Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Hydrogel-based Drug Delivery System in Diabetes Management

Author(s): Renu Saharan, Jaspreet Kaur, Sanchit Dhankhar, Nitika Garg, Samrat Chauhan, Suresh Beniwal* and Himanshu Sharma

Volume 12, Issue 4, 2024

Published on: 10 October, 2023

Page: [289 - 299] Pages: 11

DOI: 10.2174/0122117385266276230928064235

Price: $65

Abstract

Background: It is estimated that there are over 200 million people living with diabetes mellitus (DM) all over the world. It is a metabolic condition caused by decreased insulin action or secretion. Diabetes Mellitus is also known as Type 2 Diabetes Mellitus. Type 1 diabetes mellitus and type 2 diabetes mellitus are the two most common types of DM. Treatment for type 1 diabetes often consists of insulin replacement therapy, while treatment for type 2 diabetes typically consists of oral hypoglycemics.

Objectives: Conventional dosing schedules for the vast majority of these medications come with a number of drawbacks, the most common of which are frequent dosing, a short half-life, and low bioavailability. Thus, innovative and regulated oral hypoglycemic medication delivery methods have been developed to reduce the limitations of standard dose forms.

Methods: The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar).

Results: Hydrogels made from biopolymers are three-dimensional polymeric networks that can be physically or chemically crosslinked. These networks are based on natural polymers and have an inherent hydrophilic quality because of the functional groups they contain. They have a very high affinity for biological fluids in addition to a high water content, softness, flexibility, permeability, and biocompatibility. The fact that these features are similar to those of a wide variety of soft living tissues paves the way for several potentials in the field of biomedicine. In this sense, hydrogels offer excellent platforms for the transport of medications and the controlled release of those drugs. Additionally, biopolymer-based hydrogels can be put as coatings on medical implants in order to improve the biocompatibility of the implants and to prevent medical diseases.

Conclusion: The current review focuses on the most recent advancements made in the field of using biopolymeric hydrogels that are physically and chemically crosslinked, in addition to hydrogel coatings, for the purpose of providing sustained drug release of oral hypoglycemics and avoiding problems that are associated with the traditional dosage forms of oral hypoglycemics.

Next »
Graphical Abstract

[1]
Dhankhar S, Chauhan S, Mehta DK, et al. Novel targets for potential therapeutic use in diabetes mellitus. Diabetol Metab Syndr 2023; 15(1): 17.
[http://dx.doi.org/10.1186/s13098-023-00983-5] [PMID: 36782201]
[2]
Atlas D. IDF Diabetes Atlas. (7th ed.), Brussels, Belgium: International Diabetes Federation 2015.
[3]
Aghazadeh Y, Nostro MC. Cell therapy for type 1 diabetes: Current and future strategies. Curr Diab Rep 2017; 17(6): 37.
[http://dx.doi.org/10.1007/s11892-017-0863-6] [PMID: 28432571]
[4]
Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5(4): 219-26.
[http://dx.doi.org/10.1038/nrendo.2009.21] [PMID: 19352320]
[5]
Mittal P, Dhankhar S, Chauhan S, et al. A review on natural antioxidants for their role in the treatment of parkinson’s disease. Pharmaceuticals 2023; 16(7): 908.
[http://dx.doi.org/10.3390/ph16070908] [PMID: 37513820]
[6]
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11(2): 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[7]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 (Suppl. 1): S62-9.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[8]
Mendis S, Davis S, Norrving B. Organizational update. Stroke 2015; 46(5): e121-2.
[http://dx.doi.org/10.1161/STROKEAHA.115.008097] [PMID: 25873596]
[9]
American Diabetes Association. 4. Lifestyle management: Standards of medical care in diabetes-2018. Diabetes Care 2018; 41 (Suppl. 1): S38-50.
[http://dx.doi.org/10.2337/dc18-S004] [PMID: 29222375]
[10]
Shomali M. Diabetes treatment in 2025: can scientific advances keep pace with prevalence? Ther Adv Endocrinol Metab 2012; 3(5): 163-73.
[http://dx.doi.org/10.1177/2042018812465639] [PMID: 23185688]
[11]
Kumar R, Kerins DM, Walther T. Cardiovascular safety of anti-diabetic drugs. Eur Heart J Cardiovasc Pharmacother 2016; 2(1): 32-43.
[http://dx.doi.org/10.1093/ehjcvp/pvv035] [PMID: 27533060]
[12]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[13]
Seedher N, Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm Dev Technol 2009; 14(2): 185-92.
[http://dx.doi.org/10.1080/10837450802498894] [PMID: 19519190]
[14]
Rojas LBA, Gomes MB. Metformin: An old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 2013; 5(1): 6.
[http://dx.doi.org/10.1186/1758-5996-5-6] [PMID: 23415113]
[15]
Kassem AA, Abd El-Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci 2017; 99: 75-84.
[http://dx.doi.org/10.1016/j.ejps.2016.12.005] [PMID: 27998799]
[16]
Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud 2014; 11(3-4): 202-30.
[http://dx.doi.org/10.1900/RDS.2014.11.202] [PMID: 26177483]
[17]
McFarlane SI. Antidiabetic medications and weight gain: Implications for the practicing physician. Curr Diab Rep 2009; 9(3): 249-54.
[http://dx.doi.org/10.1007/s11892-009-0040-7] [PMID: 19490828]
[18]
Reyes-Martínez JE, Ruiz-Pacheco JA, Flores-Valdéz MA, Elsawy MA, Vallejo-Cardona AA, Castillo-Díaz LA. Advanced hydrogels for treatment of diabetes. J Tissue Eng Regen Med 2019; 13(8): 1375-93.
[http://dx.doi.org/10.1002/term.2880] [PMID: 31066518]
[19]
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 2020; 149: 1262-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.048] [PMID: 32044364]
[20]
Chopra H, Dey PS, Das D, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021; 26(16): 4998.
[http://dx.doi.org/10.3390/molecules26164998] [PMID: 34443593]
[21]
Dubey M, Kesharwani P, Tiwari A, Chandel R, Raja K, Sivakumar T. Formulation and evaluation of floating microsphere containing anti diabetic drug. Int J Pharmaceut Chem Sci 2012; 1(3): 1387-96.
[22]
Samed N, Sharma V, Sundaramurthy A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: An efficient system for oral anti-diabetic formulation. Appl Surf Sci 2018; 449: 567-73.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.055]
[23]
Shrestha H, Bala R, Arora S. Lipid-based drug delivery systems. J Pharmaceut 2014; 2014: 801820.
[http://dx.doi.org/10.1155/2014/801820]
[24]
Andhariya JV, Burgess DJ. Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv 2016; 13(4): 593-608.
[http://dx.doi.org/10.1517/17425247.2016.1134484] [PMID: 26828874]
[25]
Monkhouse DC, Huq AS. Transdermal drug delivery-problems and promises. Drug Dev Ind Pharm 1988; 14(2-3): 183-209.
[http://dx.doi.org/10.3109/03639048809151970]
[26]
Khoee S, Yaghoobian M. Niosomes: A novel approach in modern drug delivery systems Nanostructures for drug delivery. Elsevier 2017; pp. 207-37.
[27]
Ummadi S, Shravani B, Rao N, Reddy MS, Sanjeev B. Overview on controlled release dosage form. System 2013; 7(8): 51-60.
[28]
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater 2018; 81: 20-42.
[http://dx.doi.org/10.1016/j.actbio.2018.09.049] [PMID: 30268916]
[29]
van Bemmelen JM. Das hydrogel und das krystallinische hydrat des kupferoxyds. Z Anorg Allg Chem 1894; 5(1): 466-83.
[http://dx.doi.org/10.1002/zaac.18940050156]
[30]
Thakur S, Thakur VK, Arotiba OA. History, classification, properties and application of hydrogels: An overview. Hydrogels: Recent Adv 2018; 29-50.
[31]
Choi HS, Kim JM, Lee KJ, Bae YC. Swelling behavior of thermosensitiveN-isopropylacrylamide-ethylN-acryloylglycine submicron-sized copolymer gel particles. J Appl Polym Sci 1998; 69(4): 799-806.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19980725)69:4<799::AID-APP19>3.0.CO;2-K]
[32]
Sharma K, Kumar V, Kaith B, Kalia S, Swart HC. Conducting polymer hydrogels and their applications. Conduc Poly Hybrids 2017; 193-221.
[http://dx.doi.org/10.1007/978-3-319-46458-9_7]
[33]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[34]
Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels … A review. Saudi Pharm J 2016; 24(5): 554-9.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[35]
Zu Y, Zhang Y, Zhao X, et al. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 2012; 50(1): 82-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.10.006] [PMID: 22020189]
[36]
Daoud Attieh M, Zhao Y, Elkak A, Falcimaigne-Cordin A, Haupt K. Enzyme-initiated free-radical polymerization of molecularly imprinted polymer nanogels on a solid phase with an immobilized radical source. Angew Chem Int Ed 2017; 56(12): 3339-43.
[http://dx.doi.org/10.1002/anie.201612667] [PMID: 28194847]
[37]
Zhang L, Zheng GJ, Guo YT, Zhou L, Du J, He H. Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pac J Trop Med 2014; 7(2): 136-40.
[http://dx.doi.org/10.1016/S1995-7645(14)60009-2] [PMID: 24461527]
[38]
Lugao AB, Malmonge SM. Use of radiation in the production of hydrogels. Nucl Instrum Methods Phys Res B 2001; 185(1-4): 37-42.
[http://dx.doi.org/10.1016/S0168-583X(01)00807-2]
[39]
El-Gendy A, Abou-Yousef H, Adel A, El-Shinnawy N. Bio-based hydrogel formed by gamma irradiation. Egypt J Chem 2016; 59(4): 647-62.
[http://dx.doi.org/10.21608/ejchem.2016.1441]
[40]
Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules 1997; 30(18): 5255-64.
[http://dx.doi.org/10.1021/ma970345a]
[41]
Gyles DA, Castro LD, Silva JOC Jr, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 2017; 88: 373-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.027]
[42]
Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 2012; 64: 223-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.009] [PMID: 11755704]
[43]
Carpi F. Electromechanically active polymers: A concise reference. Springer 2016.
[44]
Hirschberg JHKK, Brunsveld L, Ramzi A, Vekemans JAJM, Sijbesma RP, Meijer EW. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000; 407(6801): 167-70.
[http://dx.doi.org/10.1038/35025027] [PMID: 11001050]
[45]
Shi S, Peng X, Liu T, Chen YN, He C, Wang H. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017; 111: 168-76.
[http://dx.doi.org/10.1016/j.polymer.2017.01.051]
[46]
Li G, Zhang H, Fortin D, Xia H, Zhao Y. Poly (vinyl alcohol)–poly (ethylene glycol) double-network hydrogel: A general approach to shape memory and self-healing functionalities. Langmuir 2015; 31(42): 11709-16.
[http://dx.doi.org/10.1021/acs.langmuir.5b03474] [PMID: 26442631]
[47]
Hassan CM, Peppas NA. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers·PVA Hydrogels, Anionic Polymerisation Nanocomposite. Berlin, Heidelberg: Springer 2000; 153: pp. 37-65.
[48]
Vagias A, Sergelen K, Koynov K, et al. Diffusion and permeation of labeled IgG in grafted hydrogels. Macromolecules 2017; 50(12): 4770-9.
[http://dx.doi.org/10.1021/acs.macromol.7b00514]
[49]
Liu M, Wei X, Zheng Z, et al. Recent advances in nano-drug delivery systems for the treatment of diabetic wound healing. Int J Nanomedicine 2023; 18: 1537-60.
[http://dx.doi.org/10.2147/IJN.S395438] [PMID: 37007988]
[50]
Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006; 27(22): 4079-86.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.030] [PMID: 16600365]
[51]
Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Ectopic bone formation in collagen sponge self-assembled peptide–amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials 2006; 27(29): 5089-98.
[http://dx.doi.org/10.1016/j.biomaterials.2006.05.050] [PMID: 16782187]
[52]
Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 2006; 27(34): 5836-44.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.003] [PMID: 16930687]
[53]
Langer R. Tissue engineering: Perspectives, challenges, and future directions. Tissue Eng 2007; 13(1): 1-2.
[http://dx.doi.org/10.1089/ten.2006.0219] [PMID: 17518575]
[54]
Kopeček J. Hydrogel biomaterials: A smart future? Biomaterials 2007; 28(34): 5185-92.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.044] [PMID: 17697712]
[55]
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1638-49.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[56]
Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int J Pharm 2008; 349(1-2): 249-55.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.038] [PMID: 17875373]
[57]
Satish C, Satish K, Shivakumar H. Hydrogels as controlled drug delivery systems: Synthesis, crosslinking, water and drug transport mechanism. Indian J Pharm Sci 2006; 68(2)
[58]
Gupta NV, Satish C, Shivakumar H. Preparation and characterization of gelatin-poly (methacrylic acid) interpenetrating polymeric network hydrogels as a pH-sensitive delivery system for glipizide. Indian J Pharm Sci 2007; 69(1): 64.
[http://dx.doi.org/10.4103/0250-474X.32110]
[59]
Vishal Gupta N, Shivakumar HG. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. Daru 2010; 18(3): 200-10.
[PMID: 22615618]
[60]
Sun P, Li P, Li YM, Wei Q, Tian LH. A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery. J Biomed Mater Res B Appl Biomater 2011; 97B(1): 175-83.
[http://dx.doi.org/10.1002/jbm.b.31801] [PMID: 21290595]
[61]
Vaghani SS, Patel MM. Hydrogels based on interpenetrating network of chitosan and polyvinyl pyrrolidone for pH-sensitive delivery of repaglinide. Curr Drug Discov Technol 2011; 8(2): 126-35.
[http://dx.doi.org/10.2174/157016311795563848] [PMID: 21513486]
[62]
Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Control Release 2013; 165(2): 129-38.
[http://dx.doi.org/10.1016/j.jconrel.2012.11.005] [PMID: 23159827]
[63]
Huynh DP, Nguyen MK, Pi BS, et al. Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials 2008; 29(16): 2527-34.
[http://dx.doi.org/10.1016/j.biomaterials.2008.02.016] [PMID: 18329707]
[64]
Bajpai SK, Chand N, Soni S. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels. J Biomater Sci Polym Ed 2015; 26(14): 947-62.
[http://dx.doi.org/10.1080/09205063.2015.1068547] [PMID: 26135033]
[65]
Bajpai SK, Chand N, Tiwari S, Soni S. Swelling behavior of cross-linked dextran hydrogels and preliminary Gliclazide release behavior. Int J Biol Macromol 2016; 93(Pt A): 978-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.075] [PMID: 27664925]
[66]
Bajpai SK, Swarnkar MP. Controlled release of anti-diabetic drug metformin hydrochloride from cellulose/PEG/poly (SA) ter-polymeric hydrogels. J Macromol Sci Part A Pure Appl Chem 2017; 54(3): 186-93.
[http://dx.doi.org/10.1080/10601325.2017.1265406]
[67]
Zeng Z, Jiang G, Liu T, et al. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Biodes Manuf 2021; 4(4): 902-11.
[http://dx.doi.org/10.1007/s42242-021-00140-9]
[68]
Kamaliya B, Dave PN, Macwan PM. Rheological investigations and swelling behaviour of hydrogels based on gum ghatti-cl-poly (N-isopropyl acrylamide-co-acrylic acid)/CoFe2O4 nanoparticles. Polym Bull 2022; 1-22.
[69]
Ubaid M. Development and Characterization of Hydrogels Loaded with Antidiabetic Drug. Islamabad: COMSATS Institute of Information Technology 2019.
[70]
Chengnan L, Pagneux Q, Voronova A, et al. Near-infrared light activatable hydrogels for metformin delivery. Nanoscale 2019; 11(34): 15810-20.
[http://dx.doi.org/10.1039/C9NR02707F] [PMID: 31270521]
[71]
Tao C, Wang J, Qin S, et al. Fabrication of pH-sensitive graphene oxide-drug supramolecular hydrogels as controlled release systems. J Mater Chem 2012; 22(47): 24856-61.
[http://dx.doi.org/10.1039/c2jm34461k]
[72]
Zhuang Y, Yang X, Li Y, et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Appl Mater Interfaces 2019; 11(33): 29604-18.
[http://dx.doi.org/10.1021/acsami.9b10346] [PMID: 31361112]
[73]
Chen Y, Luan J, Shen W, Lei K, Yu L, Ding J. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl Mater Interfaces 2016; 8(45): 30703-13.
[http://dx.doi.org/10.1021/acsami.6b09415] [PMID: 27786459]
[74]
Maiti S, Dey P, Banik A, Sa B, Ray S, Kaity S. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv 2010; 17(5): 288-300.
[http://dx.doi.org/10.3109/10717541003706265] [PMID: 20350054]
[75]
More SM, Kulkarni RV, Sa B, Kayane NV. Glutaraldehyde-crosslinked poly(vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug. J Appl Polym Sci 2010; 116(3)
[http://dx.doi.org/10.1002/app.31627]
[76]
Li K, Yu L, Liu X, Chen C, Chen Q, Ding J. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013; 34(11): 2834-42.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.013] [PMID: 23352120]
[77]
Yang Y, Chen S, Liu Y, et al. Long-term treatment of polysaccharides-based hydrogel microparticles as oral insulin delivery in streptozotocin-induced type 2 diabetic mice. Biomed Pharmacother 2021; 133: 110941.
[http://dx.doi.org/10.1016/j.biopha.2020.110941] [PMID: 33232923]
[78]
Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 2020; 246: 116617.
[http://dx.doi.org/10.1016/j.carbpol.2020.116617] [PMID: 32747257]
[79]
Maiti S, Mukherjee S. Controlled drug delivery attributes of co-polymer micelles and xanthan-O-carboxymethyl hydrogel particles. Int J Biol Macromol 2014; 70: 37-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.015] [PMID: 24954271]
[80]
Zhang M, Song CC, Du FS, Li ZC. Supersensitive oxidation-responsive biodegradable PEG hydrogels for glucose-triggered insulin delivery. ACS Appl Mater Interfaces 2017; 9(31): 25905-14.
[http://dx.doi.org/10.1021/acsami.7b08372] [PMID: 28714308]
[81]
Farahani BV, Ghasemzaheh H, Afraz S. Intelligent semi-IPN chitosan-PEG-PAAm hydrogel for closed-loop insulin delivery and kinetic modeling. RSC Advances 2016; 6(32): 26590-8.
[http://dx.doi.org/10.1039/C5RA28188A]
[82]
Box-Steffensmeier JM, Burgess J, Corbetta M, et al. The future of human behaviour research. Nat Hum Behav 2022; 6(1): 15-24.
[http://dx.doi.org/10.1038/s41562-021-01275-6] [PMID: 35087189]
[83]
Winiarska A, Filipska I, Knysak M, Stompór T. Dietary phosphorus as a marker of mineral metabolism and progression of diabetic kidney disease. Nutrients 2021; 13(3): 789.
[http://dx.doi.org/10.3390/nu13030789] [PMID: 33673618]
[84]
Li H, Bao M, Nie Y. Extracellular matrix-based biomaterials for cardiac regeneration and repair. Heart Fail Rev 2021; 26(5): 1231-48.
[http://dx.doi.org/10.1007/s10741-020-09953-9] [PMID: 32306220]
[85]
Singh N, Herzer S. Downstream processing technologies/capturing and final purification: Opportunities for innovation, change, and improvement. A review of downstream processing developments in protein purification. Adv Biochem Eng Biotechnol 2018; 165: 115-78.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy