Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Prodigiosin: An In-depth Exploration of a Bioactive Compound from Serratia sp.

Author(s): Sameer Ranjan Sahoo and Arun Kumar Pradhan*

Volume 20, Issue 3, 2024

Published on: 04 October, 2023

Article ID: e041023221706 Pages: 13

DOI: 10.2174/0115734072275416230927074446

Price: $65

Abstract

Background: The rising interest in natural pigments as alternatives is a result of the expanding usage of synthetic colorants and the negative consequences that go along with them. Noble natural pigments with higher stability and productivity are becoming popular in the food industry, and their diverse biological characteristics make them valuable for pharmaceutical applications. Microbes, especially gram-negative and positive bacteria, are considered attractive sources for replacing synthetic dyes. Prodigiosin, a tripyrrole red pigment produced as secondary metabolites by these bacteria, exhibits unusual properties and has potential as an effective proapoptotic agent against cancer and multi-drug resistant cells.

Objective: This review aims to highlight the characteristics of prodigiosin and explore its potential applications as a therapeutic drug.

Results: The review investigates the biosynthetic cluster genes of prodigiosin identified using the EZ-Tn5 transposon approach in different bacteria, including the pig gene cluster in Serratia sp., red gene cluster in S. coelicolor, and hap gene cluster in Hahella chejuensis. It is also described compound nature for producing host survival physiology. Prodigiosin has a common pyrrolylpyrromethane structure and is a member of the tripyrrole family. Numerous tri-pyrrole derivatives have been used in antibiotics and have demonstrated promise as pro-apoptotic agents against cancer and drug-resistant cells.

Conclusion: Prodigiosin is an intriguing subject for investigating biosynthesis and exploitation through biotechnological methods due to its distinctive properties and potential as a medicinal medication. Future investigation and bioengineering on producing strains may synthesize functional derivatives with diverse applications.

Graphical Abstract

[1]
Cserháti, T. Liquid Chromatography of Natural Pigments and Synthetic Dyes. Tibor, C. Elsevier: Hungary , 2006; p. 602.
[2]
Harris, A.K.P.; Williamson, N.R.; Slater, H.; Cox, A.; Abbasi, S.; Foulds, I.; Simonsen, H.T.; Leeper, F.J.; Salmond, G.P.C. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 2004, 150(11), 3547-3560.
[http://dx.doi.org/10.1099/mic.0.27222-0] [PMID: 15528645]
[3]
Namazkar, S.; Ahmad, W.A. Spray-dried prodigiosin from serratia marcescens as a colorant. Biosci. Biotechnol. Res. Asia, 2013, 10(1), 69-76.
[http://dx.doi.org/10.13005/bbra/1094]
[4]
Genes, C.; Baquero, E.; Echeverri, F.; Maya, J.D.; Triana, O. Mitochondrial dysfunction in Trypanosoma cruzi: The role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasit. Vectors, 2011, 4(1), 66.
[http://dx.doi.org/10.1186/1756-3305-4-66] [PMID: 21548954]
[5]
Díaz-Ruiz, C.; Montaner, B.; Pérez-Tomás, R. Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol. Histopathol., 2001, 16(2), 415-421.
[PMID: 11332697]
[6]
Montaner, B.; Pérez-Tomás, R. The prodigiosins: A new family of anticancer drugs. Curr. Cancer Drug Targets, 2003, 3(1), 57-65.
[http://dx.doi.org/10.2174/1568009033333772] [PMID: 12570661]
[7]
Handni, G.; Sourav, B.; Arijit, D. Assessment of process parameters influencing the enhanced production of prodigiosin from serratia marcescens and evaluation of its antimicrobial, antioxidant, and dyeing potentials. J. Med.McGil University, 2012, 18, 116-122.
[8]
Tsuji, R.F.; Yamamoto, M.; Nakamura, A.; Kataoka, T.; Magae, J.; Nagai, K.; Yamasaki, M. Selective immunosuppression of prodigiosin 25-C and FK506 in the murine immune system. J. Antibiot., 1990, 43(10), 1293-1301.
[http://dx.doi.org/10.7164/antibiotics.43.1293] [PMID: 1701765]
[9]
Wasserman, H.H.; McKeon, J.E.; Smith, L.; Forgione, P.J. The chemistry of vicinal tricarbonyls: Use of vinyl tricarbonyl esters in the formation of 3-hydroxypyrole-2-carboxylates. Am. Chem. Soc, 1960, 82, 506.
[http://dx.doi.org/10.1021/ja01487a075]
[10]
Hubbard, R.; Rimington, C. The biosynthesis of prodigiosin, the tripyrrylmethene pigment from Bacillus prodigiosus (Serratia marcescens). Biochem. J., 1950, 46(2), 220-225.
[http://dx.doi.org/10.1042/bj0460220] [PMID: 16748664]
[11]
Casullo de Araújo, H.W.; Fukushima, K.; Takaki, G.M.C.; Takaki, G.M.C. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules, 2010, 15(10), 6931-6940.
[http://dx.doi.org/10.3390/molecules15106931] [PMID: 20938403]
[12]
Stankovic, N.; Radulovic, V.; Petkovic, M.; Vuckovic, I.; Jadranin, M.; Vasiljevic, B.; Nikodinovic-Runic, J. Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl. Microbiol. Biotechnol., 2012, 96(5), 1217-1231.
[http://dx.doi.org/10.1007/s00253-012-4237-3] [PMID: 22767180]
[13]
Hu, D.X.; Withall, D.M.; Challis, G.L.; Thomson, R.J. Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chem. Rev., 2016, 116(14), 7818-7853.
[http://dx.doi.org/10.1021/acs.chemrev.6b00024] [PMID: 27314508]
[14]
Williamson, N.R.; Simonsen, H.T.; Ahmed, R.A.A.; Goldet, G.; Slater, H.; Woodley, L.; Leeper, F.J.; Salmond, G.P.C. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: Identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol., 2005, 56(4), 971-989.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04602.x] [PMID: 15853884]
[15]
Pryce, L.H.; Terry, F.W. Spectrophotometric assay of gene expression: Serratia marcescens pigmentation. Bioscene, 2000, 26(4), 3-13.
[16]
Giri, A.; Anandkumar, N.; Muthukumaran, G.; Pennathur, G. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol., 2004, 4(1), 11.
[http://dx.doi.org/10.1186/1471-2180-4-11] [PMID: 15113456]
[17]
Guryanov, I.D.; Karamova, N.S.; Yusupova, D.V.; Gnezdilov, O.I.; Koshkarova, L.A. Bacterial pigment prodigiosin and its genotoxic effect. Russ. J. Bioorganic Chem., 2013, 39(1), 106-111.
[http://dx.doi.org/10.1134/S1068162012060040]
[18]
Abdul Manas, N.H.; Chong, L.Y.; Tesfamariam, Y.M.; Zulkharnain, A.; Mahmud, H.; Abang Mahmod, D.S.; Mohamad Fuzi, S.F.Z.; Wan Azelee, N.I. Effects of oil substrate supplementation on production of prodigiosin by Serratia nematodiphila for dye-sensitized solar cell. J. Biotechnol., 2020, 317, 16-26.
[http://dx.doi.org/10.1016/j.jbiotec.2020.04.011] [PMID: 32348830]
[19]
Darshan, N.; Manonmani, H.K. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express, 2016, 6(1), 50.
[http://dx.doi.org/10.1186/s13568-016-0222-z] [PMID: 27460563]
[20]
Setiyono, E.; Adhiwibawa, M.A.S.; Indrawati, R.; Prihastyanti, M.N.U.; Shioi, Y.; Brotosudarmo, T.H.P. An Indonesian Marine Bacterium, Pseudoalteromonas rubra, Produces Antimicrobial Prodiginine Pigments. ACS Omega, 2020, 5(9), 4626-4635.
[http://dx.doi.org/10.1021/acsomega.9b04322] [PMID: 32175509]
[21]
Vitale, G.A.; Sciarretta, M.; Palma Esposito, F.; January, G.G.; Giaccio, M.; Bunk, B.; Spröer, C.; Bajerski, F.; Power, D.; Festa, C.; Monti, M.C.; D’Auria, M.V.; de Pascale, D. Genomics–metabolomics profiling disclosed marine Vibrio spartinae 3.6 as a producer of a new branched side chain prodigiosin. J. Nat. Prod., 2020, 83(5), 1495-1504.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01159] [PMID: 32275146]
[22]
Williams, R.P.; Green, J.A.; Rappoport, D.A. Studies on pigmentation of Serratia marcescens. I. Spectral and paper chromatographic properties of prodigiosin. J. Bacteriol., 1956, 71(1), 115-120.
[http://dx.doi.org/10.1128/jb.71.1.115-120.1956] [PMID: 13286239]
[23]
Fischer, H.; Gangl, K. Syntheseeines tripyrrylmethens undeines dipyrro-pyrons, ein beitrag zur konstitution des prodigiosins. Biol. Chem., 1941, 267(201), 4-5.
[http://dx.doi.org/10.1515/bchm2]
[24]
Rapoport, H.; Holden, K.G. The synthesis of prodigiosin J. Am. Chem. Soc., 1962, 84(4), 635-642.
[http://dx.doi.org/10.1021/ja00863a026]
[25]
Ermol’eva, Z.V.; Traklitenberg, D.M.; Bondarenko, B.N. Isolation and characterization of prodigiosan from serraria marcexens in submerged culture. Antibiotiki, 1964, 9, 397-403.
[26]
Ermol’eva, Z.V.; Vaisberg, G.E.; Braude, A.E.; Ravich, I.V.; Golosova, T.V.; Pasternak, N.A. Effect of bacterial polysaccharides on tumor growth in vivo. Antibiotiki., 1965, 10, 134-137.
[27]
Hearn, W.R.; Elson, M.K.; Williams, R.H.; Medina-Castro, J. Prodigiosene [5-(2-pyrryl)-2,21-dipyrrylmethene] and some substituted prodigiosenes. J. Org. Chem., 1970, 35(1), 142-146.
[http://dx.doi.org/10.1021/jo00826a032] [PMID: 4903559]
[28]
Gerber, N.N. Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri and Actinomadura madurae. Appl. Microbiol., 1969, 18(1), 1-3.
[http://dx.doi.org/10.1128/am.18.1.1-3.1969] [PMID: 5803627]
[29]
Mo, S.; Sydor, P.K.; Corre, C.; Alhamadsheh, M.M.; Stanley, A.E.; Haynes, S.W.; Song, L.; Reynolds, K.A.; Challis, G.L. Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem. Biol., 2008, 15(2), 137-148.
[http://dx.doi.org/10.1016/j.chembiol.2007.11.015] [PMID: 18291318]
[30]
Fürstner, A.; Grabowski, J.; Lehmann, C.W.; Kataoka, T.; Nagai, K. Synthesis and biological evaluation of nonylprodigiosin and macrocyclic prodigiosin analogues. ChemBioChem, 2001, 2(1), 60-68.
[http://dx.doi.org/10.1002/1439-7633(20010105)2:1<60::AID-CBIC60>3.0.CO;2-P] [PMID: 11828428]
[31]
de Rond, T.; Stow, P.; Eigl, I.; Johnson, R.E.; Chan, L.J.G.; Goyal, G.; Baidoo, E.E.K.; Hillson, N.J.; Petzold, C.J.; Sarpong, R.; Keasling, J.D. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat. Chem. Biol., 2017, 13(11), 1155-1157.
[http://dx.doi.org/10.1038/nchembio.2471] [PMID: 28892091]
[32]
Withall, D.M.; Haynes, S.W.; Challis, G.L. Stereochemistry and mechanism of undecylprodigiosin oxidative carbocyclization to streptorubin b by the rieske oxygenase RedG. J. Am. Chem. Soc., 2015, 137(24), 7889-7897.
[http://dx.doi.org/10.1021/jacs.5b03994] [PMID: 26023709]
[33]
Kimata, S.; Izawa, M.; Kawasaki, T.; Hayakawa, Y. Identification of a prodigiosin cyclization gene in the roseophilin producer and production of a new cyclized prodigiosin in a heterologous host. J. Antibiot., 2017, 70(2), 196-199.
[http://dx.doi.org/10.1038/ja.2016.94] [PMID: 27460763]
[34]
Sharma, R.; Rao, M.R.; Ravikanth, M. α-Pyrrolyl dipyrrins as suitable ligands for coordination chemistry. Coord. Chem. Rev., 2017, 348, 92-120.
[http://dx.doi.org/10.1016/j.ccr.2017.08.002]
[35]
Cerdeño, A.M.; Bibb, M.J.; Challis, G.L. Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem. Biol., 2001, 8(8), 817-829.
[http://dx.doi.org/10.1016/S1074-5521(01)00054-0] [PMID: 11514230]
[36]
Kim, D.; Lee, J.S.; Park, Y.K.; Kim, J.F.; Jeong, H.; Oh, T.K.; Kim, B.S.; Lee, C.H. Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J. Appl. Microbiol., 2007, 102(4), 937-944.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03172.x] [PMID: 17381736]
[37]
Burke, C.; Thomas, T.; Egan, S.; Kjelleberg, S. The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environ. Microbiol., 2007, 9(3), 814-818.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01177.x] [PMID: 17298379]
[38]
Kawasaki, T.; Sakurai, F.; Nagatsuka, S.; Hayakawa, Y. Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis. J. Antibiot., 2009, 62(5), 271-276.
[http://dx.doi.org/10.1038/ja.2009.27] [PMID: 19329986]
[39]
Kazlauskas, R.; Marwood, J.F.; Murphy, P.T.; Wells, R.J. A blue pigment from a compound ascidian. Aust. J. Chem., 1982, 35(1), 215-217.
[http://dx.doi.org/10.1071/CH9820215]
[40]
Detailed Information Concerning the Cytotoxic Properties of Prodigiosins, Roseophilin, and Tambjamines Assayed in the Standard 60-Cell Line Panel;
[41]
Melvin, M.S.; Ferguson, D.C.; Lindquist, N.; Manderville, R.A. DNA binding by 4-methoxypyrrolic natural products. preference for intercalation at AT sites by tambjamine E and prodigiosin. J. Org. Chem., 1999, 64(18), 6861-6869.
[http://dx.doi.org/10.1021/jo990944a] [PMID: 11674696]
[42]
Manderville, R. Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr. Med. Chem. Anticancer Agents, 2001, 1(2), 195-218.
[http://dx.doi.org/10.2174/1568011013354688] [PMID: 12678767]
[43]
Kojiri, K.; Nakajima, S.; Suzuki, H.; Okura, A.; Suda, H. New antitumor substances, BE-12406A and BE-12406B, Produced by a Streptomycete. I. taxonomy, fermentation, isolation, physico-chemical, and biological properties. J. Antibiot., 1993, 46, 1799-1803.
[http://dx.doi.org/10.7164/antibiotics.46.1799] [PMID: 8294236]
[44]
Isaka, M.; Jaturapat, A.; Kramyu, J.; Tanticharoen, M.; Thebtaranonth, Y. Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob. Agents Chemother., 2002, 46(4), 1112-1113.
[http://dx.doi.org/10.1128/AAC.46.4.1112-1113.2002] [PMID: 11897600]
[45]
Wasserman, H.H.; McKeon, J.E.; Santer, U.V. Studies related to the biosynthesis of prodigiosin in Serratiamarcescens. Biochem. Biophys. Res. Commun., 1960, 3(2), 146-149.
[http://dx.doi.org/10.1016/0006-291X(60)90211-4] [PMID: 13843029]
[46]
Jung, H.J.; Ho, J.K. Chemical genomics with natural products. J. Microbiol. Biotechnol., 2006, 16(5), 651-660.
[http://dx.doi.org/10.1016/S1074-5521(02)00100-X]
[47]
Stanley, A.E.; Walton, L.J.; Kourdi Zerikly, M.; Corre, C.; Challis, G.L. Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2,2′-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chem. Commun., 2006, 38(38), 3981-3983.
[http://dx.doi.org/10.1039/B609556A] [PMID: 17003872]
[48]
Schloss, P.D.; Allen, H.K.; Klimowicz, A.K.; Mlot, C.; Gross, J.A.; Savengsuksa, S.; McEllin, J.; Clardy, J.; Ruess, R.W.; Handelsman, J. Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol., 2010, 29(9), 533-541.
[http://dx.doi.org/10.1089/dna.2010.1020] [PMID: 20626288]
[49]
Narva, K.E.; Feitelson, J.S. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J. Bacteriol., 1990, 172(1), 326-333.
[http://dx.doi.org/10.1128/jb.172.1.326-333.1990] [PMID: 2294088]
[50]
White, J.; Bibb, M. bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J. Bacteriol., 1997, 179(3), 627-633.
[http://dx.doi.org/10.1128/jb.179.3.627-633.1997] [PMID: 9006013]
[51]
Guthrie, E.P.; Flaxman, C.S.; White, J.; Hodgson, D.A.; Bibb, M.J.; Chater, K.F. A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology, 1998, 144(3), 727-738.
[http://dx.doi.org/10.1099/00221287-144-3-727] [PMID: 9534242]
[52]
Coco, E.A.; Narva, K.E.; Feitelson, J.S. New classes ofStreptomyces coelicolor A3(2) mutants blocked in undecylprodigiosin (Red) biosynthesis. Mol. Gen. Genet., 1991, 227(1), 28-32.
[http://dx.doi.org/10.1007/BF00260702] [PMID: 2046658]
[53]
Xu, Z.; Wang, Y.; Chater, K.F.; Ou, H.Y.; Xu, H.H.; Deng, Z.; Tao, M. Large-Scale transposition mutagenesis of streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl. Environ. Microbiol., 2017, 83(6), e02889-e16.
[http://dx.doi.org/10.1128/AEM.02889-16] [PMID: 28062460]
[54]
Thomson, N.R.; Crow, M.A.; McGowan, S.J.; Cox, A.; Salmond, G.P.C. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol. Microbiol., 2000, 36(3), 539-556.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01872.x] [PMID: 10844645]
[55]
Slater, H.; Crow, M.; Everson, L.; Salmond, G.P.C. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol., 2003, 47(2), 303-320.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03295.x] [PMID: 12519208]
[56]
Horng, Y.T.; Chang, K.C.; Liu, Y.N.; Lai, H.C.; Soo, P.C. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens. Int. J. Med. Microbiol., 2010, 300(5), 304-312.
[http://dx.doi.org/10.1016/j.ijmm.2010.01.003] [PMID: 20347390]
[57]
Gristwood, T.; Fineran, P.C.; Everson, L.; Williamson, N.R.; Salmond, G.P. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol., 2009, 9(1), 112.
[http://dx.doi.org/10.1186/1471-2180-9-112] [PMID: 19476633]
[58]
Stella, N.A.; Lahr, R.M.; Brothers, K.M.; Kalivoda, E.J.; Hunt, K.M.; Kwak, D.H.; Liu, X.; Shanks, R.M.Q. Serratia marcescens Cyclic AMP receptor protein controls transcription of eepr, a novel regulator of antimicrobial secondary metabolites. J. Bacteriol., 2015, 197(15), 2468-2478.
[http://dx.doi.org/10.1128/JB.00136-15] [PMID: 25897029]
[59]
Fineran, P.C.; Williamson, N.R.; Lilley, K.S.; Salmond, G.P.C. Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J. Bacteriol., 2007, 189(21), 7653-7662.
[http://dx.doi.org/10.1128/JB.00671-07] [PMID: 17766413]
[60]
Tanikawa, T.; Nakagawa, Y.; Matsuyama, T. Transcriptional downregulator hexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol. Immunol., 2006, 50(8), 587-596.
[http://dx.doi.org/10.1111/j.1348-0421.2006.tb03833.x] [PMID: 16924143]
[61]
Arivizhivendhan, K.V.; Mahesh, M.; Boopathy, R.; Swarnalatha, S.; Regina Mary, R.; Sekaran, G. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J. Food Sci. Technol., 2018, 55(7), 2661-2670.
[http://dx.doi.org/10.1007/s13197-018-3188-9] [PMID: 30042582]
[62]
Chen, J.; Li, Y.; Liu, F.; Hou, D.X.; Xu, J.; Zhao, X.; Yang, F.; Feng, X. Prodigiosin promotes Nrf2 activation to inhibit oxidative stress induced by microcystin-LR in HepG2 cells. Toxins, 2019, 11(7), 403.
[http://dx.doi.org/10.3390/toxins11070403] [PMID: 31336817]
[63]
Sajjad, W.; Ahmad, S.; Aziz, I.; Azam, S.S.; Hasan, F.; Shah, A.A. Antiproliferative, antioxidant and binding mechanism analysis of prodigiosin from newly isolated radio-resistant Streptomyces sp. strain WMA-LM31. Mol. Biol. Rep., 2018, 45(6), 1787-1798.
[http://dx.doi.org/10.1007/s11033-018-4324-3] [PMID: 30306508]
[64]
Lazović, S.; Leskovac, A.; Petrović, S.; Senerovic, L.; Krivokapić, N.; Mitrović, T.; Božović, N.; Vasić, V.; Nikodinovic-Runic, J. Biologi-cal effects of bacterial pigment undecylprodigiosin on human blood cells treated with atmospheric gas plasma in vitro. Exp. Toxicol. Pathol., 2017, 69(1), 55-62.
[http://dx.doi.org/10.1016/j.etp.2016.11.003] [PMID: 27843060]
[65]
Kataoka, T.; Muroi, M.; Ohkuma, S.; Waritani, T.; Magae, J.; Takatsuki, A.; Kondo, S.; Yamasaki, M.; Nagai, K. Prodigiosin 25-C uncouples vacuolar type H + -ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett., 1995, 359(1), 53-59.
[http://dx.doi.org/10.1016/0014-5793(94)01446-8] [PMID: 7851530]
[66]
Papireddy, K.; Smilkstein, M.; Kelly, J.X.; Salem, S.M.; Alhamadsheh, M.; Haynes, S.W. Antimalarial activity of natural and synthetic prodiginines. J. Med. Chem., 2011, 54, 5296-5306.
[http://dx.doi.org/10.1021/jm200543y] [PMID: 21736388]
[67]
Rahul, S.; Chandrashekhar, P.; Hemant, B.; Bipinchandra, S.; Mouray, E.; Grellier, P.; Satish, P. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int., 2015, 64(5), 353-356.
[http://dx.doi.org/10.1016/j.parint.2015.05.004] [PMID: 25986963]
[68]
You, Z.; Zhang, S.; Liu, X.; Zhang, J.; Wang, Y.; Peng, Y.; Wu, W. Insights into the anti-infective properties of prodiginines. Appl. Microbiol. Biotechnol., 2019, 103(7), 2873-2887.
[http://dx.doi.org/10.1007/s00253-019-09641-1] [PMID: 30761415]
[69]
Marchal, E.; Smithen, D.A.; Uddin, M.I.; Robertson, A.W.; Jakeman, D.L.; Mollard, V.; Goodman, C.D.; MacDougall, K.S.; McFarland, S.A.; McFadden, G.I.; Thompson, A. Synthesis and antimalarial activity of prodigiosenes. Org. Biomol. Chem., 2014, 12(24), 4132-4142.
[http://dx.doi.org/10.1039/c3ob42548g] [PMID: 24834447]
[70]
Ehrenkaufer, G.; Li, P.; Stebbins, E.E.; Kangussu-Marcolino, M.M.; Debnath, A.; White, C.V.; Moser, M.S.; DeRisi, J.; Gisselberg, J.; Yeh, E.; Wang, S.C.; Company, A.H.; Monti, L.; Caffrey, C.R.; Huston, C.D.; Wang, B.; Singh, U. Identification of anisomycin, prodigiosin and obatoclax as compounds with broad-spectrum anti-parasitic activity. PLoS Negl. Trop. Dis., 2020, 14(3), e0008150.
[http://dx.doi.org/10.1371/journal.pntd.0008150] [PMID: 32196500]
[71]
Patil, C.D.; Patil, S.V.; Salunke, B.K.; Salunkhe, R.B. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol. Res., 2011, 109(4), 1179-1187.
[http://dx.doi.org/10.1007/s00436-011-2365-9] [PMID: 21451991]
[72]
Rahul, S.; Chandrashekhar, P.; Hemant, B.; Chandrakant, N.; Laxmikant, S.; Satish, P. Nematicidal activity of microbial pigment from Serratia marcescens. Nat. Prod. Res., 2014, 28(17), 1399-1404.
[http://dx.doi.org/10.1080/14786419.2014.904310] [PMID: 24697144]
[73]
Balasubramaniam, B.; Alexpandi, R.; Darjily, D.R. Exploration of the optimized parameters for bioactive prodigiosin mass production and its biomedical applications in vitro as well as in silico. Biocatal. Agric. Biotechnol., 2019, 22, 101385.
[http://dx.doi.org/10.1016/j.bcab.2019.101385]
[74]
Suryawanshi, R.K.; Patil, C.D.; Borase, H.P.; Narkhede, C.P.; Salunke, B.K.; Patil, S.V. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pestic. Biochem. Physiol., 2015, 123, 49-55.
[http://dx.doi.org/10.1016/j.pestbp.2015.01.018] [PMID: 26267052]
[75]
Sakai-Kawada, F.E.; Ip, C.G.; Hagiwara, K.A.; Awaya, J.D. Biosynthesis and bioactivity of prodiginine analogs in marine bacteria, Pseudoalteromonas: A mini review. Front. Microbiol., 2019, 10, 1715.
[http://dx.doi.org/10.3389/fmicb.2019.01715] [PMID: 31396200]
[76]
Offret, C.; Desriac, F.; Le Chevalier, P.; Mounier, J.; Jégou, C.; Fleury, Y. Spotlight on antimicrobial metabolites from the marine bacteria pseudoalteromonas: Chemodiversity and ecological significance. Mar. Drugs, 2016, 14(7), 129.
[http://dx.doi.org/10.3390/md14070129] [PMID: 27399731]
[77]
Suzuki, N.; Ohtaguro, N.; Yoshida, Y.; Hirai, M.; Matsuo, H.; Yamada, Y.; Imamura, N.; Tsuchiya, T. A compound inhibits biofilm formation of <i>staphylococcus aureus</i> from <i>streptomyces</i>. Biol. Pharm. Bull., 2015, 38(6), 889-892.
[http://dx.doi.org/10.1248/bpb.b15-00053] [PMID: 26027829]
[78]
Akin-Osanaiye, B.C.; Aruwa, I.N.; Olobayotan, I.W. Isolation of serratia marcescens from the soil and in vitro prodigiosin production as source of antibiotic, active against oxacillin-resistant staphylococcus aureus. South Asian J. Res. Microbiol., 2019, 4(4), 1-9.
[http://dx.doi.org/10.9734/sajrm/2019/v4i430112]
[79]
Rahul, K.S.; Chandrashekhar, D.P.; Sunil, H.K.; John, E.H.; Satish, V.P. Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat. Prod. Res., 2016, 1-5.
[http://dx.doi.org/10.1080/14786419.2016.1195380]
[80]
Arivizhivendhan, K.V.; Mahesh, M.; Murali, R.; Mary, R.R.; Thanikaivelan, P.; Sekaran, G. Prodigiosin–iron-oxide–carbon matrix for efficient antibiotic-resistant bacterial disinfection of contaminated water. ACS Sustain. Chem.& Eng., 2019, 7(3), 3164-3175.
[http://dx.doi.org/10.1021/acssuschemeng.8b05010]
[81]
Mekhael, R.; Yousif, S. The role of red pigment produced by serratia marcescens as antibacterial and plasmid curing agent. J. Duhok Univ, 2009, 12(1), 268-274.
[http://dx.doi.org/10.1007/s13205-017-0979-z]
[82]
Berlanga, M.; Ruiz, N.; Hernandez-Borrell, J.; Montero, T.; Viñas, M. Role of the outer membrane in the accumulation of quinolones by Serratia marcescens. Can. J. Microbiol., 2000, 46(8), 716-722.
[http://dx.doi.org/10.1139/w00-052] [PMID: 10941517]
[83]
Woodhams, D.C.; LaBumbard, B.C.; Barnhart, K.L.; Becker, M.H.; Bletz, M.C.; Escobar, L.A.; Flechas, S.V.; Forman, M.E.; Iannetta, A.A.; Joyce, M.D.; Rabemananjara, F.; Gratwicke, B.; Vences, M.; Minbiole, K.P.C. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two batrachochytrium fungal pathogens. Microb. Ecol., 2018, 75(4), 1049-1062.
[http://dx.doi.org/10.1007/s00248-017-1095-7] [PMID: 29119317]
[84]
Klein, A.S.; Brass, H.U.C.; Klebl, D.P.; Classen, T.; Loeschcke, A.; Drepper, T.; Sievers, S.; Jaeger, K.E.; Pietruszka, J. Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440. ChemBioChem, 2018, 19(14), 1545-1552.
[http://dx.doi.org/10.1002/cbic.201800154] [PMID: 29719131]
[85]
Suryawanshi, R.K.; Koujah, L.; Patil, C.D.; Ames, J.M.; Agelidis, A.; Yadavalli, T.; Patil, S.V.; Shukla, D. Bacterial pigment prodigiosin demonstrates a unique antiherpesvirus activity that is mediated through inhibition of prosurvival signal transducers. J. Virol., 2020, 94(13), e00251-e20.
[http://dx.doi.org/10.1128/JVI.00251-20] [PMID: 32295926]
[86]
Danevčič, T.; Borić Vezjak, M.; Tabor, M.; Zorec, M.; Stopar, D. Prodigiosin induces autolysins in actively grown bacillus subtilis cells. Front. Microbiol., 2016, 7, 27.
[http://dx.doi.org/10.3389/fmicb.2016.00027] [PMID: 26858704]
[87]
Ravindran, A.; Anishetty, S.; Pennathur, G. Molecular dynamics of the membrane interaction and localisation of prodigiosin. J. Mol. Graph. Model., 2020, 98, 107614.
[http://dx.doi.org/10.1016/j.jmgm.2020.107614] [PMID: 32289740]
[88]
Williamson, N.R.; Fineran, P.C.; Gristwood, T.; Chawrai, S.R.; Leeper, F.J.; Salmond, G.P.C. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol., 2007, 2(6), 605-618.
[http://dx.doi.org/10.2217/17460913.2.6.605] [PMID: 18041902]
[89]
Dalili, D.; Fouladdel, S.; Rastkari, N.; Samadi, N.; Ahmadkhaniha, R.; Ardavan, A.; Azizi, E. Prodigiosin, the red pigment of Serratia marcescens, shows cytotoxic effects and apoptosis induction in HT-29 and T47D cancer cell lines. Nat. Prod. Res., 2011, 26(22), 1-6.
[http://dx.doi.org/10.1080/14786419.2011.622276] [PMID: 21985476]
[90]
Llagostera, E.; Soto-Cerrato, V.; Joshi, R.; Montaner, B.; Gimenez-Bonafé, P.; Pérez-Tomás, R. High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation. Anticancer Drugs, 2005, 16(4), 393-399.
[http://dx.doi.org/10.1097/00001813-200504000-00005] [PMID: 15746575]
[91]
Baldino, C.M.; Parr, J.; Wilson, C.J.; Ng, S.C.; Yohannes, D.; Wasserman, H.H. Indoloprodigiosins from the C-10 bipyrrolic precursor: New antiproliferative prodigiosin analogs. Bioorg. Med. Chem. Lett., 2006, 16(3), 701-704.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.027] [PMID: 16289814]
[92]
Francisco, R.; Pérez-Tomás, R.; Gimènez-Bonafé, P.; Soto-Cerrato, V.; Giménez-Xavier, P.; Ambrosio, S. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur. J. Pharmacol., 2007, 572(2-3), 111-119.
[http://dx.doi.org/10.1016/j.ejphar.2007.06.054] [PMID: 17678643]
[93]
Nguyen, M.; Marcellus, R.C.; Roulston, A.; Watson, M.; Serfass, L.; Murthy Madiraju, S.R.; Goulet, D.; Viallet, J.; Bélec, L.; Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone, R.W.; Beauparlant, P.; Shore, G.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci., 2007, 104(49), 19512-19517.
[http://dx.doi.org/10.1073/pnas.0709443104] [PMID: 18040043]
[94]
Hong, B.; Prabhu, V.V.; Zhang, S.; van den Heuvel, A.P.J.; Dicker, D.T.; Kopelovich, L.; El-Deiry, W.S. Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53. Cancer Res., 2014, 74(4), 1153-1165.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0955] [PMID: 24247721]
[95]
Campàs, C.; Dalmau, M.; Montaner, B.; Barragán, M.; Bellosillo, B.; Colomer, D.; Pons, G.; Pérez-Tomás, R.; Gil, J. Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia, 2003, 17(4), 746-750.
[http://dx.doi.org/10.1038/sj.leu.2402860] [PMID: 12682632]
[96]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[97]
Yamamoto, C.; Takemoto, H.; Kuno, K.; Yamamoto, D.; Tsubura, A.; Kamata, K.; Hirata, H.; Yamamoto, A.; Kano, H.; Seki, T.; Inoue, K. Cycloprodigiosin hydrochloride, a new H+/Cl? symporter, induces apoptosis in human and rat hepatocellular cancer cell linesin vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology, 1999, 30(4), 894-902.
[http://dx.doi.org/10.1002/hep.510300417] [PMID: 10498640]
[98]
Yamamoto, D.; Uemura, Y.; Tanaka, K.; Nakai, K.; Yamamoto, C.; Takemoto, H.; Kamata, K.; Hirata, H.; Hioki, K. Cycloprodigiosin hydrochloride, H+/CL- symporter, induces apoptosis and differentiation in HL-60 cells. Int. J. Cancer, 2000, 88(1), 121-128.
[http://dx.doi.org/10.1002/1097-0215(20001001)88:1<121::AID-IJC19>3.0.CO;2-C] [PMID: 10962449]
[99]
Han, S.B.; Park, S.H.; Jeon, Y.J.; Kim, Y.K.; Kim, H.M.; Yang, K.H. Prodigiosin blocks T cell activation by inhibiting interleukin-2Ralpha expression and delays progression of autoimmune diabetes and collagen-induced arthritis. J. Pharmacol. Exp. Ther., 2001, 299(2), 415-425.
[http://dx.doi.org/10.1002/pmc11602650] [PMID: 11602650]
[100]
Pérez-Tomás, R.; Montaner, B.; Montaner, B. Effects of the proapoptotic drug prodigiosin on cell cycle-related proteins in Jurkat T cells. Histol. Histopathol., 2003, 18(2), 379-385.
[http://dx.doi.org/10.14670/HH-18.379] [PMID: 12647787]
[101]
Songia, S.; Mortellaro, A.; Taverna, S.; Fornasiero, C.; Scheiber, E.A.; Erba, E.; Colotta, F.; Mantovani, A.; Isetta, A.M.; Golay, J. Characterization of the new immunosuppressive drug undecylprodigiosin in human lymphocytes: retinoblastoma protein, cyclin-dependent kinase-2, and cyclin-dependent kinase-4 as molecular targets. J. Immunol., 1997, 158(8), 3987-3995.
[http://dx.doi.org/10.4049/jimmunol.158.8.3987] [PMID: 9103470]
[102]
Kim, Y.H.; Im, A.R.; Park, B.K.; Paek, S.H.; Choi, G.; Kim, Y.R.; Whang, W.K.; Lee, K.H.; Oh, S.E.; Lee, M.Y. Antidepressant-like and neuroprotective effects of ethanol extract from the root bark of hibiscus syriacus L. BioMed Res. Int., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/7383869] [PMID: 30581865]
[103]
Bakunina, N.; Pariante, C.M.; Zunszain, P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology, 2015, 144(3), 365-373.
[http://dx.doi.org/10.1111/imm.12443] [PMID: 25580634]
[104]
Li, X.; Wu, T.; Yu, Z.; Li, T.; Zhang, J.; Zhang, Z.; Cai, M.; Zhang, W.; Xiang, J.; Cai, D. Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis. Biomed. Pharmacother., 2018, 100, 394-406.
[http://dx.doi.org/10.1016/j.biopha.2018.01.137] [PMID: 29454288]
[105]
Yu, H.; Fan, C.; Yang, L.; Yu, S.; Song, Q.; Wang, P.; Mao, X. Ginsenoside Rg1 prevents chronic stress-induced depression-like behaviors and neuronal structural plasticity in rats. Cell. Physiol. Biochem., 2018, 48(6), 2470-2482.
[http://dx.doi.org/10.1159/000492684] [PMID: 30121663]
[106]
Licinio, J.; Wong, M.L. Depression, antidepressants and suicidality: A critical appraisal. Nat. Rev. Drug Discov., 2005, 4(2), 165-171.
[http://dx.doi.org/10.1038/nrd1634] [PMID: 15688079]
[107]
Huh, J.E.; Yim, J.H.; Lee, H-K.; Moon, E.Y.; Rhee, D.K.; Pyo, S. Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccha-ride-induced NO production by inhibiting p38 MAPK, JNK and NF-κB activation in murine peritoneal macrophages. Int. Immunopharmacol, 2007, 7(13), 1825-1833.
[108]
Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases. Metallomics, 2015, 7(8), 1213-1228.
[http://dx.doi.org/10.1039/c5mt00075k] [PMID: 25996565]
[109]
Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol., 2016, 100(6), 2555-2566.
[http://dx.doi.org/10.1007/s00253-016-7300-7] [PMID: 26801915]
[110]
Soto-Cerrato, V.; Viñals, F.; Lambert, J.R.; Kelly, J.A.; Pérez-Tomás, R. Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3β activity in human breast cancer cells. Mol. Cancer Ther., 2007, 6(1), 362-369.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0266] [PMID: 17237295]
[111]
Ryazantseva, I.; Andreyeva, I. Application of prodigiosin as a colorant for polyolefines. Adv. Biol. Chem., 2014, 4(1), 20-25.
[http://dx.doi.org/10.4236/abc.2014.41004]
[112]
Silva, T.R.; Tavares, R.S.N.; Canela-Garayoa, R.; Eras, J.; Rodrigues, M.V.N.; Neri-Numa, I.A.; Pastore, G.M.; Rosa, L.H.; Schultz, J.A.A.; Debonsi, H.M.; Cordeiro, L.R.G.; Oliveira, V.M. Chemical characterization and biotechnological applicability of pigments isolated from antarctic bacteria. Mar. Biotechnol., 2019, 21(3), 416-429.
[http://dx.doi.org/10.1007/s10126-019-09892-z] [PMID: 30874930]
[113]
Koyama, Y.; Miki, T.; Wang, X.F.; Nagae, H. Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency. Int. J. Mol. Sci., 2009, 10(11), 4575-4622.
[http://dx.doi.org/10.3390/ijms10114575] [PMID: 20087456]
[114]
Tomat, E. Coordination chemistry of linear tripyrroles: Promises and perils. Comments Mod. Chem. A Comments Inorg. Chem., 2016, 36(6), 327-342.
[http://dx.doi.org/10.1080/02603594.2016.1180291]
[115]
Di Mauro, E.; Xu, R.; Soliveri, G.; Santato, C. Natural melanin pigments and their interfaces with metal ions and oxides: Emerging concepts and technologies. MRS Commun., 2017, 7(2), 141-151.
[http://dx.doi.org/10.1557/mrc.2017.33]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy