004; 56(2): 187-93. https://pubmed.ncbi.nlm.nih.gov/15156069/
[PMID: 15156069]
[67]
Kim JE, Kim DS, Kwak SE, et al. Anti-glutamatergic effect of riluzole: Comparison with valproic acid. Neuroscience 2007; 147(1): 136-45.
[http://dx.doi.org/10.1016/j.neuroscience.2007.04.018] [PMID: 17507170]
[68]
Li HH, Lin PJ, Wang WH, et al. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 2021; 106(8): 1814-28.
[http://dx.doi.org/10.1113/EP089624] [PMID: 34086374]
[69]
Welzel L, Bergin DH, Schidlitzki A, et al. Systematic evaluation of rationally chosen multitargeted drug combinations: a combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiol Dis 2021; 149: 105227.
[http://dx.doi.org/10.1016/j.nbd.2020.105227] [PMID: 33347976]
[70]
Soni N, Koushal P, Reddy BVK, Deshmukh R, Kumar P. Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav 2015; 48: 4-14.
[http://dx.doi.org/10.1016/j.yebeh.2015.04.056] [PMID: 26037843]
[71]
Rath S, Gupta BK, Bala NN, Dhal HC. Formulation and optimisation of immediate release telmisartan tablets using full factorial design. Int J Appl Pharm 2011; 3(3): 20-4.
[72]
Pushpa VH, Padmaja Shetty K, Suresha RN, Jayanthi MK, Ashwini V, Vaibhavi PS. Evaluation and comparison of anticonvulsant activity of telmisartan and olmesartan in experimentally induced animal models of epilepsy. J Clin Diagn Res 2014; 8(10): HC08-11.
[73]
Łukawski K, Janowska A, Jakubus T, Tochman-Gawda A, Czuczwar SJ. Angiotensin AT1 receptor antagonists enhance the anticonvulsant action of valproate in the mouse model of maximal electroshock. Eur J Pharmacol 2010; 640(1-3): 172-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.053] [PMID: 20465998]
[74]
Łukawski K, Janowska A, Jakubus T, Czuczwar SJ. Interactions between angiotensin AT 1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock. Fundam Clin Pharmacol 2014; 28(3): 277-83.
[http://dx.doi.org/10.1111/fcp.12023] [PMID: 23551463]
[75]
Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001; 42 (Suppl. 3): 8-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x] [PMID: 11520315]
[76]
Tchekalarova J, Georgiev V. Angiotensin peptides modulatory system: how is it implicated in the control of seizure susceptibility? Life Sci 2005; 76(9): 955-70.
[http://dx.doi.org/10.1016/j.lfs.2004.10.012] [PMID: 15607326]
[77]
Giffard RG, Monyer H, Christine CW, Choi DW. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 1990; 506(2): 339-42.
[http://dx.doi.org/10.1016/0006-8993(90)91276-M] [PMID: 1967968]
[78]
Ali A, Ahmad FJ, Pillai KK, Vohora D. Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy Behav 2004; 5(3): 322-8.
[http://dx.doi.org/10.1016/j.yebeh.2004.01.005] [PMID: 15145301]
[79]
Hanael E, Chai O, Konstanitin L, et al. Telmisartan as an add-on treatment for dogs with refractory idiopathic epilepsy: a nonrandomized, uncontrolled, open-label clinical trial. J Am Vet Med Assoc 2022; 260(7): 735-40.
[http://dx.doi.org/10.2460/javma.20.12.0683] [PMID: 35201995]
[80]
Ali AA, Pllai KP, Ahmad F, Dua Y. Anticonvulsant effect of amiloride in pentetrazole-induced status epilepticus in mice. Pharmacological Reports 2005; 58(2): 242-5. Available from: https://www.researchgate.net/publication/7078243_Anticonvulsant_effect_of_amiloride_in_pentetrazole-induced_status_epilepticus_in_mice
[81]
Liang J-J, Huang L-F, Chen X-M, Pan S-Q. Amiloride suppresses pilocarpine-induced seizures via ASICs other than NHE in rats. Int J Clinic Experiment Pathol 2015; 8(11): 14507-13.
[82]
Quansah H, N’Gouemo P. Amiloride and SN‐6 suppress audiogenic seizure susceptibility in genetically epilepsy‐prone rats. CNS Neurosci Ther 2014.
[83]
N’Gouemo P. Amiloride delays the onset of pilocarpine-induced seizures in rats. Brain Res 2008; 1222: 230-2.
[84]
Ide T, Ohtani K, Higo T, Tanaka M, Kawasaki Y, Tsutsui H. Ivabradine for the Treatment of Cardiovascular Diseases. Circ J 2019; 83(2): 252-60.
[http://dx.doi.org/10.1253/circj.CJ-18-1184] [PMID: 30606942]
[85]
Koruth JS, Lala A, Pinney S, Reddy VY, Dukkipati SR. The Clinical Use of Ivabradine. J Am Coll Cardiol 2017; 70(14): 1777-84.
[http://dx.doi.org/10.1016/j.jacc.2017.08.038] [PMID: 28958335]
[86]
Iacone Y, Morais TP, David F, et al. Systemic administration of ivabradine, a hyperpolarization‐activated cyclic nucleotide‐gated channel inhibitor, blocks spontaneous absence seizures. Epilepsia 2021; 62(7): 1729-43.
[http://dx.doi.org/10.1111/epi.16926] [PMID: 34018186]
[87]
Sawicka KM, Załuska K, Wawryniuk A, et al. Ivabradine attenuates the anticonvulsant potency of lamotrigine, but not that of lacosamide, pregabalin and topiramate in the tonic-clonic seizure model in mice. Epilepsy Res 2017; 133: 67-70.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.04.011] [PMID: 28458102]
[88]
Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008; 63(4): 444-53.
[http://dx.doi.org/10.1002/ana.21331] [PMID: 18389497]
[89]
Sunnen CN, Brewster AL, Lugo JN, et al. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia 2011; 52(11): 2065-75.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03280.x] [PMID: 21973019]
[90]
Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29(21): 6964-72.
[http://dx.doi.org/10.1523/JNEUROSCI.0066-09.2009] [PMID: 19474323]
[91]
Zhang Y, Wang Q, Dong J, et al. [Efficacy of brain-targeted rapamycin for treatment of epilepsy in rats]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2018; 47(5): 457-64. https://pubmed.ncbi.nlm.nih.gov/30693686/
[PMID: 30693686]
[92]
Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol 2018; 44(1): 6-17.
[http://dx.doi.org/10.1111/nan.12463] [PMID: 29359340]
[93]
Curatolo P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 2015; 52(3): 281-9.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.10.028] [PMID: 25591831]
[94]
Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia 2010; 51(1): 27-36.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02341.x] [PMID: 19817806]
[95]
French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016; 388(10056): 2153-63.
[http://dx.doi.org/10.1016/S0140-6736(16)31419-2] [PMID: 27613521]
[97]
Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74(5): 679-87.
[http://dx.doi.org/10.1002/ana.23960] [PMID: 23798472]
[99]
Cavalcante TMB, De Melo JMA, Lopes LB, et al. Ivabradine possesses anticonvulsant and neuroprotective action in mice. Biomed Pharmacother 2019; 109: 2499-512.
[http://dx.doi.org/10.1016/j.biopha.2018.11.096] [PMID: 30551511]
[100]
Łuszczki JJ, Prystupa A, Andres-Mach M, Marzęda E, Florek-Łuszczki M. Ivabradine (a hyperpolarization activated cyclic nucleotide-gated channel blocker) elevates the threshold for maximal electroshock-induced tonic seizures in mice. Pharmacol Rep 2013; 65(5): 1407-14.
[http://dx.doi.org/10.1016/S1734-1140(13)71500-7] [PMID: 24399738]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy