Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Memory Reflections of the Microbiota-Gut and Oligodendrocyte Axis

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 23, Issue 8, 2024

Published on: 05 October, 2023

Page: [971 - 983] Pages: 13

DOI: 10.2174/0118715273256132230921103333

Price: $65

Abstract

Memory is the persisting consequence of cognitive activities instigated by and engrossed on exterior information from the environment and commenced by an intensive on internal mental representations. Establishing a gut-brain axis (GBA) in health and disease has recently brought the gut, the main portal of communication with the external environment, to the forefront of this interaction. Dietary stimuli have long been linked to brain development, behavioral responses, and memory reflections. Vagus nerve, immune system, bacterial metabolites and products are just a few of the linkages that make up the GBA, a bidirectional arrangement of signaling pathways that connects the neurological system with the gastrointestinal tract. GBA involves two-way communication between central and enteric neural systems, connecting the brain's affective and cognitive regions to peripheral activities of the intestine. Recent scientific progress has highlighted the significance of gut microbiota in affecting these relationships. By controlling myelination at the prefrontal cortex, a crucial area for multifaceted cognitive behavior forecast and decision-making, this axis influences social behavior, including memory reflections. Humans may experience late myelination of the prefrontal cortex's axonal projections into the third decade of life, making it vulnerable to outside factors like microbial metabolites. It has been demonstrated that changes in the gut microbiome can change the microbial metabolome's composition, impacting highly permeable bioactive chemicals like p-cresol that may hinder oligodendrocyte differentiation. This review will discuss the memory reflections of the microbiota-gut and oligodendrocyte axis. Adopting this concept should encourage a new arena of thinking that recognizes the intricate central and periphery dynamics influencing behavior and uses that knowledge to develop novel therapies and interventions for maladjusted memory and learning systems.

Graphical Abstract

[1]
Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11: 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[2]
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; 6(5): 306-14.
[http://dx.doi.org/10.1038/nrgastro.2009.35] [PMID: 19404271]
[3]
Fuster JM. Frontal lobe and cognitive development. J Neurocytol 2002; 31(3/5): 373-85.
[http://dx.doi.org/10.1023/A:1024190429920] [PMID: 12815254]
[4]
Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155(7): 1451-63.
[http://dx.doi.org/10.1016/j.cell.2013.11.024] [PMID: 24315484]
[5]
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016; 167(4): 915-32.
[http://dx.doi.org/10.1016/j.cell.2016.10.027] [PMID: 27814521]
[6]
Kanji S, Fonseka TM, Marshe VS, Sriretnakumar V, Hahn MK, Müller DJ. The microbiome-gut-brain axis: Implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci 2017; 268(1): 3-15.
[PMID: 28624847]
[7]
Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53(4): 865-71.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[8]
Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? BioEssays 2014; 36(10): 933-9.
[http://dx.doi.org/10.1002/bies.201400075] [PMID: 25145752]
[9]
Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009; 136(6): 2003-14.
[http://dx.doi.org/10.1053/j.gastro.2009.01.075] [PMID: 19457424]
[10]
Selber-Hnatiw S, Rukundo B, Ahmadi M, et al. Human gut microbiota: Toward an ecology of disease. Front Microbiol 2017; 8: 1265.
[http://dx.doi.org/10.3389/fmicb.2017.01265] [PMID: 28769880]
[11]
Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012; 3(1): 4-14.
[http://dx.doi.org/10.4161/gmic.19320] [PMID: 22356853]
[12]
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr 2018; 57(1): 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[13]
Kelly D, Mulder IE. Microbiome and immunological interactions. Nutr Rev 2012; 70 (Suppl. 1): S18-30.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00498.x] [PMID: 22861803]
[14]
Alkhatib AJ. Brain and gut brain: Integrating interactions in health and disease. Br J Neurosci Nurs 2021.
[15]
Ntranos A, Casaccia P. The microbiome-gut-behavior axis: Crosstalk between the gut microbiome and oligodendrocytes modulates behavioral responses. Neurotherapeutics 2018; 15(1): 31-5.
[http://dx.doi.org/10.1007/s13311-017-0597-9] [PMID: 29282673]
[16]
Ortega MA, Álvarez-Mon MA, García-Montero C, et al. Microbiota–gut–brain axis mechanisms in the complex network of bipolar disorders: Potential clinical implications and translational opportunities. Mol Psychiatry 2023.
[http://dx.doi.org/10.1038/s41380-023-01964-w] [PMID: 36707651]
[17]
Archie EA, Theis KR. Animal behaviour meets microbial ecology. Anim Behav 2011; 82(3): 425-36.
[http://dx.doi.org/10.1016/j.anbehav.2011.05.029]
[18]
Neuberg SL, Kenrick DT, Schaller M. Human threat management systems: Self-protection and disease avoidance. Neurosci Biobehav Rev 2011; 35(4): 1042-51.
[http://dx.doi.org/10.1016/j.neubiorev.2010.08.011] [PMID: 20833199]
[19]
Schaller M. The behavioural immune system and the psychology of human sociality. Philos Trans R Soc Lond B Biol Sci 2011; 366(1583): 3418-26.
[http://dx.doi.org/10.1098/rstb.2011.0029] [PMID: 22042918]
[20]
Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22(10): 1079-89.
[http://dx.doi.org/10.1038/nm.4185] [PMID: 27711063]
[21]
Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 2005; 19(4): 334-44.
[http://dx.doi.org/10.1016/j.bbi.2004.09.002] [PMID: 15944073]
[22]
Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 6(1): 558-64.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052]
[23]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[24]
Misiak B, Łoniewski I, Marlicz W, et al. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry 2020; 102: 109951.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109951] [PMID: 32335265]
[25]
Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011; 60(3): 307-17.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[26]
Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol 2013; 9(9): 560-9.
[PMID: 24729765]
[27]
Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015; 310: 561-77.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.033] [PMID: 26408987]
[28]
Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013; 144(7): 1394-401.
[http://dx.doi.org/10.1053/j.gastro.2013.02.043]
[29]
Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2: 94.
[http://dx.doi.org/10.3389/fphys.2011.00094] [PMID: 22162969]
[30]
Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 1999; 35(2): 146-55.
[http://dx.doi.org/10.1002/(SICI)1098-2302(199909)35:2<146:AID-DEV7>3.0.CO;2-G] [PMID: 10461128]
[31]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[32]
Downing JEG, Miyan JA. Neural immunoregulation: Emerging roles for nerves in immune homeostasis and disease. Immunol Today 2000; 21(6): 281-9.
[http://dx.doi.org/10.1016/S0167-5699(00)01635-2] [PMID: 10825740]
[33]
Morgan MY. The treatment of chronic hepatic encephalopathy. Hepatogastroenterology 1991; 38(5): 377-87.
[PMID: 1662661]
[34]
Craig AD. How do you feel? Interoception: The sense of the physiological condition of the body. Nat Rev Neurosci 2002; 3(8): 655-66.
[http://dx.doi.org/10.1038/nrn894] [PMID: 12154366]
[35]
Berntson GG, Sarter M, Cacioppo JT. Ascending visceral regulation of cortical affective information processing. Eur J Neurosci 2003; 18(8): 2103-9.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02967.x] [PMID: 14622171]
[36]
Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci 2013; 36(5): 305-12.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[37]
Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014; 26(8): 1155-62.
[http://dx.doi.org/10.1111/nmo.12378] [PMID: 24888394]
[38]
Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 2004; 70(11): 6459-65.
[http://dx.doi.org/10.1128/AEM.70.11.6459-6465.2004] [PMID: 15528506]
[39]
Simrén M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut 2013; 62(1): 159-76.
[http://dx.doi.org/10.1136/gutjnl-2012-302167] [PMID: 22730468]
[40]
Berrill JW, Gallacher J, Hood K, et al. An observational study of cognitive function in patients with irritable bowel syndrome and inflammatory bowel disease. Neurogastroenterol Motil 2013; 25(11): 918-e704.
[http://dx.doi.org/10.1111/nmo.12219] [PMID: 23981191]
[41]
Koloski NA, Jones M, Kalantar J, Weltman M, Zaguirre J, Talley NJ. The brain-gut pathway in functional gastrointestinal disorders is bidirectional: A 12-year prospective population-based study. Gut 2012; 61(9): 1284-90.
[http://dx.doi.org/10.1136/gutjnl-2011-300474] [PMID: 22234979]
[42]
DuPont HL. Review article: Evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Aliment Pharmacol Ther 2014; 39(10): 1033-42.
[http://dx.doi.org/10.1111/apt.12728] [PMID: 24665829]
[43]
Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011; 364(1): 22-32.
[http://dx.doi.org/10.1056/NEJMoa1004409] [PMID: 21208106]
[44]
Spiller R, Lam C. An update on post-infectious irritable bowel syndrome: Role of genetics, immune activation, serotonin and altered microbiome. J Neurogastroenterol Motil 2012; 18(3): 258-68.
[http://dx.doi.org/10.5056/jnm.2012.18.3.258] [PMID: 22837873]
[45]
Quigley EMM. Small intestinal bacterial overgrowth. Curr Opin Gastroenterol 2014; 30(2): 141-6.
[http://dx.doi.org/10.1097/MOG.0000000000000040] [PMID: 24406476]
[46]
Crouzet L, Gaultier E, Del’Homme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 2013; 25(4): e272-82.
[http://dx.doi.org/10.1111/nmo.12103] [PMID: 23433203]
[47]
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J Gastroenterol 2014; 20(39): 14105-25.
[http://dx.doi.org/10.3748/wjg.v20.i39.14105] [PMID: 25339800]
[48]
Farhadi A, Banan A, Fields J, Keshavarzian A. Intestinal barrier: An interface between health and disease. J Gastroenterol Hepatol 2003; 18(5): 479-97.
[http://dx.doi.org/10.1046/j.1440-1746.2003.03032.x] [PMID: 12702039]
[49]
Ménard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 2010; 3(3): 247-59.
[http://dx.doi.org/10.1038/mi.2010.5] [PMID: 20404811]
[50]
Gill N, Wlodarska M, Finlay BB. Roadblocks in the gut: Barriers to enteric infection. Cell Microbiol 2011; 13(5): 660-9.
[http://dx.doi.org/10.1111/j.1462-5822.2011.01578.x] [PMID: 21392202]
[51]
Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 2013; 9(11): e1003726.
[http://dx.doi.org/10.1371/journal.ppat.1003726] [PMID: 24244158]
[52]
Hecht G, Pothoulakis C, LaMont JT, Madara JL. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 1988; 82(5): 1516-24.
[http://dx.doi.org/10.1172/JCI113760] [PMID: 3141478]
[53]
Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKC? redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 2007; 9(3): 804-16.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00836.x] [PMID: 17087734]
[54]
Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 2012; 180(2): 626-35.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.025] [PMID: 22155109]
[55]
Lin PW, Nasr TR, Berardinelli AJ, Kumar A, Neish AS. The probiotic Lactobacillus GG may augment intestinal host defense by regulating apoptosis and promoting cytoprotective responses in the developing murine gut. Pediatr Res 2008; 64(5): 511-6.
[http://dx.doi.org/10.1203/PDR.0b013e3181827c0f] [PMID: 18552706]
[56]
Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091-103.
[http://dx.doi.org/10.1136/gut.2008.165886] [PMID: 19240062]
[57]
Caricilli AM, Picardi PK, de Abreu LL, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 2011; 9(12): e1001212.
[http://dx.doi.org/10.1371/journal.pbio.1001212] [PMID: 22162948]
[58]
Holzer P, Danzer M, Schicho R, Samberger C, Painsipp E, Lippe IT. Vagal afferent input from the acid-challenged rat stomach to the brainstem: Enhancement by interleukin-1β. Neuroscience 2004; 129(2): 439-45.
[http://dx.doi.org/10.1016/j.neuroscience.2004.07.040] [PMID: 15501601]
[59]
van Noort JM, Bsibsi M. Toll-like receptors in the CNS: Implications for neurodegeneration and repair. Prog Brain Res 2009; 175: 139-48.
[http://dx.doi.org/10.1016/S0079-6123(09)17509-X] [PMID: 19660653]
[60]
Abreu MT. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat Rev Immunol 2010; 10(2): 131-44.
[http://dx.doi.org/10.1038/nri2707] [PMID: 20098461]
[61]
Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Tolllike receptor 4 signaling. Gastroenterology 2012; 143(4): 1006-6.
[62]
Barajon I, Serrao G, Arnaboldi F, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 2009; 57(11): 1013-23.
[http://dx.doi.org/10.1369/jhc.2009.953539] [PMID: 19546475]
[63]
Santos J, Benjamin M, Yang PC, Prior T, Perdue MH. Chronic stress impairs rat growth and jejunal epithelial barrier function: Role of mast cells. Am J Physiol Gastrointest Liver Physiol 2000; 278(6): G847-54.
[http://dx.doi.org/10.1152/ajpgi.2000.278.6.G847] [PMID: 10859213]
[64]
Meddings JB, Swain MG. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology 2000; 119(4): 1019-28.
[http://dx.doi.org/10.1053/gast.2000.18152] [PMID: 11040188]
[65]
Saunders PR, Santos J, Hanssen NPM, Yates D, Groot JA, Perdue MH. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci 2002; 47(1): 208-15.
[http://dx.doi.org/10.1023/A:1013204612762] [PMID: 11852879]
[66]
Ferrier L, Mazelin L, Cenac N, et al. Stress-induced disruption of colonic epithelial barrier: Role of interferon-γ and myosin light chain kinase in mice. Gastroenterology 2003; 125(3): 795-804.
[http://dx.doi.org/10.1016/S0016-5085(03)01057-6] [PMID: 12949725]
[67]
Wallon C, Yang P-C, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2007; 57(1): 50-8.
[http://dx.doi.org/10.1136/gut.2006.117549] [PMID: 17525093]
[68]
Vicario M, Guilarte M, Alonso C, et al. Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 2010; 24(7): 1166-75.
[http://dx.doi.org/10.1016/j.bbi.2010.06.002] [PMID: 20600818]
[69]
Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014; 63(8): 1293-9.
[http://dx.doi.org/10.1136/gutjnl-2013-305690] [PMID: 24153250]
[70]
Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory effects of gut microbiota on the central nervous system: How gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 2016; 22(2): 201-12.
[http://dx.doi.org/10.5056/jnm15146] [PMID: 27032544]
[71]
Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014; 146(6): 1500-12.
[http://dx.doi.org/10.1053/j.gastro.2014.02.037] [PMID: 24583088]
[72]
Lee SP, Sung IK, Kim JH, Lee SY, Park HS, Shim CS. The effect of emotional stress and depression on the prevalence of digestive diseases. J Neurogastroenterol Motil 2015; 21(2): 273-82.
[http://dx.doi.org/10.5056/jnm14116] [PMID: 25779692]
[73]
Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 2012; 7(10): e47713.
[http://dx.doi.org/10.1371/journal.pone.0047713] [PMID: 23091640]
[74]
Maes M, Twisk FNM, Kubera M, Ringel K, Leunis JC, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord 2012; 136(3): 909-17.
[http://dx.doi.org/10.1016/j.jad.2011.09.010] [PMID: 21967891]
[75]
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312-9.
[http://dx.doi.org/10.1074/jbc.M211609200] [PMID: 12496283]
[76]
Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4(1): 1829.
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[77]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[78]
Neufeld KAM, Kang N, Bienenstock J, Foster JA. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 2011; 4(4): 492-4.
[http://dx.doi.org/10.4161/cib.15702] [PMID: 21966581]
[79]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[80]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[81]
Panula P, Nuutinen S. The histaminergic network in the brain: Basic organization and role in disease. Nat Rev Neurosci 2013; 14(7): 472-87.
[http://dx.doi.org/10.1038/nrn3526] [PMID: 23783198]
[82]
O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2015; 277: 32-48.
[http://dx.doi.org/10.1016/j.bbr.2014.07.027] [PMID: 25078296]
[83]
Bravo JA, Julio-Pieper M, Forsythe P, et al. Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 2012; 12(6): 667-72.
[http://dx.doi.org/10.1016/j.coph.2012.09.010] [PMID: 23041079]
[84]
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. Genes Brain Behav 2014; 13(1): 69-86.
[http://dx.doi.org/10.1111/gbb.12109] [PMID: 24286462]
[85]
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23(3): 255-64.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x]
[86]
Nishino R, Mikami K, Takahashi H, et al. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 2013; 25(6): 521-371.
[http://dx.doi.org/10.1111/nmo.12110] [PMID: 23480302]
[87]
Saulnier DM, Ringel Y, Heyman MB, et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 2013; 4(1): 17-27.
[http://dx.doi.org/10.4161/gmic.22973] [PMID: 23202796]
[88]
Distrutti E, O’Reilly JA, McDonald C, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One 2014; 9(9): e106503.
[http://dx.doi.org/10.1371/journal.pone.0106503] [PMID: 25202975]
[89]
Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011; 23(12): 1132-9.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x] [PMID: 21988661]
[90]
Kunze WA, Mao YK, Wang B, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium‐dependent potassium channel opening. J Cell Mol Med 2009; 13(8b): 2261-70.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00686.x] [PMID: 19210574]
[91]
Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 2012; 303(11): G1288-95.
[http://dx.doi.org/10.1152/ajpgi.00341.2012] [PMID: 23064760]
[92]
Tortorella C, Neri G, Nussdorfer G. Galanin in the regulation of the hypothalamic-pituitary-adrenal axis. Int J Mol Med 2007; 19(4): 639-47.
[http://dx.doi.org/10.3892/ijmm.19.4.639] [PMID: 17334639]
[93]
Budzyński J, Kłopocka M. Brain-gut axis in the pathogenesis of Helicobacter pylori infection. World J Gastroenterol 2014; 20(18): 5212-25.
[http://dx.doi.org/10.3748/wjg.v20.i18.5212] [PMID: 24833851]
[94]
Galley JD, Nelson MC, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol 2014; 14(1): 189.
[http://dx.doi.org/10.1186/1471-2180-14-189] [PMID: 25028050]
[95]
Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: A bacterial adrenergic receptor. Proc Natl Acad Sci 2006; 103(27): 10420-5.
[http://dx.doi.org/10.1073/pnas.0604343103] [PMID: 16803956]
[96]
Demaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: Implications for delayed epithelial barrier dysfunction. Gut 2006; 55(5): 655-61.
[http://dx.doi.org/10.1136/gut.2005.078675] [PMID: 16299034]
[97]
Varghese AK, Verdú EF, Bercik P, et al. Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 2006; 130(6): 1743-53.
[http://dx.doi.org/10.1053/j.gastro.2006.02.007] [PMID: 16697738]
[98]
Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013; 25(9): 733-e575.
[http://dx.doi.org/10.1111/nmo.12153] [PMID: 23773726]
[99]
Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 2012; 337(6100): 1357-60.
[http://dx.doi.org/10.1126/science.1220845] [PMID: 22984073]
[100]
Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci 2009; 12(11): 1370-1.
[http://dx.doi.org/10.1038/nn.2412] [PMID: 19820707]
[101]
Ochoa-Repáraz J, Mielcarz DW. Begum- Haque S, Kasper LH. Gut, bugs, and brain: Role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011; 69(2): 240-7.
[http://dx.doi.org/10.1002/ana.22344] [PMID: 21387369]
[102]
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. Adv Appl Microbiol 2015; 91: 1-62.
[http://dx.doi.org/10.1016/bs.aambs.2015.02.001] [PMID: 25911232]
[103]
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell Mol Life Sci 2017; 74(20): 3769-87.
[http://dx.doi.org/10.1007/s00018-017-2550-9] [PMID: 28643167]
[104]
Mosher KI, Wyss-Coray T. Go with your gut: Microbiota meet microglia. Nat Neurosci 2015; 18(7): 930-1.
[http://dx.doi.org/10.1038/nn.4051] [PMID: 26108718]
[105]
Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 2015; 78(4): e7-9.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.023] [PMID: 25700599]
[106]
Gacias M, Gaspari S, Santos PMG, et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLife 2016; 5: e13442.
[http://dx.doi.org/10.7554/eLife.13442] [PMID: 27097105]
[107]
Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 2016; 6(4): e774.
[http://dx.doi.org/10.1038/tp.2016.42] [PMID: 27045844]
[108]
Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004; 141(5): 874-80.
[http://dx.doi.org/10.1038/sj.bjp.0705682] [PMID: 14744800]
[109]
Shen S, Sandoval J, Swiss VA, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 2008; 11(9): 1024-34.
[http://dx.doi.org/10.1038/nn.2172] [PMID: 19160500]
[110]
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann Gen Psychiatry 2017; 16(1): 14.
[http://dx.doi.org/10.1186/s12991-017-0138-2] [PMID: 28239408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy