Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Research Article

Validation of Bioprinting Technique for Skin Equivalent Models

Author(s): Luiza Meurer Brand, Marcelo Lazzaron Lamers and Bibiana Franzen Matte*

Volume 2, 2023

Published on: 10 October, 2023

Article ID: e101023221917 Pages: 7

DOI: 10.2174/0126667797250440231001193020

Price: $65

Abstract

Background: Skin pigmentation is a complex process; thus, skin equivalent methodologies that can reproduce the main skin structures and pigmentation have been studied. To improve the skin equivalent model, bioprinting technology has emerged, allowing for the reproduction of the complex, functional, and personalized three-dimensional architecture of the skin.

Objective: Our aim was to develop a skin equivalent model and a pigmented skin equivalent model and compare the manually produced models with the bioprinted models.

Methods: The study was conducted using fibroblasts, keratinocytes, and melanocytes cell lines with a 3D cell culture technique, either through bioprinting or manual production. Additionally, the bleaching potential of the model was evaluated by applying kojic acid.

Results: It was observed that the bioprinted skin equivalent model demonstrated similar cell architecture and gene expression compared to the manually produced model. A pigmented skin equivalent model was developed and also bioprinted. The pigmented bioprinted skin equivalent model exhibited similar pigmentation behavior and lightening potential as the manual model.

Conclusion:We have validated the use of bioprinting for reproducing skin equivalent model and cost-effective scaling of skin production.

[1]
Chakraborty, J.; Mu, X.; Pramanick, A.; Kaplan, D.L.; Ghosh, S. Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 287, 121672.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121672] [PMID: 35835001]
[2]
Antezana, P.E.; Municoy, S.; Álvarez-Echazú, M.I.; Santo-Orihuela, P.L.; Catalano, P.N.; Al-Tel, T.H.; Kadumudi, F.B.; Dolatshahi-Pirouz, A.; Orive, G.; Desimone, M.F. The 3D bioprinted scaffolds for wound healing. Pharmaceutics, 2022, 14(2), 464.
[http://dx.doi.org/10.3390/pharmaceutics14020464] [PMID: 35214197]
[3]
Tan, B.; Gan, S.; Wang, X.; Liu, W.; Li, X. Applications of 3D bioprinting in tissue engineering: Advantages, deficiencies, improvements, and future perspectives. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(27), 5385-5413.
[http://dx.doi.org/10.1039/D1TB00172H] [PMID: 34124724]
[4]
Thayer, P.; Martinez, H.; Gatenholm, E. History and trends of 3D bioprinting. Methods Mol. Biol., 2020, 2140, 3-18.
[http://dx.doi.org/10.1007/978-1-0716-0520-2_1] [PMID: 32207102]
[5]
Kim, B.S.; Lee, J.S.; Gao, G.; Cho, D.W. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication, 2017, 9(2), 025034.
[http://dx.doi.org/10.1088/1758-5090/aa71c8] [PMID: 28586316]
[6]
Phang, S.J.; Basak, S.; Teh, H.X.; Packirisamy, G.; Fauzi, M.B.; Kuppusamy, U.R.; Neo, Y.P.; Looi, M.L. Advancements in extracellular matrix-based biomaterials and biofabrication of 3D organotypic skin models. ACS Biomater. Sci. Eng., 2022, 8(8), 3220-3241.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00342] [PMID: 35861577]
[7]
Del Bino, S.; Duval, C.; Bernerd, F. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. Int. J. Mol. Sci., 2018, 19(9), 2668.
[http://dx.doi.org/10.3390/ijms19092668] [PMID: 30205563]
[8]
Xiao, L.; Mochizuki, M.; Nakahara, T.; Miwa, N. Hydrogen-generating silica material prevents uva-ray-induced cellular oxidative stress, cell death, Collagen loss and melanogenesis in human cells and 3D skin equivalents. Antioxidants, 2021, 10(1), 76.
[http://dx.doi.org/10.3390/antiox10010076] [PMID: 33430157]
[9]
Lee, S.H.; Bae, I.H.; Lee, E.S.; Kim, H.J.; Lee, J.; Lee, C.S. Glucose exerts an Anti-Melanogenic effect by indirect inactivation of tyrosinase in melanocytes and a human skin equivalent. Int. J. Mol. Sci., 2020, 21(5), 1736.
[http://dx.doi.org/10.3390/ijms21051736] [PMID: 32138354]
[10]
Lee, J.H.; Lee, E.S.; Bae, I.H.; Hwang, J.A.; Kim, S.H.; Kim, D.Y.; Park, N.H.; Rho, H.S.; Kim, Y.J.; Oh, S.G.; Lee, C.S. Antimelanogenic efficacy of melasolv (3,4,5-Trimethoxycinnamate Thymol Ester) in melanocytes and three-dimensional human skin equivalent. Skin Pharmacol. Physiol., 2017, 30(4), 190-196.
[http://dx.doi.org/10.1159/000477356] [PMID: 28662511]
[11]
Abd, E.; Yousuf, S.; Pastore, M.; Telaprolu, K.; Mohammed, Y.; Namjoshi, S.; Grice, J.; Roberts, M. Skin models for the testing of transdermal drugs. Clin. Pharmacol., 2016, 8(8), 163-176.
[http://dx.doi.org/10.2147/CPAA.S64788] [PMID: 27799831]
[12]
Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res., 1992, 9(5), 663-669.
[http://dx.doi.org/10.1023/A:1015810312465] [PMID: 1608900]
[13]
Pugh, W.J.; Degim, I.T.; Hadgraft, J. Epidermal permeability–penetrant structure relationships: 4, QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge. Int. J. Pharm., 2000, 197(1-2), 203-211.
[http://dx.doi.org/10.1016/S0378-5173(00)00326-4] [PMID: 10704807]
[14]
Flynn, G.L. Physicochemical determinants of skin absorption. In: Principles of route-to route extrapolation for risk assessment; Garrity, T.R.; Henry, C.J., Eds.; Elsevier: New York, 1990; pp. 93-127.
[15]
Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to biological skin in permeation studies: current trends and possibilities. Pharmaceutics, 2020, 12(2), 152.
[http://dx.doi.org/10.3390/pharmaceutics12020152] [PMID: 32070011]
[16]
Mini, C.A.; Dreossi, S.A.C.; Abe, F.R.; Maria-Engler, S.S.; Oliveira, D.P. Immortalized keratinocytes cells generates an effective model of epidermal human equivalent for irritation and corrosion tests. Toxicol. In Vitro, 2021, 71, 105069.
[http://dx.doi.org/10.1016/j.tiv.2020.105069] [PMID: 33309870]
[17]
Markiewicz, E.; Jerome, J.; Mammone, T.; Idowu, O.C. Anti-glycation and anti-aging properties of resveratrol derivatives in the in-vitro 3d models of human skin. Clin. Cosmet. Investig. Dermatol., 2022, 15, 911-927.
[http://dx.doi.org/10.2147/CCID.S364538] [PMID: 35615726]
[18]
Lee, V.; Singh, G.; Trasatti, J.P.; Bjornsson, C.; Xu, X.; Tran, T.N.; Yoo, S.S.; Dai, G.; Karande, P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods, 2014, 20(6), 473-484.
[http://dx.doi.org/10.1089/ten.tec.2013.0335] [PMID: 24188635]
[19]
Ramasamy, S.; Davoodi, P.; Vijayavenkataraman, S.; Teoh, J.H.; Thamizhchelvan, A.M.; Robinson, K.S.; Wu, B.; Fuh, J.Y.H.; DiColandrea, T.; Zhao, H.; Lane, E.B.; Wang, C.H. Optimized construction of a full thickness human skin equivalent using 3D bioprinting and a PCL/collagen dermal scaffold. Bioprinting, 2021, 21, e00123.
[http://dx.doi.org/10.1016/j.bprint.2020.e00123]
[20]
Cubo, N.; Garcia, M.; del Cañizo, J.F.; Velasco, D.; Jorcano, J.L. 3D bioprinting of functional human skin: Production and in vivo analysis. Biofabrication, 2016, 9(1), 015006.
[http://dx.doi.org/10.1088/1758-5090/9/1/015006] [PMID: 27917823]
[21]
Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology, 2017, 32(4), 266-277.
[http://dx.doi.org/10.1152/physiol.00036.2016] [PMID: 28615311]
[22]
Ng, W.L.; Qi, J.T.Z.; Yeong, W.Y.; Naing, M.W. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication, 2018, 10(2), 025005.
[http://dx.doi.org/10.1088/1758-5090/aa9e1e] [PMID: 29360631]
[23]
Baswan, S.M.; Yim, S.; Leverett, J.; Scholten, J.; Pawelek, J. Cytidine decreases melanin content in a reconstituted three-dimensional human epidermal model. Arch. Dermatol. Res., 2019, 311(3), 249-250.
[http://dx.doi.org/10.1007/s00403-019-01897-x] [PMID: 30788567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy