Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Research Article

Efficiency of CAT and L-SIGN as Alternative or Co-receptors for SARSCoV- 2 Spike Protein

Author(s): Chainee Das and Venkata Satish Kumar Mattaparthi*

Volume 4, Issue 3, 2023

Published on: 04 October, 2023

Article ID: e041023221709 Pages: 10

DOI: 10.2174/0126667975262159230927074645

Price: $65

Abstract

Background: The COVID-19 disease, which is caused by SARS-CoV-2, has been spreading rapidly over the world since December 2019 and has become a serious threat to human health. According to reports, SARS-CoV-2 infection has an impact on several human tissues, including the kidney, gastrointestinal system, and lungs. The Spike (S) protein from SARS-CoV-2 has been found to primarily bind ACE2. Since the lungs are the organ that COVID-19 is most likely to infect, the comparatively low expression of this recognized receptor suggests that there may be alternative coreceptors or alternative SARS-CoV-2 receptors that cooperate with ACE2. Recently, many candidate receptors of SARS-CoV-2 other than ACE2 were reported to be specifically and highly expressed in SARS-CoV-2 affected tissues. Among these receptors, the binding affinity of CAT and L-SIGN to the S protein has been reported to be higher in one of the recent studies. So, it will be significant to understand the binding interactions between these potential receptors and the RBD region of the S protein.

Objective: To perform a computational analysis to check the efficiency of the alternative receptors (CAT and L-SIGN) of the SARS-CoV-2 on its binding to the Receptor Binding Domain (RBD) of Spike protein (S protein).

Methods: In this study, we compared the interaction profile of the RBD of the S protein of SARSCoV- 2 with CAT and L-SIGN receptors.

Results: From the molecular dynamics simulation study, the S protein employs special techniques to have stable interactions with the CAT and L-SIGN receptors (ΔGbind = -39.49 kcal/mol and -37.20 kcal/mol, respectively).

Conclusion: SARS-CoV-2 may result in greater virulence as a result of the S protein-CAT complex's stability and the greater affinity of spike protein for the CAT receptor.

Graphical Abstract

[1]
Mahase E. COVID-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ 2020; 368: m1036.
[http://dx.doi.org/10.1136/bmj.m1036] [PMID: 32165426]
[2]
Senior K. Novel human coronavirus associated with respiratory disease. Lancet Infect Dis 2005; 5(3): 137.
[http://dx.doi.org/10.1016/S1473-3099(05)70012-8]
[3]
Li J, Gong X, Wang Z, et al. Clinical features of familial clustering in patients infected with 2019 novel coronavirus in Wuhan, China. Virus Res 2020; 286: 198043.
[http://dx.doi.org/10.1016/j.virusres.2020.198043] [PMID: 32502551]
[4]
Chen J, Wang R, Wei GW. Review of the mechanisms of SARSCoV-2 evolution and transmission. arXiv 2021; 2011: 08148v1.
[5]
Mohan BS, Vinod N. COVID-19: An insight into SARS-CoV2 pandemic originated at wuhan city in hubei province of china. J Infectious Diseases Epidemiol 2020; 6(4): 146.
[http://dx.doi.org/10.23937/2474-3658/1510146]
[6]
Nelson CW, Ardern Z, Goldberg TL, et al. Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. eLife 2020; 9: e59633.
[http://dx.doi.org/10.7554/eLife.59633] [PMID: 33001029]
[7]
Heanoy EZ, Uzer T, Brown NR. COVID-19 pandemic as a transitional event: From the perspective of the transition theory. Encyclopedia 2022; 2(3): 1602-10.
[http://dx.doi.org/10.3390/encyclopedia2030109]
[8]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[9]
Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2, the cellular receptor for severe acute respiratory syndrome coronavirus and human coronavirus NL63. In: Nidoviruses. Wiley 2014; pp. 147-56.
[http://dx.doi.org/10.1128/9781555815790.ch10]
[10]
What is a Receptor-Binding Domain (RBD)?. Available from:https://www.news-medical.net/health/What-is-a-Receptor-Binding-Domain-(RBD).aspx
[11]
Chakraborti S, Prabakaran P, Xiao X, Dimitrov DS. The SARS coronavirus S glycoprotein receptor binding domain: Fine mapping and functional characterization. Virol J 2005; 2(1): 73.
[http://dx.doi.org/10.1186/1743-422X-2-73] [PMID: 16122388]
[12]
He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine. Biochem Biophys Res Commun 2004; 324(2): 773-81.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.106] [PMID: 15474494]
[13]
Mou H, Raj VS, van Kuppeveld FJM, Rottier PJM, Haagmans BL, Bosch BJ. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol 2013; 87(16): 9379-83.
[http://dx.doi.org/10.1128/JVI.01277-13] [PMID: 23785207]
[14]
Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[15]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[16]
Premkumar L, Segovia-Chumbez B, Jadi R, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol 2020; 5(48): eabc8413.
[http://dx.doi.org/10.1126/sciimmunol.abc8413] [PMID: 32527802]
[17]
Verkhivker G. Structural and computational studies of the SARS-CoV-2 spike protein binding mechanisms with nanobodies: From structure and dynamics to avidity-driven nanobody engineering. Int J Mol Sci 2022; 23(6): 2928.
[http://dx.doi.org/10.3390/ijms23062928] [PMID: 35328351]
[18]
Peng C, Zhu Z, Shi Y, Wang X, Mu K, Yang Y. Computational study of the strong binding mechanism of SARS-CoV-2 spike and ACE2. ChemRxiv 2020; 2020: 11877492.v2.
[http://dx.doi.org/10.26434/chemrxiv.11877492.v2]
[19]
Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Computational mutagenesis at the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 binding interface: Comparison with experimental evidence. ACS Nano 2021; 15(4): 6929-48.
[http://dx.doi.org/10.1021/acsnano.0c10833] [PMID: 33733740]
[20]
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife 2021; 10: e70658.
[http://dx.doi.org/10.7554/eLife.70658] [PMID: 34435953]
[21]
Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and evolution of the SARS-CoV-2 spike protein. Viruses 2022; 14(3): 640.
[http://dx.doi.org/10.3390/v14030640] [PMID: 35337047]
[22]
Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020; 526(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.044] [PMID: 32199615]
[23]
Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020; 16(7): e9610.
[http://dx.doi.org/10.15252/msb.20209610] [PMID: 32715618]
[24]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[25]
CAT protein expression summary. Available from:https://www.proteinatlas.org/ENSG00000121691-CAT
[26]
Guo D, Guo R, Li Z, et al. Cat, AGTR2, L-sign and DC-sign are potential receptors for the entry of SARS-COV-2 into human cells. BioRxiv 2021; 2021: 451411.
[http://dx.doi.org/10.1101/2021.07.07.451411]
[27]
Qian Y, Li Y, Liu X, et al. Evidence for CAT gene being functionally involved in the susceptibility of COVID‐19. FASEB J 2021; 35(4): e21384.
[http://dx.doi.org/10.1096/fj.202100008] [PMID: 33710662]
[28]
Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol 2007; 81(21): 12029-39.
[http://dx.doi.org/10.1128/JVI.00315-07] [PMID: 17715238]
[29]
Chan VSF, Chan KYK, Chen Y, et al. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet 2006; 38(1): 38-46.
[http://dx.doi.org/10.1038/ng1698] [PMID: 16369534]
[30]
Jeffers SA, Tusell SM, Gillim-Ross L, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci 2004; 101(44): 15748-53.
[http://dx.doi.org/10.1073/pnas.0403812101] [PMID: 15496474]
[31]
Amraei R, Yin W, Napoleon MA, et al. CD209L/L-sign and CD209/DC-sign act as receptors for SARS-COV-2. BioRxiv 2020; 2020: 165803.
[http://dx.doi.org/10.1101/2020.06.22.165803]
[32]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[33]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5(4): 725-38.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[35]
van Zundert GCP, Rodrigues JPGLM, Trellet M, et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J Mol Biol 2016; 428(4): 720-5.
[http://dx.doi.org/10.1016/j.jmb.2015.09.014] [PMID: 26410586]
[36]
Tian C, Kasavajhala K, Belfon KAA, et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput 2020; 16(1): 528-52.
[http://dx.doi.org/10.1021/acs.jctc.9b00591] [PMID: 31714766]
[37]
Eduardo Sanabria-Chanaga E, Betancourt-Conde I, Hernández-Campos A, Téllez-Valencia A, Castillo R. In silico hit optimization toward AKT inhibition: Fragment-based approach, molecular docking and molecular dynamics study. J Biomol Struct Dyn 2019; 37(16): 4301-11.
[http://dx.doi.org/10.1080/07391102.2018.1546618] [PMID: 30477412]
[38]
Case DA, Cheatham TE III, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem 2005; 26(16): 1668-88.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[39]
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79(2): 926-35.
[http://dx.doi.org/10.1063/1.445869]
[40]
Yoo S, Xantheas SS. Communication: The effect of dispersion corrections on the melting temperature of liquid water. J Chem Phys 2011; 134(12): 121105.
[http://dx.doi.org/10.1063/1.3573375] [PMID: 21456638]
[41]
Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with Amber on gpus. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 2013; 9(9): 3878-88.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[42]
Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log( N) method for Ewald sums in large systems. J Chem Phys 1993; 98(12): 10089-92.
[http://dx.doi.org/10.1063/1.464397]
[43]
Krautler V, Gunsteren WFV, Hunenberger PH. A fast SHAKE: Algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 2001; 22: 501-8.
[http://dx.doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V]
[44]
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81(8): 3684-90.
[http://dx.doi.org/10.1063/1.448118]
[45]
Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 2013; 9(7): 3084-95.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[46]
Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 1997; 22(12): 488-90.
[http://dx.doi.org/10.1016/S0968-0004(97)01140-7] [PMID: 9433130]
[47]
Das C, Das D, Mattaparthi VSK. Effect of mutations in the SARS-CoV-2 spike rbd region of delta and delta-plus variants on its interaction with ACE2 receptor protein. Lett Appl NanoBioSci 2022; 12(4): 118.
[http://dx.doi.org/10.33263/LIANBS124.118]
[48]
Das C, Das D, Mattaparthi VSK. Computational investigation on the efficiency of small molecule inhibitors identified from indian spices against SARS-CoV-2 mpro. Biointerface Res Appl Chem 2022; 13(3): 235.
[http://dx.doi.org/10.33263/BRIAC133.235]
[49]
Das C, Mattaparthi VSK. Impact of mutations in the SARS-CoV-2 spike RBD region of BA.1 and BA.2 variants on its interaction with ACE2 receptor protein. Biointerface Res Appl Chem 2022; 13(4): 358.
[http://dx.doi.org/10.33263/BRIAC134.358]
[50]
Weng G, Wang E, Wang Z, et al. HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 2019; 47(W1): W322-30.
[http://dx.doi.org/10.1093/nar/gkz397] [PMID: 31106357]
[51]
Zhang W, Yang F, Ou D, et al. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals. J Biomol Struct Dyn 2019; 37(16): 4274-82.
[http://dx.doi.org/10.1080/07391102.2018.1547222] [PMID: 30477404]
[52]
Gao J, Wang Y, Chen Q, Yao R. Integrating molecular dynamics simulation and molecular mechanics/generalized Born surface area calculation into pharmacophore modeling: A case study on the proviral integration site for Moloney murine leukemia virus (Pim)-1 kinase inhibitors. J Biomol Struct Dyn 2019; 1-8.
[http://dx.doi.org/10.1080/07391102.2019.1571946] [PMID: 30678548]
[53]
Das C, Hazarika PJ, Deb A, Joshi P, Das D, Mattaparthi VSK. Effect of double mutation (L452R and E484Q) in RBD of spike protein on its interaction with ACE2 receptor protein. Biointerface Res Appl Chem 2022; 13(1): 97.
[http://dx.doi.org/10.33263/BRIAC131.097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy