[1]
Satyanarayana, A.; Rao, P.G.P.; Rao, D.G. Chemistry, processing and toxicology of annatto (Bixa orellana L.). J. Food Sci. Technol., 2003, 40(2), 131-141.
[3]
Tupuna, D.S.; Paese, K.; Guterres, S.S.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O. Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind. Crop. Prod; Elsevier, 2018, 111, 846-855.
[6]
Bitencourt, A.P.R.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Carvalho, J.C.T.; Gomes, A.T.A.; Ferreira, I.M.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C.; Fernandes, C.P. Preparation of aqueous nanodispersions with annatto (Bixa orellana L.) extract using an organic solvent-free and low energy method. Food Chem; Elsevier, 2018, 257, 196-205.
[7]
Prajapati, R.A.; Jadeja, G.C. Natural food colorants: Extraction and stability study. Mater. Today Proc; Elsevier Ltd, 2022.
[8]
Islam, Shahid-ul.; Rather, L.J.; Mohammad, F. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications: A review. J. Adv. Res.Cairo. Univ., 2016, 7(3), 499-514.
[9]
Mokhtari, S.; Jafari, S.M.; Assadpour, E. Development of anutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem; Elsevier Ltd, 2017, 229, 286-295.
[11]
Sousa Lobato, K.B.; De; Paese, K.; Forgearini, J.C.; Guterres, S.S.; Jablonski, A.; Oliveira Rios, A. Characterisation and stability evaluation of bixin nanocapsules. Food Chem; Elsevier Ltd, 2013, 141(4), 3906-3912.
[12]
Campo, C.; Dick, M.; Santos, P.P.; dos Costa, T.M.H.; Paese, K.; Guterres, S.S.; Rios, A. de O.; Flôres, S.H. Zeaxanthin nanoencapsulation with opuntia monacantha mucilage as structuring material: Characterization and stability evaluation underdifferent temperatures. Colloids Surfaces A Physicochem. Eng.Asp; Elsevier, 2018, 558, 410-421.
[14]
Rodrigues, E.; Mariutti, L.R.B.; Faria, A.F.; Mercadante, A.Z. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chem., 2012, 134(2), 704-711.
[16]
Paques, J.P.; Sagis, L.M.C.; Rijn, C.J.M.; vanLinden, E. van der Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll., 2014, 40, 182-188.
[19]
Ozkan, G.; Franco, P.; Marco, I.; De; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants : Principles , advantages , drawbacks and applications. Food Chem., Elsevier, 2019, 272(February 2018), 494-506.
[20]
Li, R.; Zhang, X.; Shi, H. Effect of manufacturing parameters on the release profiles of casein-loaded alginate microspheres prepared by emulsification/internal gelation. J. Control. Release. Elsevier B.V., 2011, (152)(Suppl 2011), e154-55.
[22]
Lupo, B.; Maestro, A.; Gutiérrez, J.M.; González, C. Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms. Food Hydrocoll., 2015, 49, 25-34.
[23]
Martín-Villena, M.J.; Fernández-Campos, F.; Calpena-Campmany, A.C.; Bozal-De Febrer, N.; Ruiz-Martínez, M.A.; Clares-Naveros, B. Novel microparticulate systems for the vaginal delivery of nystatin: Development and characterization. Carbohydr. Polym.,Elsevier Ltd., 2013, 94(1), 1-11.
[24]
Paiboon, N.; Surassmo, S.; Rungsardthong Ruktanonchai, U.; Kappl, M.; Soottitantawat, A. Internal gelation of alginate microparticle prepared by emulsification and microfluidic method: Effect of Ca-EDTA as a calcium source. Food Hydrocoll., 2023, 141, 108712.
[25]
Mokhtari, S.; Jafari, S.M.; Assadpour, E. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem., 2017, 229, 286-295.
[26]
Sadeghi, D.; Solouk, A.; Samadikuchaksaraei, A.; Seifalian, A.M. Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr. Polym., 2021, 255, 117336.
[28]
Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[33]
Assis, R.Q.; Pagno, C.H.; Stoll, L.; Rios, P.D.A.; Rios, A. de O.; Olivera, F.C. Active food packaging of cellulose acetate: Storage stability, protective effect on oxidation of riboflavin and release in food simulants. Food Chem., 2021, 349, 129140.
[36]
Kurozawa, L.E.; Hubinger, M.D. Hydrophilic food compounds encapsulation by ionic gelation. Curr. Opin. Food Sci., 2017, 15, 50-55.
[38]
Uyen, N.T.T.; Hamid, Z.A.A.; Thi, L.A.; Ahmad, N.B. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J. Drug Deliv. Sci. Technol., 2020, 58, 101796.
[42]
Zhang, R.; Zhou, L.; Li, J.; Oliveira, H.; Yang, N.; Jin, W.; Zhu, Z.; Li, S.; He, J. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. Lwt Elsevier, 2020, 123, 109097.
[46]
Deng, Z.; Wang, F.; Zhou, B.; Li, J.; Li, B.; Liang, H. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll., 2019, 89, 691-699.
[52]
Uyen, N.T.T.; Hamid, Z.A.A.; Nurazreena, A. Fabrication and characterization of alginate microspheres. Mater. Today Proc., 2019, 17, 792-797.
[53]
Athamneh, T.; Amin, A.; Benke, E.; Ambrus, R.; Leopold, C.S.; Gurikov, P.; Smirnova, I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercrit. Fluids, 2019, 150, 49-55.
[54]
Nawade, B.; Shaltiel-Harpaz, L.; Yahyaa, M.; Bosamia, T.C.; Kabaha, A.; Kedoshim, R.; Zohar, M.; Isaacson, T.; Ibdah, M. Analysis of apocarotenoid volatiles during the development of Ficus carica fruits and characterization of carotenoid cleavage dioxygenase genes. Plant Sci., 2020, 290, 110292.
[55]
Mokrzycki, W.; Tatol, M. Color difference delta E: A survey Colour difference Δ E: A survey Faculty of Mathematics and Informatics. Mach. Graph. Vis., 2011, 20(4), 383-411.
[57]
Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lwt Elsevier Ltd, 2022, 153, 112527.
[59]
Hosseini, S.F.; Javidi, Z.; Rezaei, M. International journal of biological macromolecules efficient gas barrier properties of multi-layer films based on poly (lactic acid) and fish gelatin. Int. J. Biol. Macromol., 2016, 92, 1205-1214.
[61]
Ross, A.B.; Hall, C.; Anastasakis, K.; Westwood, A.; Jones, J.M.; Crewe, R.J. Influence of cation on the pyrolysis and oxidation of alginates. J. Anal. Appl. Pyrolysis, 2011, 91(2), 344-351.
[62]
Muhamad, I.I.; Abang Zaidel, D.N.; Hashim, Z.; Mohammad, N.A.; Abu Bakar, N.F. Improving the delivery system and bioavailability of beverages through nanoencapsulation, nanoengineering in the beverage industry. The Science of Beverages; Elsevier Inc., 2019, p. 20.
[63]
Pascoal, K.L.L.; Siqueira, S.M.C.; de Amorim, A.F.V.; Ricardo, N.M.P.S.; de Menezes, J.E.S.A.; da Silva, L.C.; de Araújo, T.G.; Almeida-Neto, F.W.Q.; Marinho, E.S.; de Morais, S.M.; Saraiva, G.D.; de Lima-Neto, P.; dos Santos, H.S.; Teixeira, A.M.R. Physical-chemical characterization, controlled release, and toxicological potential of galactomannan-bixin microparticles. J. Mol. Struct., 2021, 1239, 130499.
[66]
Zhang, Y.; Zhong, Q. Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocoll., 2013, 33(1), 1-9.
[71]
Khoo, H.; Prasad, K.N.; Kong, K.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables. Food Hydrocoll; Elsevier B.V., 2011, pp. 1710-1738.
[74]
Miranda, C.G.; dos Santos, P.D.F.; Silva, J.T. Influence of nanoencapsulated lutein on acetylcholinesterase activity: In vitro determination, kinetic parameters, and in silico docking simulations. Food Chem; Elsevier, 2020, 307, 125523.
[77]
Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Optimisation, antioxidant attributes, stability and release behaviour of carboxymethyl cellulose films incorporated with nanoencapsulated vitamin E. Prog. Org. Coat., 2019, 134(April), 333-341.
[80]
Tanquary, A.C.; Lacey, R.E. Controlled release of biologically active drugs. Control. Rel. Biolog. Act. Agen., 1974, 1974.
[81]
Crank, J. The mathematics of diffusion; Clarendon Press, 1975.
[82]
Zhang, Z.; Zhang, R.; Chen, L.; Tong, Q.; McClements, D.J. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. Eur. Polym. J., 2015, 72, 698-716.
[83]
Monge Neto, A.Á.; Tomazini, L.F.; Mizuta, A.G.; Corrêa, R.C.G.; Madrona, G.S.; Faria de Moraes, F.; Peralta, R.M. Direct microencapsulation of an annatto extract by precipitation of psyllium husk mucilage polysaccharides. Food Hydrocoll., 2020, 2021, 112.
[84]
Koop, B.L.; da Silva, M.N.; da Silva, F.D.; Lima, K.T. dos S.; Santos Soares, L.; Andrade, C.J.; de Valencia, G.A. Monteiro, A.R. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int., 2022, 153(January)
[85]
Liu, H.; Zhang, Y.; Zhang, J.; Xiong, Y.; Peng, S.; McClements, D.J.; Zou, L.; Liang, R.; Liu, W. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin. Food Hydrocoll; Elsevier Ltd, 2022, 124, 107329.