Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of BDNF Signaling in the Neuroprotective and Memory-enhancing Effects of Flavonoids in Alzheimer’s Disease

Author(s): Meysam Amidfar, Michelle Lima Garcez, Gholamreza Askari, Mohammad Bagherniya*, Fariborz Khorvash, Sahar Golpour-Hamedani and Jade de Oliveira

Volume 23, Issue 8, 2024

Published on: 18 September, 2023

Page: [984 - 995] Pages: 12

DOI: 10.2174/1871527323666230912090856

Price: $65

Abstract

Background: Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid- rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits.

Objective: Identifying the molecular causes underlying the memory-enhancing effect of flavonoid-rich foods makes it possible to provide the best diet to prevent cognitive decline associated with aging and Alzheimer's disease. Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and enhancement of memory with a focus on the role of the BDNF signaling pathway.

Methods: The databases of PubMed, Web of Science, Google Scholar, and Scopus were searched up to March 2023 and limited to English language. Search strategies were using the following keywords in titles and abstracts: (Flavonoid-rich foods OR Flavonoids OR Polyphenols); AND (Brain-Derived Neurotrophic Factor OR BDNF OR CREB OR) AND (Alzheimer's disease OR memory OR cognition OR).

Results: Flavonoid-rich foods including green tea, berries, curcumin and pomegranate exert their beneficial effects on memory decline associated with aging and Alzheimer's disease mostly through the direct interaction with BDNF signaling pathway.

Conclusion: The neuroprotective effects of flavonoid-rich foods through the CREB-BDNF mechanism have the potential to prevent or limit memory decline due to aging and Alzheimer's disease, so their consumption throughout life may prevent age-related cognitive impairment.

« Previous
Graphical Abstract

[1]
Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol 2023; 211: 115522.
[http://dx.doi.org/10.1016/j.bcp.2023.115522] [PMID: 36996971]
[2]
Cummings J. Drug development for psychotropic, cognitive-enhancing, and disease-modifying treatments for alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2021; 33(1): 3-13.
[http://dx.doi.org/10.1176/appi.neuropsych.20060152] [PMID: 33108950]
[3]
Urganci Ü, Işık F, Review A. The protective effects of dietary polyphenols on Alzheimer’s disease. Analecta Technica Szegedinensia 2022; 16(1): 14-26.
[http://dx.doi.org/10.14232/analecta.2022.1.14-26]
[4]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312] [PMID: 31998208]
[5]
Kizil C, Cosacak MI, Bhattarai P. Alzheimer’s disease, neural stem cells and neurogenesis: Cellular phase at single-cell level. Neural Regen Res 2020; 15(5): 824-7.
[http://dx.doi.org/10.4103/1673-5374.268896] [PMID: 31719242]
[6]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[7]
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[8]
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18(14): 1818-92.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[9]
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-inflammatory, antioxidant, and neuroprotective effects of polyphenols-polyphenols as an element of diet therapy in depressive disorders. Int J Mol Sci 2023; 24(3): 2258.
[http://dx.doi.org/10.3390/ijms24032258] [PMID: 36768580]
[10]
Nainwal LM, Arora P. Dietary polyphenols in aging, neurological, and cognitive disorders, dietary polyphenols in human diseases. CRC Press 2022; pp. 53-76.
[http://dx.doi.org/10.1201/9781003251538-3]
[11]
Bukhari SNA. Dietary polyphenols as therapeutic intervention for Alzheimer’s disease: A mechanistic insight. Antioxidants 2022; 11(3): 554.
[http://dx.doi.org/10.3390/antiox11030554] [PMID: 35326204]
[12]
Spencer JPE. The impact of fruit flavonoids on memory and cognition. Br J Nutr 2010; 104(S3) (Suppl. 3): S40-7.
[http://dx.doi.org/10.1017/S0007114510003934] [PMID: 20955649]
[13]
Beking K, Vieira A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr 2010; 13(9): 1403-9.
[http://dx.doi.org/10.1017/S1368980009992990] [PMID: 20059796]
[14]
Letenneur L, Proust-Lima C, Le Gouge A, Dartigues J, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 2007; 165(12): 1364-71.
[http://dx.doi.org/10.1093/aje/kwm036] [PMID: 17369607]
[15]
Patel AK, Rogers JT, Huang X. Flavanols, mild cognitive impairment, and Alzheimer’s dementia. Int J Clin Exp Med 2008; 1(2): 181-91.
[PMID: 19079672]
[16]
Melrose J. The potential of flavonoids and flavonoid metabolites in the treatment of neurodegenerative pathology in disorders of cognitive decline. Antioxidants 2023; 12(3): 663.
[http://dx.doi.org/10.3390/antiox12030663] [PMID: 36978911]
[17]
Cheng N, Bell L, Lamport DJ, Williams CM. Dietary flavonoids and human cognition: A meta‐analysis. Mol Nutr Food Res 2022; 66(21): 2100976.
[http://dx.doi.org/10.1002/mnfr.202100976] [PMID: 35333451]
[18]
Macready AL, Kennedy OB, Ellis JA, Williams CM, Spencer JPE, Butler LT. Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr 2009; 4(4): 227-42.
[http://dx.doi.org/10.1007/s12263-009-0135-4] [PMID: 19680703]
[19]
Ramezani M, Meymand AZ, Khodagholi F, et al. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: A review of preclinical and clinical studies. Nutr Neurosci 2022; 1-17.
[PMID: 35152858]
[20]
Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M. Enhancing human cognition with cocoa flavonoids. Front Nutr 2017; 4: 19.
[http://dx.doi.org/10.3389/fnut.2017.00019] [PMID: 28560212]
[21]
Wang L, Sun J, Miao Z, Jiang X, Zheng Y, Yang G. Quercitrin improved cognitive impairment through inhibiting inflammation induced by microglia in Alzheimer’s disease mice. Neuroreport 2022; 33(8): 327-35.
[http://dx.doi.org/10.1097/WNR.0000000000001783] [PMID: 35594435]
[22]
Minocha T, Birla H, Obaid AA, et al. Flavonoids as promising neuroprotectants and their therapeutic potential against alzheimer’s disease. Oxid Med Cell Longev 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/6038996] [PMID: 36071869]
[23]
Beecher GR. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J Nutr 2003; 133(10): 3248S-54S.
[http://dx.doi.org/10.1093/jn/133.10.3248S] [PMID: 14519822]
[24]
Hornedo-Ortega R, Rasines-Perea Z, Cerezo AB, Teissedre P-L, Jourdes M. Anthocyanins: Dietary Sources. Bioavailability, Human Metabolic Pathways, and Potential Anti-Neuroinflammatory Activity, Phenolic Compounds-Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications, IntechOpen 2021.
[25]
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017; 8(3): 423-35.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[26]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[27]
Patel D, Roy A, Raha S, Kundu M, Gonzalez FJ, Pahan K. Upregulation of BDNF and hippocampal functions by a hippocampal ligand of PPARα. JCI Insight 2020; 5(10): e136654.
[http://dx.doi.org/10.1172/jci.insight.136654] [PMID: 32315292]
[28]
Braschi C, Capsoni S, Narducci R, et al. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res 2021; 33(5): 1223-38.
[http://dx.doi.org/10.1007/s40520-020-01646-5] [PMID: 32676979]
[29]
Alcalá-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH II, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target 2010; 18(3): 179-90.
[http://dx.doi.org/10.3109/10611860903318134] [PMID: 19807216]
[30]
Zhang Y, Lv C, Zhao G. Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. Food Reviews International 2022; 812-28.
[31]
Lima E, Rauter AP, Medeiros J. Flavonoids as promising multitarget agents in Alzheimer’s Disease Therapy. Appl Sci 2023; 13(8): 4651.
[http://dx.doi.org/10.3390/app13084651]
[32]
Numakawa T, Odaka H. Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: Beneficial effects of flavonoids for neuroprotection. Int J Mol Sci 2021; 22(11): 5719.
[http://dx.doi.org/10.3390/ijms22115719] [PMID: 34071978]
[33]
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 2020; 257: 118020.
[http://dx.doi.org/10.1016/j.lfs.2020.118020] [PMID: 32603820]
[34]
Hamsalakshmi, Alex AM, Arehally Marappa M, Joghee S, Chidambaram SB. Therapeutic benefits of flavonoids against neuroinflammation: A systematic review. Inflammopharmacology 2022; 30(1): 111-36.
[http://dx.doi.org/10.1007/s10787-021-00895-8] [PMID: 35031904]
[35]
Birla H, Keswani C, Singh SS, et al. Unraveling the neuroprotective effect of Tinospora cordifolia in a parkinsonian mouse model through the proteomics approach. ACS Chem Neurosci 2021; 12(22): 4319-35.
[http://dx.doi.org/10.1021/acschemneuro.1c00481] [PMID: 34747594]
[36]
Singh SS, Rai SN, Birla H, et al. Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a Parkinsonian mouse model. Oxid Med Cell Longev 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/6571484] [PMID: 32566093]
[37]
Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 1994; 79(1): 59-68.
[http://dx.doi.org/10.1016/0092-8674(94)90400-6] [PMID: 7923378]
[38]
Impey S, Smith DM, Obrietan K, Donahue R, Wade C, Storm DR. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1998; 1(7): 595-601.
[http://dx.doi.org/10.1038/2830] [PMID: 10196567]
[39]
Schroeter H, Spencer JPE, Rice-Evans C, Williams RJ. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 2001; 358(3): 547-57.
[http://dx.doi.org/10.1042/bj3580547] [PMID: 11535118]
[40]
Schroeter H, Bahia P, Spencer JPE, et al. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 2007; 101(6): 1596-606.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04434.x] [PMID: 17298385]
[41]
Barco A, Pittenger C, Kandel ER. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 2003; 7(1): 101-14.
[http://dx.doi.org/10.1517/14728222.7.1.101] [PMID: 12556206]
[42]
Williams CM, El Mohsen MA, Vauzour D, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 2008; 45(3): 295-305.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.008] [PMID: 18457678]
[43]
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011; 22(2): 153-69.
[http://dx.doi.org/10.1515/rns.2011.018]
[44]
Suzuki A, Fukushima H, Mukawa T, et al. Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J Neurosci 2011; 31(24): 8786-802.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-10.2011] [PMID: 21677163]
[45]
Spencer JPE, Vauzour D, Rendeiro C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 2009; 492(1-2): 1-9.
[http://dx.doi.org/10.1016/j.abb.2009.10.003] [PMID: 19822127]
[46]
Amidfar M, Réus GZ. Moura ABd, Quevedo J, Kim Y-K The role of neurotrophic factors in pathophysiology of major depressive disorder, major depressive disorder. Springer 2021; pp. 257-72.
[47]
Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci 2018; 19(11): 3650.
[http://dx.doi.org/10.3390/ijms19113650] [PMID: 30463271]
[48]
Ohira K, Hayashi M. A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 2009; 7(4): 276-85.
[http://dx.doi.org/10.2174/157015909790031210] [PMID: 20514207]
[49]
Huang EJ, Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 2003; 72(1): 609-42.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[50]
Lin TH, Chang KH, Chiu YJ, et al. Neuroprotective action of coumarin derivatives through activation of trkb-creb-bdnf pathway and reduction of caspase activity in neuronal cells expressing pro-aggregated tau protein. Int J Mol Sci 2022; 23(21): 12734.
[http://dx.doi.org/10.3390/ijms232112734] [PMID: 36361524]
[51]
Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273(49): 32377-9.
[http://dx.doi.org/10.1074/jbc.273.49.32377] [PMID: 9829964]
[52]
Li Q, Zhao HF, Zhang ZF, et al. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 2009; 159(4): 1208-15.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.008] [PMID: 19409206]
[53]
Ma Z, Liu K, Li XR, et al. Alpha-synuclein is involved in manganese-induced spatial memory and synaptic plasticity impairments via TrkB/Akt/Fyn-mediated phosphorylation of NMDA receptors. Cell Death Dis 2020; 11(10): 834.
[http://dx.doi.org/10.1038/s41419-020-03051-2] [PMID: 33033239]
[54]
Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci 2002; 99(20): 13217-21.
[http://dx.doi.org/10.1073/pnas.172504199] [PMID: 12244210]
[55]
Al Rahim M, Nakajima A, Misawa N, et al. A novel diol-derivative of chalcone produced by bioconversion, 3-(2,3-dihydroxyphenyl)-1-phenylpropan-1-one, activates PKA/MEK/ERK signaling and antagonizes Aβ-inhibition of the cascade in cultured rat CNS neurons. Eur J Pharmacol 2008; 600(1-3): 10-7.
[http://dx.doi.org/10.1016/j.ejphar.2008.09.046] [PMID: 18948095]
[56]
Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 2004; 114(11): 1624-34.
[http://dx.doi.org/10.1172/JCI22831] [PMID: 15578094]
[57]
Yamamoto-Sasaki M, Ozawa H, Saito T. Michael Rösler, Riederer P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res 1999; 824(2): 300-3.
[http://dx.doi.org/10.1016/S0006-8993(99)01220-2] [PMID: 10196463]
[58]
Sharma P, Kumar A, Singh D. Dietary flavonoids interaction with CREB-BDNF pathway: An unconventional approach for comprehensive management of epilepsy. Curr Neuropharmacol 2019; 17(12): 1158-75.
[http://dx.doi.org/10.2174/1570159X17666190809165549] [PMID: 31400269]
[59]
Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr 2014; 9(3): 400.
[http://dx.doi.org/10.1007/s12263-014-0400-z] [PMID: 24682883]
[60]
Obulesu M, Rao DM. Effect of plant extracts on Alzheimer’s disease: An insight into therapeutic avenues. J Neurosci Rural Pract 2011; 1(2): 108-14.
[61]
Singh A, Gupta A, Mishra A, Gupta V, Bansal P, Kumar S. Medicinal plant for curing Alzheimer’s disease. Int J Pharm Biol Arch 2010; 1(2): 108-14.
[62]
Uddin MS, Kabir MT, Niaz K, et al. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules 2020; 25(6): 1267.
[http://dx.doi.org/10.3390/molecules25061267] [PMID: 32168835]
[63]
Pradeep S, Jain AS, Dharmashekara C, et al. Alzheimer’s disease and herbal combination therapy: A comprehensive review. J Alzheimers Dis Rep 2020; 4(1): 417-29.
[http://dx.doi.org/10.3233/ADR-200228] [PMID: 33283163]
[64]
Wang J, Santa-Maria I, Ho L, et al. Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2010; 22(2): 653-61.
[http://dx.doi.org/10.3233/JAD-2010-101074] [PMID: 20858961]
[65]
Yang JR, Ren TT, Lan R, Qin XY. Tea polyphenols attenuate staurosporine-induced cytotoxicity and apoptosis by modulating BDNF-TrkB/Akt and Erk1/2 signaling axis in hippocampal neurons. IBRO Rep 2020; 8: 115-21.
[http://dx.doi.org/10.1016/j.ibror.2020.04.002] [PMID: 32373755]
[66]
Chen C, Yu R, Owuor ED, Tony Kong A-N. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 2000; 23(6): 605-12.
[http://dx.doi.org/10.1007/BF02975249] [PMID: 11156183]
[67]
Koh SH, Kim SH, Kwon H, et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res 2003; 118(1-2): 72-81.
[http://dx.doi.org/10.1016/j.molbrainres.2003.07.003] [PMID: 14559356]
[68]
Levites Y, Amit T, Youdim MBH, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002; 277(34): 30574-80.
[http://dx.doi.org/10.1074/jbc.M202832200] [PMID: 12058035]
[69]
Rendeiro AC. The effects of flavonoids and flavonoid-rich blueberries on memory and the mechanisms by which these effects are mediated. University of Reading 2011.
[70]
Rendeiro C, Guerreiro JDT, Williams CM, Spencer JPE. Flavonoids as modulators of memory and learning: Molecular interactions resulting in behavioural effects. Proc Nutr Soc 2012; 71(2): 246-62.
[http://dx.doi.org/10.1017/S0029665112000146] [PMID: 22414320]
[71]
Li Q, Zhao HF, Zhang ZF, et al. Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Aβ1-42 oligomers and upregulating synaptic plasticity–related proteins in the hippocampus. Neuroscience 2009; 163(3): 741-9.
[http://dx.doi.org/10.1016/j.neuroscience.2009.07.014] [PMID: 19596052]
[72]
Oliveira DR, Sanada PF, Saragossa FAC, et al. Neuromodulatory property of standardized extract Ginkgo biloba L. (EGb 761) on memory: Behavioral and molecular evidence. Brain Res 2009; 1269: 68-89.
[http://dx.doi.org/10.1016/j.brainres.2008.11.105] [PMID: 19146837]
[73]
Rendeiro C, Vauzour D, Kean RJ, et al. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology 2012; 223(3): 319-30.
[http://dx.doi.org/10.1007/s00213-012-2719-8] [PMID: 22569815]
[74]
Assunção M, Santos-Marques MJ, Carvalho F, Lukoyanov NV, Andrade JP. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiol Aging 2011; 32(4): 707-17.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.03.016] [PMID: 19411127]
[75]
Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci 2006; 103(44): 16568-73.
[http://dx.doi.org/10.1073/pnas.0607822103] [PMID: 17050681]
[76]
Essa MM, Subash S, Al-Adawi S, Memon M, Manivasagam T, Akbar M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen Res 2014; 9(16): 1557-66.
[http://dx.doi.org/10.4103/1673-5374.139483] [PMID: 25317174]
[77]
Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52(1): 35-45.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010] [PMID: 21982844]
[78]
Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1202-8.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[79]
Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr 2010; 103(5): 730-4.
[http://dx.doi.org/10.1017/S0007114509992364] [PMID: 20028599]
[80]
Colizzi C. The protective effects of polyphenols on Alzheimer’s disease: A systematic review. Alzheimers Dement 2019; 5(1): 184-96.
[http://dx.doi.org/10.1016/j.trci.2018.09.002] [PMID: 31194101]
[81]
Ho L, Ferruzzi MG, Janle EM, et al. Identification of brain‐targeted bioactive dietary quercetin‐3‐ O ‐glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 2013; 27(2): 769-81.
[http://dx.doi.org/10.1096/fj.12-212118] [PMID: 23097297]
[82]
Shih PH, Chan YC, Liao JW, Wang MF, Yen GC. Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J Nutr Biochem 2010; 21(7): 598-605.
[http://dx.doi.org/10.1016/j.jnutbio.2009.03.008] [PMID: 19443193]
[83]
Shukitt-Hale B, Cheng V, Joseph JA. Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 2009; 12(3): 135-40.
[http://dx.doi.org/10.1179/147683009X423292] [PMID: 19356316]
[84]
El-Shiekh RA, Ashour RM, Abd El-Haleim EA, Ahmed KA, Abdel-Sattar E. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomed Pharmacother 2020; 128: 110303.
[http://dx.doi.org/10.1016/j.biopha.2020.110303] [PMID: 32480228]
[85]
Lee AY, Choi JM, Lee YA, Shin SH, Cho EJ. Beneficial effect of black rice (<em>Oryza</em> <em>sativa</em> <em>L</em>. var. <em>japonica</em>) extract on amyloid β-induced cognitive dysfunction in a mouse model. Exp Ther Med 2020; 20(5): 1.
[http://dx.doi.org/10.3892/etm.2020.9192] [PMID: 32963594]
[86]
Tikhonova MA, Shoeva OY, Tenditnik MV, et al. Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders. Nutrients 2020; 12(12): 3877.
[http://dx.doi.org/10.3390/nu12123877] [PMID: 33353018]
[87]
Morzelle MC, Salgado JM, Telles M, et al. Neuroprotective effects of pomegranate peel extract after chronic infusion with amyloid-β peptide in mice. PLoS One 2016; 11(11): e0166123.
[http://dx.doi.org/10.1371/journal.pone.0166123] [PMID: 27829013]
[88]
Braidy N, Essa MM, Poljak A, et al. Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer’s disease. Oncotarget 2016; 7(40): 64589-604.
[http://dx.doi.org/10.18632/oncotarget.10905] [PMID: 27486879]
[89]
Qin XY, Cheng Y, Yu LC. Potential protection of curcumin against intracellular amyloid β-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci Lett 2010; 480(1): 21-4.
[http://dx.doi.org/10.1016/j.neulet.2010.05.062] [PMID: 20638958]
[90]
Ye J, Zhang Y. Curcumin protects against intracellular amyloid toxicity in rat primary neurons. Int J Clin Exp Med 2012; 5(1): 44-9.
[PMID: 22328947]
[91]
Zhang L, Fang Y, Xu Y, et al. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 2015; 10(6): e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[92]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[93]
Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(1): 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[94]
Frautschy S, Hu W, Kim P, et al. Phenolic anti-inflammatory antioxidant reversal of AÎ2-induced cognitive deficits and neuropathology. Neurobiol Aging 2001; 22(6): 993-1005.
[http://dx.doi.org/10.1016/S0197-4580(01)00300-1] [PMID: 11755008]
[95]
Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid Med Cell Longev 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[96]
Nakajima A, Ohizumi Y, Yamada K. Anti-dementia activity of nobiletin, a citrus flavonoid: A review of animal studies. Clin Psychopharmacol Neurosci 2014; 12(2): 75-82.
[http://dx.doi.org/10.9758/cpn.2014.12.2.75] [PMID: 25191498]
[97]
Joseph JA, Arendash G, Gordon M, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci 2003; 6(3): 153-62.
[http://dx.doi.org/10.1080/1028415031000111282] [PMID: 12793519]
[98]
Vepsäläinen S, Koivisto H, Pekkarinen E, et al. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 2013; 24(1): 360-70.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.006] [PMID: 22995388]
[99]
Kent K, Charlton K, Roodenrys S, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr 2017; 56(1): 333-41.
[http://dx.doi.org/10.1007/s00394-015-1083-y] [PMID: 26482148]
[100]
Kim HK, Kim M, Kim S, Kim M, Chung JH. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci Biotechnol Biochem 2004; 68(9): 1977-9.
[http://dx.doi.org/10.1271/bbb.68.1977] [PMID: 15388975]
[101]
Kuriyama S, Hozawa A, Ohmori K, et al. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project. Am J Clin Nutr 2006; 83(2): 355-61.
[http://dx.doi.org/10.1093/ajcn/83.2.355] [PMID: 16469995]
[102]
Maurya PK, Rizvi SI. Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Nat Prod Res 2009; 23(12): 1072-9.
[http://dx.doi.org/10.1080/14786410802267643] [PMID: 18846469]
[103]
Wang YJ, Thomas P, Zhong JH, et al. Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 2009; 15(1): 3-14.
[http://dx.doi.org/10.1007/s12640-009-9000-x] [PMID: 19384583]
[104]
Ho L, Chen LH, Wang J, et al. Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimers Dis 2009; 16(1): 59-72.
[http://dx.doi.org/10.3233/JAD-2009-0916] [PMID: 19158422]
[105]
Ho L, Yemul S, Wang J, Pasinetti GM. Grape seed polyphenolic extract as a potential novel therapeutic agent in tauopathies. J Alzheimers Dis 2009; 16(2): 433-9.
[http://dx.doi.org/10.3233/JAD-2009-0969] [PMID: 19221432]
[106]
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005; 280(45): 37377-82.
[http://dx.doi.org/10.1074/jbc.M508246200] [PMID: 16162502]
[107]
Ono K, Condron MM, Ho L, et al. Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J Biol Chem 2008; 283(47): 32176-87.
[http://dx.doi.org/10.1074/jbc.M806154200] [PMID: 18815129]
[108]
Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 2008; 9(S2) (Suppl. 2): S6.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S6] [PMID: 19090994]
[109]
Wang J, Ho L, Zhao W, et al. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 2008; 28(25): 6388-92.
[http://dx.doi.org/10.1523/JNEUROSCI.0364-08.2008] [PMID: 18562609]
[110]
Wang J, Ho L, Zhao Z, et al. Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2006; 20(13): 2313-20.
[http://dx.doi.org/10.1096/fj.06-6281com] [PMID: 17077308]
[111]
Tosatti JAG, Fontes AFS, Caramelli P, Gomes KB. Effects of resveratrol supplementation on the cognitive function of patients with Alzheimer’s disease: A systematic review of randomized controlled trials. Drugs Aging 2022; 39(4): 285-95.
[http://dx.doi.org/10.1007/s40266-022-00923-4] [PMID: 35187615]
[112]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[113]
Levites Y, Amit T, Mandel S, Youdim MBH. Neuroprotection and neurorescue against Aβ toxicity and PKC‐dependent release of non‐amyloidogenic soluble precursor protein by green tea polyphenol (‐)‐epigallocatechin‐3‐gallate. FASEB J 2003; 17(8): 1-23.
[http://dx.doi.org/10.1096/fj.02-0881fje] [PMID: 12670874]
[114]
Zhao YN, Li WF, Li F, et al. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun 2013; 435(4): 597-602.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.025] [PMID: 23685142]
[115]
Abraham J, Johnson RW. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res 2009; 12(6): 445-53.
[http://dx.doi.org/10.1089/rej.2009.0888] [PMID: 20041738]
[116]
Ranney A, Petro MS. Resveratrol protects spatial learning in middle-aged C57BL/6 mice from effects of ethanol. Behav Pharmacol 2009; 20(4): 330-6.
[http://dx.doi.org/10.1097/FBP.0b013e32832f0193] [PMID: 19571741]
[117]
Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 2011; 121(3): 337-49.
[http://dx.doi.org/10.1007/s00401-010-0759-x] [PMID: 20957377]
[118]
Fakhri S, Iranpanah A, Gravandi MM, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine 2021; 91: 153664.
[http://dx.doi.org/10.1016/j.phymed.2021.153664] [PMID: 34391082]
[119]
Namgyal D, Ali S, Mehta R, Sarwat M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology 2020; 442: 152542.
[http://dx.doi.org/10.1016/j.tox.2020.152542] [PMID: 32735850]
[120]
Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 2008; 56(13): 4855-73.
[http://dx.doi.org/10.1021/jf0735073] [PMID: 18557624]
[121]
Batiha GES, Beshbishy AM, Ikram M, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020; 9(3): 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[122]
Branquinho Andrade P, Grosso C, Valentao P, Bernardo J. Flavonoids in neurodegeneration: Limitations and strategies to cross CNS barriers. Curr Med Chem 2016; 23(36): 4151-74.
[http://dx.doi.org/10.2174/0929867323666160809094934] [PMID: 27516197]
[123]
Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: Interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 2004; 37(11): 1683-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.08.002] [PMID: 15528027]
[124]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[PMID: 28482786]
[125]
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015; 6(1): 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[126]
Shahbaz SK, Koushki K, Sathyapalan T, Majeed M, Sahebkar A. PLGA-based curcumin delivery system: An interesting therapeutic approach in the treatment of Alzheimer’s disease. Curr Neuropharmacol 2022; 20(2): 309-23.
[http://dx.doi.org/10.2174/1570159X19666210823103020] [PMID: 34429054]
[127]
Shabbir U, Rubab M, Tyagi A, Oh DH. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: The implication of nanotechnology. Int J Mol Sci 2020; 22(1): 196.
[http://dx.doi.org/10.3390/ijms22010196] [PMID: 33375513]
[128]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[129]
Lv H, Wang Y, Yang X, Ling G, Zhang P. Application of curcumin nanoformulations in Alzheimer’s disease: Prevention, diagnosis and treatment. Nutr Neurosci 2023; 26(8): 727-42.
[PMID: 35694842]
[130]
Frozza RL, Bernardi A, Hoppe JB, et al. Lipid-core nanocapsules improve the effects of resveratrol against Abeta-induced neuroinflammation. J Biomed Nanotechnol 2013; 9(12): 2086-104.
[http://dx.doi.org/10.1166/jbn.2013.1709] [PMID: 24266263]
[131]
Bernardi A, Frozza RL, Meneghetti A, et al. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int J Nanomedicine 2012; 7: 4927-42.
[http://dx.doi.org/10.2147/IJN.S35333] [PMID: 23028221]
[132]
Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer’s disease. J Nutr Biochem 2009; 20(4): 269-75.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[133]
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2007; 2(3): 257-73.
[http://dx.doi.org/10.1007/s12263-007-0056-z] [PMID: 18850181]
[134]
Spencer JPE. Beyond antioxidants: The cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc Nutr Soc 2010; 69(2): 244-60.
[http://dx.doi.org/10.1017/S0029665110000054] [PMID: 20158941]
[135]
Rendeiro C, Rhodes JS, Spencer JPE. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int 2015; 89: 126-39.
[http://dx.doi.org/10.1016/j.neuint.2015.08.002] [PMID: 26260546]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy