Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy

Author(s): Sonia Singh*, Khushi Sharma and Himanshu Sharma

Volume 12, Issue 4, 2024

Published on: 29 September, 2023

Page: [300 - 313] Pages: 14

DOI: 10.2174/0122117385273293230927081513

Price: $65

Abstract

Nanosponges are porous solid cross-linked polymeric nanostructures. This study focuses on cyclodextrin-based nanosponges. Nanosponges based on cyclodextrin can form interactions with various lipophilic or hydrophilic compounds. The release of the entrapped molecules can be altered by altering the structure to obtain either a longer or faster release kinetics. The nanosponges might increase the aqueous solubility of weakly water-soluble compounds, develop long-lasting delivery systems, or construct novel drug carriers for nanomedicine. CD-NS (cyclodextrin-based nanosponges) are evolving as flexible and promising nanomaterials for medication administration, sensing, and environmental cleanup. CD-NS are three-dimensional porous structures of cyclodextrin molecules cross-linked by a suitable polymeric network, resulting in a large surface area. This overview covers CD-NS synthesis methods and applications.

Graphical Abstract

[1]
Yadav GV, Panchory HP. € OEnanosponges €“A boon to the targeted drug delivery systemâ€. J Drug Deliv Ther 2013; 3(4): 151-5.
[http://dx.doi.org/10.22270/jddt.v3i4.564]
[2]
Bhowmik H, Venkatesh DN, Kuila A, Kumar KH. Nanosponges: A review. Int J appl pharmac 2018; 7: 1-5.
[http://dx.doi.org/10.22159/ijap.2018v10i4.25026]
[3]
Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[4]
Shivani S, Poladi KK. Nanosponges-novel emerging drug delivery system: A review. Int J Pharm Sci Res 2015; 6(2): 529.
[5]
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: Past, present and future. Nat Rev Drug Discov 2004; 3(12): 1023-35.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[6]
Frank DW, Gray JE, Weaver RN. Cyclodextrin nephrosis in the rat. Am J Pathol 1976; 83(2): 367-82.
[PMID: 1266946]
[7]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8(1): 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[8]
Trotta F. Cyclodextrin nanosponges and their applications 2011.
[http://dx.doi.org/10.1002/9780470926819.ch17]
[9]
Swaminathan S, Cavalli R, Trotta F. Cyclodextrin‐based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(4): 579-601.
[http://dx.doi.org/10.1002/wnan.1384] [PMID: 26800431]
[10]
Mognetti B, Barberis A, Marino S, et al. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J Incl Phenom Macrocycl Chem 2012; 74(1-4): 201-10.
[http://dx.doi.org/10.1007/s10847-011-0101-9]
[11]
Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem 2013; 77(1-4): 135-45.
[http://dx.doi.org/10.1007/s10847-012-0224-7]
[12]
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173: 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[13]
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2018; 535(1-2): 272-84.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018] [PMID: 29138045]
[14]
Osmani RA, Kulkarni P, Manjunatha S, Vaghela R, Bhosale R. Cyclodextrin nanosponge-based systems in drug delivery and nanotherapeutics: Current progress and future prospects. Org Mat Smart Nanocarr Drug Deliv 2018; 1: 659-717.
[15]
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin N. Cyclodextrins, from molecules to applications. Environ Chem Lett 2018; 16: 1361-75.
[16]
Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011; 12(1): 279-86.
[http://dx.doi.org/10.1208/s12249-011-9584-3] [PMID: 21240574]
[17]
Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem 2013; 75(3-4): 315-22.
[http://dx.doi.org/10.1007/s10847-012-0186-9]
[18]
Singireddy A, Subramanian S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Particul Sci Technol 2016; 34(3): 341-6.
[http://dx.doi.org/10.1080/02726351.2015.1081658]
[19]
Dora CP, Trotta F, Kushwah V, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym 2016; 137: 339-49.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.080] [PMID: 26686138]
[20]
Bergal A, Elmas A, Akyüz G. A new type and effective approach for anti-cancer drug delivery application-A nano sponge. Nano Res Appl 2019; 5(3:1): 1.
[21]
Li D, Ma M. Cyclodextrin polymer separation materials. WO289822197, 1998. 09/214,216. 2001 Jul 19.
[22]
Mondal S, Palit D. Prospects and implementation of nanotechnology in environmental remediation and clean up.InNatural Resources Conservation and Advances for Sustainability. Elsevier 2022; pp. 271-87.
[http://dx.doi.org/10.1016/B978-0-12-822976-7.00020-X]
[23]
Ma X, Chen Z, Chen R, Zheng X, Chen X, Lan R. Imprinted β-cyclodextrin polymers using naringin as template. Polym Int 2011; 60(10): 1455-60.
[http://dx.doi.org/10.1002/pi.3101]
[24]
Kyzas GZ, Lazaridis NK, Bikiaris DN. Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr Polym 2013; 91(1): 198-208.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.016] [PMID: 23044123]
[25]
Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 2013; 9(6): 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[26]
Hayiyana Z, Choonara Y, Makgotloe A, Toit L, Kumar P, Pillay V. Ester-based hydrophilic cyclodextrin nanosponges for topical ocular drug delivery. Curr Pharm Des 2017; 22(46): 6988-97.
[http://dx.doi.org/10.2174/1381612822666161216113207] [PMID: 27981908]
[27]
Ferro M, Castiglione F, Pastori N, et al. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy. Beilstein J Org Chem 2017; 13(1): 182-94.
[http://dx.doi.org/10.3762/bjoc.13.21] [PMID: 28228859]
[28]
Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R. Glutathione bioresponsive cyclodextrin nanosponges. ChemPlusChem 2016; 81(5): 439-43.
[http://dx.doi.org/10.1002/cplu.201500531] [PMID: 31968779]
[29]
Swaminathan S, Cavalli R, Trotta F, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem 2010; 68(1-2): 183-91.
[http://dx.doi.org/10.1007/s10847-010-9765-9]
[30]
Ferro M, Castiglione F, Punta C, et al. Anomalous diffusion of Ibuprofen in cyclodextrin nanosponge hydrogels: An HRMAS NMR study. Beilstein J Org Chem 2014; 10(1): 2715-23.
[http://dx.doi.org/10.3762/bjoc.10.286] [PMID: 25550735]
[31]
Shende PK, Gaud RS, Bakal R, Patil D. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B Biointerfaces 2015; 136: 105-10.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.002] [PMID: 26364091]
[32]
Olteanu AA, Arama CC, Bleotu C, Lupuleasa D, Monciu CM. Investigation of cyclodextrin based nanosponges complexes with angiotensin I converting enzyme inhibitors. Farmacia 2015; 63: 492-503.
[33]
Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem 2022; 384: 132467.
[http://dx.doi.org/10.1016/j.foodchem.2022.132467] [PMID: 35219231]
[34]
Daga M, Ullio C, Argenziano M, et al. GSH-targeted nanosponges increase doxorubicin-induced toxicity “in vitro” and “in vivo” in cancer cells with high antioxidant defenses. Free Radic Biol Med 2016; 97: 24-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.009] [PMID: 27184956]
[35]
Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. Int J Pharm 2012; 428(1-2): 152-63.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.038] [PMID: 22388054]
[36]
Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem 2007; 57(1-4): 89-94.
[http://dx.doi.org/10.1007/s10847-006-9216-9]
[37]
Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem 2006; 56(1-2): 209-13.
[http://dx.doi.org/10.1007/s10847-006-9085-2]
[38]
Minelli R, Cavalli R, Ellis L, et al. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur J Pharm Sci 2012; 47(4): 686-94.
[http://dx.doi.org/10.1016/j.ejps.2012.08.003] [PMID: 22917641]
[39]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery: Physicochemical characterization, drug release, stability and cytotoxicity. J Drug Deliv Sci Technol 2018; 45: 45-53.
[http://dx.doi.org/10.1016/j.jddst.2018.03.004]
[40]
Daga M, de Graaf IAM, Argenziano M, et al. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol In Vitro 2020; 65: 104800.
[http://dx.doi.org/10.1016/j.tiv.2020.104800] [PMID: 32084521]
[41]
Dai Y, Li Q, Zhang S, et al. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J Drug Deliv Sci Technol 2021; 64: 102650.
[http://dx.doi.org/10.1016/j.jddst.2021.102650]
[42]
Palminteri M, Dhakar NK, Ferraresi A, et al. Cyclodextrin nanosponge for the GSH-mediated delivery of resveratrol in human cancer cells. Nanotheranostics 2021; 5(2): 197-212.
[http://dx.doi.org/10.7150/ntno.53888] [PMID: 33564618]
[43]
Khalid Q, Ahmad M, Minhas MU, Batool F, Malik NS, Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J Drug Deliv Sci Technol 2021; 61: 102089.
[http://dx.doi.org/10.1016/j.jddst.2020.102089]
[44]
Caldera F, Tannous M, Cavalli R, Zanetti M, Trotta F. Evolution of cyclodextrin nanosponges. Int J Pharm 2017; 531(2): 470-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.072] [PMID: 28645630]
[45]
Rizvi SSB, Akhtar N, Minhas MU, Mahmood A, Khan KU. Synthesis and characterization of carboxymethyl chitosan nanosponges with cyclodextrin blends for drug solubility improvement. Gels 2022; 8(1): 55.
[http://dx.doi.org/10.3390/gels8010055] [PMID: 35049590]
[46]
Krabicová I, Appleton SL, Tannous M, et al. History of cyclodextrin nanosponges. Polymers 2020; 12(5): 1122.
[http://dx.doi.org/10.3390/polym12051122] [PMID: 32423091]
[47]
Matencio A, Dhakar NK, Bessone F, et al. Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydr Polym 2020; 231: 115763.
[48]
Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv 2013; 4(6): 687-704.
[http://dx.doi.org/10.4155/tde.13.38] [PMID: 23738667]
[49]
Martínez-Vélez N, Gomez-Manzano C, Fueyo J, Patiño-García A, Alonso MM. Oncolytic virotherapy for gliomas: A preclinical and clinical summary.InGene therapy in neurological disorders. Academic Press 2018; pp. 357-84.
[50]
Çırpanlı Y, Allard E, Passirani C, et al. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int J Pharm 2011; 403(1-2): 201-6.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.015] [PMID: 20951783]
[51]
Lu L, Zhao X, Fu T, et al. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 2020; 230: 119666.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119666] [PMID: 31831222]
[52]
Beevers CS, Huang S. Pharmacological and clinical properties of curcumin. Botanics 2011; 1: 5-18.
[53]
Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014; 35(10): 3365-83.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[54]
Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res Treat 2014; 46(1): 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2]
[55]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[56]
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008; 267(1): 133-64.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025] [PMID: 18462866]
[57]
Wang YJ, Pan MH, Cheng AL, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 1997; 15(12): 1867-76.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[58]
Razi MA, Wakabayashi R, Goto M, Kamiya N. Formation and characterization of caseinate–chitosan nanocomplexes for encapsulation of curcumin. J Chem Eng of Jpn 2018; 51(5): 445-53.
[http://dx.doi.org/10.1252/jcej.17we293]
[59]
Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol 2007; 5(4): 567-76.
[http://dx.doi.org/10.1089/adt.2007.064] [PMID: 17767425]
[60]
Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol 2007; 595: 453-70.
[http://dx.doi.org/10.1007/978-0-387-46401-5_20]
[61]
Bilensoy E, Gürkaynak O, Ertan M, Şen M, Hıncal AA. Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J Pharm Sci 2008; 97(4): 1519-29.
[http://dx.doi.org/10.1002/jps.21111] [PMID: 17705171]
[62]
Surapaneni MS, Das SK, Das NG. Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: Current status and challenges. ISRN Pharmacol 2012; 2012: 623139.
[http://dx.doi.org/10.5402/2012/623139]
[63]
Esfandyari-Manesh M, Mostafavi SH, Majidi RF, et al. Improved anticancer delivery of paclitaxel by albumin surface modification of PLGA nanoparticles. Daru 2015; 23(1): 28.
[http://dx.doi.org/10.1186/s40199-015-0107-8] [PMID: 25903677]
[64]
Agüeros M, Ruiz-Gatón L, Vauthier C, et al. Combined hydroxypropyl-β-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 2009; 38(4): 405-13.
[http://dx.doi.org/10.1016/j.ejps.2009.09.010] [PMID: 19765652]
[65]
He H, Chen S, Zhou J, et al. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 2013; 34(21): 5344-58.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.068] [PMID: 23591391]
[66]
Baek JS, Cho CW. 2-Hydroxypropyl- β -cyclodextrin-modified SLN of paclitaxel for overcoming p-glycoprotein function in multidrug-resistant breast cancer cells. J Pharm Pharmacol 2012; 65(1): 72-8.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01578.x] [PMID: 23215690]
[67]
Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv 2010; 17(6): 419-25.
[http://dx.doi.org/10.3109/10717541003777233] [PMID: 20429848]
[68]
Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R. Paclitaxel loaded nanosponges: In-vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv 2011; 8(2): 194-202.
[http://dx.doi.org/10.2174/156720111794479934] [PMID: 21235471]
[69]
Tian Y, Song W, Li D, Cai L, Zhao Y. Resveratrol as a natural regulator of autophagy for prevention and treatment of cancer. OncoTargets Ther 2019; 12: 8601-9.
[http://dx.doi.org/10.2147/OTT.S213043] [PMID: 31802896]
[70]
Chimento A, De Amicis F, Sirianni R, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci 2019; 20(6): 1381.
[http://dx.doi.org/10.3390/ijms20061381] [PMID: 30893846]
[71]
Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C. Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 2008; 29(2): 381-9.
[http://dx.doi.org/10.1093/carcin/bgm271] [PMID: 18048384]
[72]
Trincheri NF, Nicotra G, Follo C, Castino R, Isidoro C. Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis 2006; 28(5): 922-31.
[http://dx.doi.org/10.1093/carcin/bgl223] [PMID: 17116725]
[73]
Seca C, Ferraresi A, Phadngam S, Vidoni C, Isidoro C. Autophagy-dependent toxicity of amino-functionalized nanoparticles in ovarian cancer cells. J Mater Chem B Mater Biol Med 2019; 7(35): 5376-91.
[http://dx.doi.org/10.1039/C9TB00935C] [PMID: 31410434]
[74]
Panzarini E, Inguscio V, Tenuzzo B, Carata E, Dini L. Nanomaterials and autophagy: New insights in cancer treatment. Cancers 2013; 5(4): 296-319.
[http://dx.doi.org/10.3390/cancers5010296] [PMID: 24216709]
[75]
Thongchot S, Ferraresi A, Vidoni C, et al. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells. Cancer Lett 2018; 430: 160-71.
[http://dx.doi.org/10.1016/j.canlet.2018.05.031] [PMID: 29802929]
[76]
Vallino L, Ferraresi A, Vidoni C, et al. Modulation of non-coding RNAs by resveratrol in ovarian cancer cells: In silico analysis and literature review of the anti-cancer pathways involved. J Tradit Complement Med 2020; 10(3): 217-29.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.006] [PMID: 32670816]
[77]
Ferraresi A, Titone R, Follo C, et al. The protein restriction mimetic resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells. Mol Carcinog 2017; 56(12): 2681-91.
[http://dx.doi.org/10.1002/mc.22711] [PMID: 28856729]
[78]
Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 2011; 1215(1): 150-60.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05852.x] [PMID: 21261654]
[79]
Jiang L, Xia N, Wang F, et al. Preparation and characterization of curcumin/β-cyclodextrin nanoparticles by nanoprecipitation to improve the stability and bioavailability of curcumin. Lebensm Wiss Technol 2022; 171: 114149.
[http://dx.doi.org/10.1016/j.lwt.2022.114149]
[80]
Nagy NZ, Varga Z, Mihály J, Domján A, Fenyvesi É, Kiss É. Highly enhanced curcumin delivery applying association type nanostructures of block copolymers, cyclodextrins and polycyclodextrins. Polymers 2020; 12(9): 2167.
[http://dx.doi.org/10.3390/polym12092167] [PMID: 32971985]
[81]
Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-based nanosponges: Overview and opportunities. Front Chem 2022; 10: 859406.
[http://dx.doi.org/10.3389/fchem.2022.859406] [PMID: 35402388]
[82]
Iravani S, Varma RS. Nanosponges for water treatment: Progress and challenges. Appl Sci 2022; 12(9): 4182.
[http://dx.doi.org/10.3390/app12094182]
[83]
Iravani S, Varma RS. Nanosponges for drug delivery and cancer therapy: Recent advances. Nanomaterials 2022; 12(14): 2440.
[http://dx.doi.org/10.3390/nano12142440] [PMID: 35889665]
[84]
Lembo D, Trotta F, Cavalli R. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives. Nanomedicine 2018; 13(5): 477-80.
[http://dx.doi.org/10.2217/nnm-2017-0383] [PMID: 29376455]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy