Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Systematic Review Article

Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review

Author(s): Jing Cui, Yiwen Li, Mengmeng Zhu, Yanfei Liu* and Yue Liu*

Volume 21, Issue 5, 2023

Published on: 27 September, 2023

Page: [316 - 345] Pages: 30

DOI: 10.2174/0115701611249727230920042944

Price: $65

Abstract

Objective: To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics.

Methods: Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization.

Results: Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes.

Conclusion: Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.

Graphical Abstract

[1]
Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics—2020 update: A report from the american heart association. Circulation 2020; 141(9): e139-596.
[http://dx.doi.org/10.1161/CIR.0000000000000757] [PMID: 31992061]
[2]
Huffman MD, Baldridge A, Bloomfield GS, et al. Global cardiovascular research output, citations, and collaborations: A time-trend, bibliometric analysis (1999-2008). PLoS One 2013; 8(12): e83440.
[http://dx.doi.org/10.1371/journal.pone.0083440] [PMID: 24391769]
[3]
Cai P, Zheng Y, Zhou Y, et al. Research progress on the role of exosomes in obstructive sleep apnea-hypopnea syndrome-related atherosclerosis. Sleep Med Rev 2022; 66: 101696.
[http://dx.doi.org/10.1016/j.smrv.2022.101696] [PMID: 36174425]
[4]
Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther 2021; 12(1): 519.
[http://dx.doi.org/10.1186/s13287-021-02591-4] [PMID: 34583757]
[5]
Yang L, Wang T, Zhang X, et al. Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-inflammation and restoring gut dysbiosis. BMC Cardiovasc Disord 2022; 22(1): 61.
[http://dx.doi.org/10.1186/s12872-022-02508-w] [PMID: 35172728]
[6]
Hu H, Wu J, Cao C, Ma L. Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization. IUBMB Life 2020; 72(11): 2409-19.
[http://dx.doi.org/10.1002/iub.2364] [PMID: 32842172]
[7]
Xu R, Zhang F, Chai R, et al. Exosomes derived from pro‐inflammatory bone marrow‐derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23(11): 7617-31.
[http://dx.doi.org/10.1111/jcmm.14635] [PMID: 31557396]
[8]
Liu X, Li X, Zhu W, et al. Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair. J Cell Physiol 2020; 235(11): 8010-22.
[http://dx.doi.org/10.1002/jcp.29456] [PMID: 31960418]
[9]
Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res 2018; 123(5): 564-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312758] [PMID: 29921652]
[10]
Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem 2017; 44(6): 2105-16.
[http://dx.doi.org/10.1159/000485949] [PMID: 29241208]
[11]
Zhu D, Wang Y, Thomas M, et al. Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway. J Mol Cell Cardiol 2022; 162: 10-9.
[http://dx.doi.org/10.1016/j.yjmcc.2021.08.010] [PMID: 34474073]
[12]
Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/3290372] [PMID: 30271437]
[13]
Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 2018; 8(22): 6163-77.
[http://dx.doi.org/10.7150/thno.28021] [PMID: 30613290]
[14]
Mackie AR, Klyachko E, Thorne T, et al. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 2012; 111(3): 312-21.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266015] [PMID: 22581926]
[15]
Sun J, Shen H, Shao L, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 2020; 11(1): 373.
[http://dx.doi.org/10.1186/s13287-020-01881-7] [PMID: 32859268]
[16]
Wang X, Chen Y, Zhao Z, et al. Engineered exosomes with ischemic myocardium‐targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc 2018; 7(15): e008737.
[http://dx.doi.org/10.1161/JAHA.118.008737] [PMID: 30371236]
[17]
Orso F, Fabbri G, Maggioni AP. Epidemiology of heart failure. Handb Exp Pharmacol 2016; 243: 15-33.
[http://dx.doi.org/10.1007/164_2016_74] [PMID: 27718059]
[18]
Ye W, Tang X, Yang Z, et al. Plasma-derived exosomes contribute to inflammation via the TLR9-NF-κB pathway in chronic heart failure patients. Mol Immunol 2017; 87: 114-21.
[http://dx.doi.org/10.1016/j.molimm.2017.03.011] [PMID: 28433888]
[19]
Wang L, Liu J, Xu B, Liu YL, Liu Z. Reduced exosome miR‐425 and miR‐744 in the plasma represents the progression of fibrosis and heart failure. Kaohsiung J Med Sci 2018; 34(11): 626-33.
[http://dx.doi.org/10.1016/j.kjms.2018.05.008] [PMID: 30392569]
[20]
Chen F, Li X, Zhao J, Geng J, Xie J, Xu B. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling. In vitro Cell Dev Biol Anim 2020; 56(7): 567-76.
[http://dx.doi.org/10.1007/s11626-020-00481-2] [PMID: 32748023]
[21]
Nakamura Y, Kita S, Tanaka Y, et al. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol Ther 2020; 28(10): 2203-19.
[http://dx.doi.org/10.1016/j.ymthe.2020.06.026] [PMID: 32652045]
[22]
Pironti G, Strachan RT, Abraham D, et al. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin ii type 1 receptors. Circulation 2015; 131(24): 2120-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.015687] [PMID: 25995315]
[23]
Osada-Oka M, Shiota M, Izumi Y, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 2017; 40(4): 353-60.
[http://dx.doi.org/10.1038/hr.2016.163] [PMID: 27881852]
[24]
Cambier L, Giani JF, Liu W, et al. Angiotensin ii–induced end-organ damage in mice is attenuated by human exosomes and by an exosomal y rna fragment. Hypertension 2018; 72(2): 370-80.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11239] [PMID: 29866742]
[25]
Otani K, Yokoya M, Kodama T, et al. Plasma exosomes regulate systemic blood pressure in rats. Biochem Biophys Res Commun 2018; 503(2): 776-83.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.075] [PMID: 29913142]
[26]
Bittle GJ, Morales D, Pietris N, et al. Exosomes isolated from human cardiosphere–derived cells attenuate pressure overload–induced right ventricular dysfunction. J Thorac Cardiovasc Surg 2021; 162(3): 975-986.e6.
[http://dx.doi.org/10.1016/j.jtcvs.2020.06.154] [PMID: 33046229]
[27]
Pei X, Li Y, Zhu L, Zhou Z. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp Cell Res 2019; 382(2): 111474.
[http://dx.doi.org/10.1016/j.yexcr.2019.06.019] [PMID: 31229506]
[28]
Hira K, Ueno Y, Tanaka R, et al. Astrocyte-derived exosomes treated with a semaphorin 3a inhibitor enhance stroke recovery via prosta-glandin D 2 Synthase. Stroke 2018; 49(10): 2483-94.
[http://dx.doi.org/10.1161/STROKEAHA.118.021272] [PMID: 30355116]
[29]
Du L, Jiang Y, Sun Y. Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression. Neurotoxicology 2021; 83: 28-39.
[http://dx.doi.org/10.1016/j.neuro.2020.12.006] [PMID: 33309839]
[30]
Chen W, Wang H, Zhu Z, Feng J, Chen L. Exosome-Shuttled circSHOC2 from IPASs Regulates Neuronal Autophagy and Ameliorates Ischemic Brain Injury via the miR-7670-3p/SIRT1 Axis. Mol Ther Nucleic Acids 2020; 22: 657-72.
[http://dx.doi.org/10.1016/j.omtn.2020.09.027] [PMID: 33230464]
[31]
Kim M, Kim G, Hwang DW, Lee M. Delivery of high mobility group box-1 sirna using brain-targeting exosomes for ischemic stroke therapy. J Biomed Nanotechnol 2019; 15(12): 2401-12.
[http://dx.doi.org/10.1166/jbn.2019.2866] [PMID: 31748020]
[32]
Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 2017; 7: 278-87.
[http://dx.doi.org/10.1016/j.omtn.2017.04.010] [PMID: 28624203]
[33]
Yang H, Tu Z, Yang D, et al. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett 2022; 769: 136389.
[http://dx.doi.org/10.1016/j.neulet.2021.136389] [PMID: 34896256]
[34]
Yang Y, Cai Y, Zhang Y, Liu J, Xu Z. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen–glucose deprivation In vitro through MicroRNA-181b/TRPM7 Axis. J Mol Neurosci 2018; 65(1): 74-83.
[http://dx.doi.org/10.1007/s12031-018-1071-9] [PMID: 29705934]
[35]
Tian Y, Zhu P, Liu S, et al. IL-4-polarized BV2 microglia cells promote angiogenesis by secreting exosomes. Adv Clin Exp Med 2019; 28(4): 421-30.
[http://dx.doi.org/10.17219/acem/91826] [PMID: 30684318]
[36]
Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting m2 microglial/macrophage polarization. Cell Physiol Biochem 2018; 47(2): 864-78.
[http://dx.doi.org/10.1159/000490078] [PMID: 29807362]
[37]
Zheng Y, He R, Wang P, Shi Y, Zhao L, Liang J. Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomater Sci 2019; 7(5): 2037-49.
[http://dx.doi.org/10.1039/C8BM01449C] [PMID: 30843911]
[38]
Geng W, Tang H, Luo S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res 2019; 11(2): 780-92.
[PMID: 30899379]
[39]
Chen KH, Chen CH, Wallace CG, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget 2016; 7(46): 74537-56.
[http://dx.doi.org/10.18632/oncotarget.12902] [PMID: 27793019]
[40]
Xin H, Wang F, Li Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microrna 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant 2017; 26(2): 243-57.
[http://dx.doi.org/10.3727/096368916X693031] [PMID: 27677799]
[41]
Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 2013; 31(12): 2737-46.
[http://dx.doi.org/10.1002/stem.1409] [PMID: 23630198]
[42]
Sun X, Jung JH, Arvola O, et al. Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Front Cell Neurosci 2019; 13: 394.
[http://dx.doi.org/10.3389/fncel.2019.00394] [PMID: 31551712]
[43]
Xin H, Liu Z, Buller B, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axonmyelin remodeling and motor electrophysiological recovery after stroke. J Cereb Blood Flow Metab 2021; 41(5): 1131-44.
[http://dx.doi.org/10.1177/0271678X20950489] [PMID: 32811262]
[44]
Wei R, Zhang L, Hu W, Shang X, He Y, Zhang W. Zeb2/Axin2-enriched bmsc-derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. J Mol Neurosci 2022; 72(1): 69-81.
[http://dx.doi.org/10.1007/s12031-021-01887-7] [PMID: 34401997]
[45]
Deng Y, Chen D, Gao F, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 2019; 13(1): 71.
[http://dx.doi.org/10.1186/s13036-019-0193-0] [PMID: 31485266]
[46]
Xiao Y, Geng F, Wang G, Li X, Zhu J, Zhu W. Bone marrow–derived mesenchymal stem cells–derived exosomes prevent oligodendrocyte apoptosis through exosomal miR‐134 by targeting caspase‐8. J Cell Biochem 2019; 120(2): 2109-18.
[http://dx.doi.org/10.1002/jcb.27519] [PMID: 30191592]
[47]
Zhang G, Zhu Z, Wang H, et al. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J Adv Res 2020; 24: 435-45.
[http://dx.doi.org/10.1016/j.jare.2020.05.017] [PMID: 32551140]
[48]
Nalamolu KR, Venkatesh I, Mohandass A, et al. Exosomes secreted by the cocultures of normal and oxygen–glucose-deprived stem cells improve post-stroke outcome. Neuromolecular Med 2019; 21(4): 529-39.
[http://dx.doi.org/10.1007/s12017-019-08540-y] [PMID: 31077035]
[49]
Zhang Z, Zou X, Zhang R, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglialmediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging 2021; 13(2): 3060-79.
[http://dx.doi.org/10.18632/aging.202466] [PMID: 33479185]
[50]
Zhong Y, Luo L. Exosomes from human umbilical vein endothelial cells ameliorate ischemic injuries by suppressing the rna component of mitochondrial rna-processing endoribonuclease via the induction of miR-206/miR-1-3p levels. Neuroscience 2021; 476: 34-44.
[http://dx.doi.org/10.1016/j.neuroscience.2021.08.026] [PMID: 34481913]
[51]
Xu C, Yu H, Chen B, Ma Y, Lv P. Serum Exosomal mir-340-5p promotes angiogenesis in brain microvascular endothelial cells during oxygen-glucose deprivation. Neurochem Res 2022; 47(4): 907-20.
[http://dx.doi.org/10.1007/s11064-021-03492-x] [PMID: 34993704]
[52]
Ling X, Zhang G, Xia Y, et al. Exosomes from human urinederived stem cells enhanced neurogenesis via miR‐26a/HDAC6 axis after ischaemic stroke. J Cell Mol Med 2020; 24(1): 640-54.
[http://dx.doi.org/10.1111/jcmm.14774] [PMID: 31667951]
[53]
Li M, Li X, Wang D, et al. Inhibition of exosome release augments neuroinflammation following intracerebral hemorrhage. FASEB J 2021; 35(6): e21617.
[http://dx.doi.org/10.1096/fj.202002766R] [PMID: 33982343]
[54]
Zhao H, Li Y, Chen L, et al. HucMSCs-Derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF. Neuroscience 2019; 417: 11-23.
[http://dx.doi.org/10.1016/j.neuroscience.2019.07.051] [PMID: 31400488]
[55]
Tang B, Song M, Xie X, et al. Tumor necrosis factor-stimulated gene-6 (TSG-6) Secreted by BMSCs Regulates activated astrocytes by inhibiting NF-κB signaling pathway to ameliorate blood brain barrier damage after intracerebral hemorrhage. Neurochem Res 2021; 46(9): 2387-402.
[http://dx.doi.org/10.1007/s11064-021-03375-1] [PMID: 34145502]
[56]
Han Y, Seyfried D, Meng Y, et al. Multipotent mesenchymal stromal cell–derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg 2019; 131(1): 290-300.
[http://dx.doi.org/10.3171/2018.2.JNS171475] [PMID: 30028267]
[57]
Safakheil M, Safakheil H. The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci 2020; 70(5): 724-37.
[http://dx.doi.org/10.1007/s12031-020-01483-1] [PMID: 31974756]
[58]
Guo L, Pan J, Li F, Zhao L, Shi Y. A novel brain targeted plasma exosomes enhance the neuroprotective efficacy of edaravone in ischemic stroke. IET Nanobiotechnol 2021; 15(1): 107-16.
[http://dx.doi.org/10.1049/nbt2.12003] [PMID: 34694723]
[59]
Zhang S, Jin T, Wang L, et al. Electro-acupuncture promotes the differentiation of endogenous neural stem cells via exosomal microrna 146b after ischemic stroke. Front Cell Neurosci 2020; 14: 223.
[http://dx.doi.org/10.3389/fncel.2020.00223] [PMID: 32792909]
[60]
Wang J, Liu H, Chen S, Zhang W, Chen Y, Yang Y. Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol 2020; 330: 113325.
[http://dx.doi.org/10.1016/j.expneurol.2020.113325] [PMID: 32325158]
[61]
Li C, Ke C, Su Y, Wan C. Exercise intervention promotes the growth of synapses and regulates neuroplasticity in rats with ischemic stroke through exosomes. Front Neurol 2021; 12: 752595.
[http://dx.doi.org/10.3389/fneur.2021.752595] [PMID: 34777222]
[62]
Wang L, Liu G, Liu J, Zheng M, Li L. Effects of no-reflow phenomenon on ventricular systolic synchrony in patients with acute anterior myocardial infarction after percutaneous coronary intervention. Ther Clin Risk Manag 2016; 12: 1017-22.
[http://dx.doi.org/10.2147/TCRM.S107808] [PMID: 27445480]
[63]
Davidson SM, Riquelme JA, Zheng Y, Vicencio JM, Lavandero S, Yellon DM. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning. Sci Rep 2018; 8(1): 15885.
[http://dx.doi.org/10.1038/s41598-018-34357-z] [PMID: 30367147]
[64]
Yang D, Wang M, Hu Z, et al. Extracorporeal cardiac shock wave induced exosome derived from endothelial colony-forming cells carrying miR-140-3p alleviate cardiomyocyte hypoxia/reoxygenation injury via the PTEN/PI3K/AKT pathway. Front Cell Dev Biol 2022; 9: 779936.
[http://dx.doi.org/10.3389/fcell.2021.779936] [PMID: 35083214]
[65]
Luo H, Li X, Li T, et al. microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning. Cardiovasc Res 2019; 115(7): 1189-204.
[http://dx.doi.org/10.1093/cvr/cvy231] [PMID: 30202848]
[66]
Liu N, Xie L, Xiao P, et al. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2022; 477(4): 1249-60.
[http://dx.doi.org/10.1007/s11010-021-04343-7] [PMID: 35119583]
[67]
Chen L, Wang Y, Pan Y, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 2013; 431(3): 566-71.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.015] [PMID: 23318173]
[68]
Ciullo A, Biemmi V, Milano G, et al. Exosomal Expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci 2019; 20(3): 468.
[http://dx.doi.org/10.3390/ijms20030468] [PMID: 30678240]
[69]
Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt Pathways. Cell Physiol Biochem 2017; 43(1): 52-68.
[http://dx.doi.org/10.1159/000480317] [PMID: 28848091]
[70]
Schena GJ, Murray EK, Hildebrand AN, et al. Cortical bone stem cell-derived exosomes’ therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. Am J Physiol Heart Circ Physiol 2021; 321(6): H1014-29.
[http://dx.doi.org/10.1152/ajpheart.00197.2021] [PMID: 34623184]
[71]
Zou L, Ma X, Wu B, Chen Y, Xie D, Peng C. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the miR-149/let-7c/Faslg axis. Free Radic Res 2020; 54(10): 722-31.
[http://dx.doi.org/10.1080/10715762.2020.1837793] [PMID: 33054503]
[72]
Sun XH, Wang X, Zhang Y, Hui J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb Res 2019; 177: 23-32.
[http://dx.doi.org/10.1016/j.thromres.2019.02.002] [PMID: 30844685]
[73]
Chai HT, Sheu JJ, Chiang JY, et al. Early administration of cold water and adipose derived mesenchymal stem cell derived exosome effectively protects the heart from ischemia-reperfusion injury. Am J Transl Res 2019; 11(9): 5375-89.
[PMID: 31632517]
[74]
Minghua W, Zhijian G, Chahua H, et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 2018; 9(3): 320.
[http://dx.doi.org/10.1038/s41419-018-0274-x] [PMID: 29476052]
[75]
Tian T, Li F, Chen R, Wang Z, Su X, Yang C. Therapeutic potential of exosomes derived from circRNA_0002113 lacking mesenchymal stem cells in myocardial infarction. Front Cell Dev Biol 2022; 9: 779524.
[http://dx.doi.org/10.3389/fcell.2021.779524] [PMID: 35127703]
[76]
Xu YQ, Xu Y, Wang SH. Effect of exosome-carried miR-30a on myocardial apoptosis in myocardial ischemia-reperfusion injury rats through regulating autophagy. Eur Rev Med Pharmacol Sci 2019; 23(16): 7066-72.
[http://dx.doi.org/10.26355/eurrev_201908_18748] [PMID: 31486507]
[77]
Xiao B, Chai Y, Lv S, et al. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int J Mol Med 2017; 40(4): 1201-9.
[http://dx.doi.org/10.3892/ijmm.2017.3106] [PMID: 28849073]
[78]
Zhou S, Gao B, Sun C, et al. Vascular endothelial cell-derived exosomes protect neural stem cells against ischemia/reperfusion injury. Neuroscience 2020; 441: 184-96.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.046] [PMID: 32502570]
[79]
Gao B, Zhou S, Sun C, et al. Brain endothelial cell-derived exosomes induce neuroplasticity in rats with ischemia/reperfusion injury. ACS Chem Neurosci 2020; 11(15): 2201-13.
[http://dx.doi.org/10.1021/acschemneuro.0c00089] [PMID: 32574032]
[80]
Guitart K, Loers G, Buck F, Bork U, Schachner M, Kleene R. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 2016; 64(6) n/a.
[http://dx.doi.org/10.1002/glia.22963] [PMID: 26992135]
[81]
Wu W, Liu J, Yang C, Xu Z, Huang J, Lin J. Astrocyte-derived exosome-transported microRNA-34c is neuroprotective against cerebral ischemia/reperfusion injury via TLR7 and the NF-κB/MAPK pathways. Brain Res Bull 2020; 163: 84-94.
[http://dx.doi.org/10.1016/j.brainresbull.2020.07.013] [PMID: 32682816]
[82]
Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 2019; 9(10): 2910-23.
[http://dx.doi.org/10.7150/thno.30879] [PMID: 31244932]
[83]
Zhang D, Cai G, Liu K, et al. Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1. Aging 2021; 13(3): 4079-95.
[http://dx.doi.org/10.18632/aging.202373] [PMID: 33461167]
[84]
Xie L, Zhao H, Wang Y, Chen Z. Exosomal shuttled miR-424-5p from ischemic preconditioned microglia mediates cerebral endothelial cell injury through negatively regulation of FGF2/STAT3 pathway. Exp Neurol 2020; 333: 113411.
[http://dx.doi.org/10.1016/j.expneurol.2020.113411] [PMID: 32707150]
[85]
Wang L, Jiang J, Zhou T, Xue X, Cao Y. Improvement of cerebral ischemia-reperfusion injury via regulation of apoptosis by exosomes derived from bdnf-overexpressing HEK293. BioMed Res Int 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/6613510] [PMID: 33763476]
[86]
Zhang Y, Yu J, Liu J, Liu H, Li J. Effects of stem cell-derived exosomes on neuronal apoptosis and inflammatory cytokines in rats with cerebral ischemia-reperfusion injury via PI3K/AKT pathway-mediated mitochondrial apoptosis. Immunopharmacol Immunotoxicol 2021; 43(6): 731-40.
[http://dx.doi.org/10.1080/08923973.2021.1976794] [PMID: 34549680]
[87]
Huang X, Ding J, Li Y, et al. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res 2018; 371(1): 269-77.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.021] [PMID: 30142325]
[88]
Kong L, Li Y, Rao D, et al. miR-666-3p mediates the protective effects of mesenchymal stem cell-derived exosomes against oxygen-glucose deprivation and reoxygenation-induced cell injury in brain microvascular endothelial cells via mitogen-activated protein kinase pathway. Curr Neurovasc Res 2021; 18(1): 20-77.
[http://dx.doi.org/10.2174/1567202618666210319152534] [PMID: 33745435]
[89]
Yu H, Xu Z, Qu G, et al. Hypoxic preconditioning enhances the efficacy of mesenchymal stem cells-derived conditioned medium in switching microglia toward anti-inflammatory polarization in ischemia/reperfusion. Cell Mol Neurobiol 2021; 41(3): 505-24.
[http://dx.doi.org/10.1007/s10571-020-00868-5] [PMID: 32424775]
[90]
Liu X, Zhang M, Liu H, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol 2021; 341: 113700.
[http://dx.doi.org/10.1016/j.expneurol.2021.113700] [PMID: 33741350]
[91]
Li X, Bi T, Yang S. Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered 2022; 13(2): 3030-43.
[http://dx.doi.org/10.1080/21655979.2021.2012402] [PMID: 34898357]
[92]
Li S, Luo L, He Y, et al. Dental pulp stem cell‐derived exosomes alleviate cerebral ischaemia‐reperfusion injury through suppressing inflammatory response. Cell Prolif 2021; 54(8): e13093.
[http://dx.doi.org/10.1111/cpr.13093] [PMID: 34231932]
[93]
Li G, Xiao L, Qin H, et al. RETRACTED ARTICLE: Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion. Cell Cycle 2020; 19(9): 1022-35.
[http://dx.doi.org/10.1080/15384101.2020.1743912] [PMID: 32208888]
[94]
Castelli V, Antonucci I, d’Angelo M, et al. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl Med 2021; 10(2): 251-66.
[http://dx.doi.org/10.1002/sctm.20-0268] [PMID: 33027557]
[95]
Jiang Y, He R, Shi Y, Liang J, Zhao L. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sci 2020; 256: 117987.
[http://dx.doi.org/10.1016/j.lfs.2020.117987] [PMID: 32569778]
[96]
Li H, Luo Y, Liu P, et al. Exosomes containing miR‐451a is involved in the protective effect of cerebral ischemic preconditioning against cerebral ischemia and reperfusion injury. CNS Neurosci Ther 2021; 27(5): 564-76.
[http://dx.doi.org/10.1111/cns.13612] [PMID: 33533575]
[97]
He R, Jiang Y, Shi Y, Liang J, Zhao L. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Mater Sci Eng C 2020; 117: 111314.
[http://dx.doi.org/10.1016/j.msec.2020.111314] [PMID: 32919674]
[98]
Kalani A, Chaturvedi P, Kamat PK, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 2016; 79: 360-9.
[http://dx.doi.org/10.1016/j.biocel.2016.09.002] [PMID: 27594413]
[99]
Guo L, Huang Z, Huang L, et al. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons. J Nanobiotechnology 2021; 19(1): 141.
[http://dx.doi.org/10.1186/s12951-021-00879-4] [PMID: 34001136]
[100]
Kim M, Lee Y, Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. Nanoscale 2021; 13(33): 14166-78.
[http://dx.doi.org/10.1039/D0NR07516G] [PMID: 34477698]
[101]
Bosch NA, Cimini J, Walkey AJ. Atrial fibrillation in the ICU. Chest 2018; 154(6): 1424-34.
[http://dx.doi.org/10.1016/j.chest.2018.03.040] [PMID: 29627355]
[102]
Yao Y, He S, Wang Y, et al. Blockade of exosome release suppresses atrial fibrillation by alleviating atrial fibrosis in canines with prolonged atrial pacing. Front Cardiovasc Med 2021; 8: 699175.
[http://dx.doi.org/10.3389/fcvm.2021.699175] [PMID: 34722652]
[103]
Ni H, Pan W, Jin Q, et al. Label-free proteomic analysis of serum exosomes from paroxysmal atrial fibrillation patients. Clin Proteomics 2021; 18(1): 1.
[http://dx.doi.org/10.1186/s12014-020-09304-8] [PMID: 33407078]
[104]
Xu L, Fan Y, Wu L, et al. Exosomes from bone marrow mesenchymal stem cells with overexpressed Nrf2 inhibit cardiac fibrosis in rats with atrial fibrillation. Cardiovasc Ther 2022; 2022: 1-15.
[http://dx.doi.org/10.1155/2022/2687807] [PMID: 35360547]
[105]
Liu L, Luo F, Lei K. Exosomes containing linc00636 inhibit mapk1 through the mir-450a-2-3p overexpression in human pericardial fluid and improve cardiac fibrosis in patients with atrial fibrillation. Mediators Inflamm 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/9960241] [PMID: 34257520]
[106]
Shaihov-Teper O, Ram E, Ballan N, et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation 2021; 143(25): 2475-93.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.052009] [PMID: 33793321]
[107]
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124(5): 2136-46.
[http://dx.doi.org/10.1172/JCI70577] [PMID: 24743145]
[108]
Wang Y, Jin P, Liu J, Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clin Sci 2019; 133(17): 1871-81.
[http://dx.doi.org/10.1042/CS20190558] [PMID: 31434696]
[109]
Hirai K, Ousaka D, Fukushima Y, et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med 2020; 12(573): eabb3336.
[http://dx.doi.org/10.1126/scitranslmed.abb3336] [PMID: 33298561]
[110]
Li F, Zhang K, Xu T, et al. Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy. Endocrine 2019; 63(3): 480-8.
[http://dx.doi.org/10.1007/s12020-018-1753-7] [PMID: 30264370]
[111]
Nie H, Pan Y, Zhou Y. Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice. Biochem Biophys Res Commun 2018; 503(4): 3174-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.113] [PMID: 30170731]
[112]
Jiang X, Sucharov J, Stauffer BL, Miyamoto SD, Sucharov CC. Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312(4): H818-26.
[http://dx.doi.org/10.1152/ajpheart.00673.2016] [PMID: 28130338]
[113]
Zhang H, Liu D, Zhu S, et al. Plasma exosomal Mir-423-5p is involved in the occurrence and development of bicuspid aortopathy via TGF-β/SMAD2 Pathway. Front Physiol 2021; 12: 759035.
[http://dx.doi.org/10.3389/fphys.2021.759035] [PMID: 34955881]
[114]
Carrozzo A, Casieri V, Di Silvestre D, et al. Plasma exosomes characterization reveals a perioperative protein signature in older patients undergoing different types of on-pump cardiac surgery. Geroscience 2021; 43(2): 773-89.
[http://dx.doi.org/10.1007/s11357-020-00223-y] [PMID: 32691393]
[115]
Hou Y, Li J, Zhu S, et al. Tailoring of cardiovascular stent material surface by immobilizing exosomes for better pro-endothelialization function. Colloids Surf B Biointerfaces 2020; 189: 110831.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110831] [PMID: 32058252]
[116]
Bai S, Yin Q, Dong T, et al. Endothelial progenitor cell–derived exosomes ameliorate endothelial dysfunction in a mouse model of diabetes. Biomed Pharmacother 2020; 131: 110756.
[http://dx.doi.org/10.1016/j.biopha.2020.110756] [PMID: 33152921]
[117]
Wang F, Chen F, Shang Y, et al. Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE −/− mice. Int J Cardiol 2018; 265: 181-7.
[http://dx.doi.org/10.1016/j.ijcard.2018.04.028] [PMID: 29685689]
[118]
Davidson SM, Riquelme JA, Takov K, et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med 2018; 22(1): 141-51.
[http://dx.doi.org/10.1111/jcmm.13302] [PMID: 28840975]
[119]
Halurkar MS, Wang J, Chen S, Bihl JC. EPC-EXs improve astrocyte survival and oxidative stress through different uptaking pathways in diabetic hypoxia condition. Stem Cell Res Ther 2022; 13(1): 91.
[http://dx.doi.org/10.1186/s13287-022-02766-7] [PMID: 35241178]
[120]
Wang J, Chen S, Zhang W, Chen Y, Bihl JC. Exosomes from miRNA‐126‐modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci Ther 2020; 26(12): 1255-65.
[http://dx.doi.org/10.1111/cns.13455] [PMID: 33009888]
[121]
Wang S, Zhan J, Lin X, Wang Y, Wang Y, Liu Y. CircRNA ‐0077930 from hyperglycaemia‐stimulated vascular endothelial cell exosomes regulates senescence in vascular smooth muscle cells. Cell Biochem Funct 2020; 38(8): 1056-68.
[http://dx.doi.org/10.1002/cbf.3543] [PMID: 32307741]
[122]
Venkat P, Cui C, Chen Z, et al. CD133+exosome treatment improves cardiac function after stroke in type 2 diabetic mice. Transl Stroke Res 2021; 12(1): 112-24.
[http://dx.doi.org/10.1007/s12975-020-00807-y] [PMID: 32198711]
[123]
Venkat P, Zacharek A, Landschoot-Ward J, et al. Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 2020; 334: 113456.
[http://dx.doi.org/10.1016/j.expneurol.2020.113456] [PMID: 32889008]
[124]
Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 2016; 109(3): 397-408.
[http://dx.doi.org/10.1093/cvr/cvv260] [PMID: 26609058]
[125]
Zhou Q, Xie M, Zhu J, et al. PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca2+ efflux. Stem Cell Res Ther 2021; 12(1): 269.
[http://dx.doi.org/10.1186/s13287-021-02325-6] [PMID: 33957982]
[126]
Zhao P, Zhu Y, Sun L, et al. Circulating exosomal mir-1-3p from rats with myocardial infarction plays a protective effect on contrast-induced nephropathy via targeting ATG13 and activating the AKT signaling pathway. Int J Biol Sci 2021; 17(4): 972-85.
[http://dx.doi.org/10.7150/ijbs.55887] [PMID: 33867822]
[127]
Wang B, Wang ZM, Ji JL, et al. Macrophage-derived exosomal mir-155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy. JACC Basic Transl Sci 2020; 5(2): 148-66.
[http://dx.doi.org/10.1016/j.jacbts.2019.10.011] [PMID: 32140622]
[128]
Duan MJ, Yan ML, Wang Q, et al. Overexpression of miR-1 in the heart attenuates hippocampal synaptic vesicle exocytosis by the post-transcriptional regulation of SNAP-25 through the transportation of exosomes. Cell Commun Signal 2018; 16(1): 91.
[http://dx.doi.org/10.1186/s12964-018-0303-5] [PMID: 30497498]
[129]
Zhang J, Chi H, Wang T, et al. Altered Amyloid-β and Tau proteins in neural-derived plasma exosomes of type 2 diabetes patients with orthostatic hypotension. J Alzheimers Dis 2021; 82(1): 261-72.
[http://dx.doi.org/10.3233/JAD-210216] [PMID: 34024835]
[130]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom Proteom Bioinformat 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[131]
Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 2011; 4(4): 446-54.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958975] [PMID: 21642241]
[132]
Wu W, Pan Y, Cai M, et al. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis Markers 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/3178642] [PMID: 32670434]
[133]
Zhao X, Jia Y, Chen H, Yao H, Guo W. Plasma derived exosomal miR 183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury. Exp Ther Med 2019; 18(1): 179-87.
[http://dx.doi.org/10.3892/etm.2019.7555] [PMID: 31258652]
[134]
Bi S, Wang C, Jin Y, Lv Z, Xing X, Lu Q. Correlation between serum exosome derived miR-208a and acute coronary syndrome. Int J Clin Exp Med 2015; 8(3): 4275-80.
[PMID: 26064341]
[135]
Ling H, Guo Z, Shi Y, Zhang L, Song C. Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front Physiol 2020; 11: 654.
[http://dx.doi.org/10.3389/fphys.2020.00654] [PMID: 32595526]
[136]
Li LJ, Gu YJ, Wang LQ, et al. Serum exosomal microRNA-146a as a novel diagnostic biomarker for acute coronary syndrome. J Thorac Dis 2021; 13(5): 3105-14.
[http://dx.doi.org/10.21037/jtd-21-609] [PMID: 34164201]
[137]
Su J, Li J, Yu Q, et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2020; 72(3): 384-400.
[http://dx.doi.org/10.1002/iub.2189] [PMID: 31675148]
[138]
Li W, Li Y, Zhi W, et al. Diagnostic value of using exosome derived cysteine rich protein 61 as biomarkers for acute coronary syndrome. Exp Ther Med 2021; 22(6): 1437.
[http://dx.doi.org/10.3892/etm.2021.10872] [PMID: 34721679]
[139]
Zarà M, Campodonico J, Cosentino N, et al. Plasma exosome profile in st-elevation myocardial infarction patients with and without out-of-hospital cardiac arrest. Int J Mol Sci 2021; 22(15): 8065.
[http://dx.doi.org/10.3390/ijms22158065] [PMID: 34360827]
[140]
Cosme J, Guo H, Hadipour-Lakmehsari S, Emili A, Gramolini AO. Hypoxia-induced changes in the fibroblast secretome, exosome, and whole-cell proteome using cultured, cardiac-derived cells isolated from neonatal mice. J Proteome Res 2017; 16(8): 2836-47.
[http://dx.doi.org/10.1021/acs.jproteome.7b00144] [PMID: 28641008]
[141]
Wu T, Chen Y, Du Y, et al. Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis 2018; 10(11): 6211-20.
[http://dx.doi.org/10.21037/jtd.2018.10.52] [PMID: 30622793]
[142]
Wu T, Chen Y, Du Y, Tao J, Zhou Z, Yang Z. Serum Exosomal MiR-92b-5p as a potential biomarker for acute heart failure caused by dilated cardiomyopathy. Cell Physiol Biochem 2018; 46(5): 1939-50.
[http://dx.doi.org/10.1159/000489383] [PMID: 29719295]
[143]
Wei Z, Bing Z, Shaohuan Q, et al. Expression of miRNAs in plasma exosomes derived from patients with atrial fibrillation. Clin Cardiol 2020; 43(12): 1450-9.
[http://dx.doi.org/10.1002/clc.23461] [PMID: 32940379]
[144]
Wang S, Min J, Yu Y, et al. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm. J Thorac Dis 2019; 11(10): 4337-48.
[http://dx.doi.org/10.21037/jtd.2019.09.50] [PMID: 31737319]
[145]
Liu L, Chen Y, Shu J, Tang CE, Jiang Y, Luo F. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis. J Thorac Dis 2020; 12(10): 5617-27.
[http://dx.doi.org/10.21037/jtd-20-2066] [PMID: 33209394]
[146]
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: The potential utility of exosomal microrna-21-5p and microRNA-30a-5p. Cerebrovasc Dis 2018; 45(5-6): 204-12.
[http://dx.doi.org/10.1159/000488365] [PMID: 29627835]
[147]
Li DB, Liu JL, Wang W, et al. Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke. Curr Neurovasc Res 2018; 14(4): 330-7.
[http://dx.doi.org/10.2174/1567202614666171005153434] [PMID: 28982331]
[148]
Ji Q, Ji Y, Peng J, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 2016; 11(9): e0163645.
[http://dx.doi.org/10.1371/journal.pone.0163645] [PMID: 27661079]
[149]
Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol 2017; 8: 57.
[http://dx.doi.org/10.3389/fneur.2017.00057] [PMID: 28289400]
[150]
Zhou J, Chen L, Chen B, et al. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol 2018; 18(1): 198.
[http://dx.doi.org/10.1186/s12883-018-1196-z] [PMID: 30514242]
[151]
Zhang H, Lin S, McElroy CL, et al. Circulating pro-inflammatory exosomes worsen stroke outcomes in aging. Circ Res 2021; 129(7): e121-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318897] [PMID: 34399581]
[152]
Liu Y, Li Y, Zang J, et al. CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke. Circ Res 2022; 130(6): 907-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319412] [PMID: 35189704]
[153]
Wang S, Jun J, Cong L, Du L. Wang C. miR-328-3p, a predictor ofstroke, aggravates the cerebral ischemia-reperfusion injury Int J Gen Med 2021; 14: 2367-76.
[http://dx.doi.org/10.2147/IJGM.S307392] [PMID: 34135620]
[154]
Yang T, He R, Li G, et al. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neurosci Lett 2021; 758: 136004.
[http://dx.doi.org/10.1016/j.neulet.2021.136004] [PMID: 34098025]
[155]
Xiao Q, Hou R, Li H, et al. Circulating exosomal circrnas contribute to potential diagnostic value of large artery atherosclerotic stroke. Front Immunol 2022; 12: 830018.
[http://dx.doi.org/10.3389/fimmu.2021.830018] [PMID: 35095932]
[156]
Niu M, Li H, Li X, et al. Circulating exosomal mirnas as novel biomarkers perform superior diagnostic efficiency compared with plasma mirnas for large-artery atherosclerosis stroke. Front Pharmacol 2021; 12: 791644.
[http://dx.doi.org/10.3389/fphar.2021.791644] [PMID: 34899352]
[157]
Luo X, Wang W, Li D, et al. Plasma exosomal miR-450b-5p as a possible biomarker and therapeutic target for transient ischaemic attacks in rats. J Mol Neurosci 2019; 69(4): 516-26.
[http://dx.doi.org/10.1007/s12031-019-01341-9] [PMID: 31368061]
[158]
Li DB, Liu JL, Wang W, et al. Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats. Front Aging Neurosci 2018; 10: 24.
[http://dx.doi.org/10.3389/fnagi.2018.00024] [PMID: 29467645]
[159]
Xu X, Zhuang C, Chen L. Exosomal long non-coding RNA expression from serum of patients with acute minor stroke. Neuropsychiatr Dis Treat 2020; 16: 153-60.
[http://dx.doi.org/10.2147/NDT.S230332] [PMID: 32021207]
[160]
Gonzalez-Calero L, Martínez PJ, Martin-Lorenzo M, et al. Urinary exosomes reveal protein signatures in hypertensive patients with albu-minuria. Oncotarget 2017; 8(27): 44217-31.
[http://dx.doi.org/10.18632/oncotarget.17787] [PMID: 28562335]
[161]
Perez-Hernandez J, Riffo-Campos AL, Ortega A, et al. Urinary- and plasma-derived exosomes reveal a distinct MicroRNA signature associated with albuminuria in hypertension. Hypertension 2021; 77(3): 960-71.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16598] [PMID: 33486986]
[162]
Esteva-Font C, Wang X, Ars E, et al. Are sodium transporters in urinary exosomes reliable markers of tubular sodium reabsorption in hypertensive patients? Nephron, Physiol 2010; 114(3): 25-34.
[http://dx.doi.org/10.1159/000274468] [PMID: 20068364]
[163]
Yang VK, Loughran KA, Meola DM, et al. Circulating exosome microRNA associated with heart failure secondary to myxomatous mitral valve disease in a naturally occurring canine model. J Extracell Vesicles 2017; 6(1): 1350088.
[http://dx.doi.org/10.1080/20013078.2017.1350088] [PMID: 28804599]
[164]
Luo Y, Huang L, Luo W, Ye S, Hu Q. Genomic analysis of lncRNA and mRNA profiles in circulating exosomes of patients with rheumatic heart disease. Biol Open 2019; 8(12): bio.045633.
[http://dx.doi.org/10.1242/bio.045633] [PMID: 31784421]
[165]
Li S, Jin Y, Tang P, et al. Maternal serum-derived exosomal lactoferrin as a marker in detecting and predicting ventricular septal defect in fetuses. Exp Biol Med 2022; 247(6): 488-97.
[http://dx.doi.org/10.1177/15353702211060517] [PMID: 34871505]
[166]
Li Z, Wu J, Wei W, et al. Association of serum miR-186-5p with the prognosis of acute coronary syndrome patients after percutaneous coronary intervention. Front Physiol 2019; 10: 686.
[http://dx.doi.org/10.3389/fphys.2019.00686] [PMID: 31231239]
[167]
Agudiez M, Martinez PJ, Martin-Lorenzo M, et al. Analysis of urinary exosomal metabolites identifies cardiovascular risk signatures with added value to urine analysis. BMC Biol 2020; 18(1): 192.
[http://dx.doi.org/10.1186/s12915-020-00924-y] [PMID: 33317539]
[168]
Kennel PJ, Saha A, Maldonado DA, et al. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. J Heart Lung Transplant 2018; 37(3): 409-17.
[http://dx.doi.org/10.1016/j.healun.2017.07.012] [PMID: 28789823]
[169]
Ma D, Guan B, Song L, et al. A bibliometric analysis of exosomes in cardiovascular diseases from 2001 to 2021. Front Cardiovasc Med 2021; 8: 734514.
[http://dx.doi.org/10.3389/fcvm.2021.734514] [PMID: 34513962]
[170]
Campbell CR, Berman AE, Weintraub NL, Tang YL. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Med Hypotheses 2016; 88: 6-9.
[http://dx.doi.org/10.1016/j.mehy.2015.12.022] [PMID: 26880625]
[171]
Yu C, Tang W, Lu R, Tao Y, Ren T, Gao Y. Human Adipose-derived mesenchymal stem cells promote lymphocyte apoptosis and alleviate atherosclerosis via miR-125b-1-3p/BCL11B signal axis. Ann Palliat Med 2021; 10(2): 2123-33.
[http://dx.doi.org/10.21037/apm-21-49] [PMID: 33725769]
[172]
Zhu J, Liu B, Wang Z, et al. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics 2019; 9(23): 6901-19.
[http://dx.doi.org/10.7150/thno.37357] [PMID: 31660076]
[173]
Ma J, Chen L, Zhu X, Li Q, Hu L, Li H. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin 2021; 53(9): 1227-36.
[http://dx.doi.org/10.1093/abbs/gmab102] [PMID: 34350954]
[174]
Li N, Liu S, Dong K, et al. Exosome-transmitted mir-25 induced by h. pylori promotes vascular endothelial cell injury by targeting KLF2. Front Cell Infect Microbiol 2019; 9: 366.
[http://dx.doi.org/10.3389/fcimb.2019.00366] [PMID: 31750260]
[175]
Wang X, Zhu Y, Wu C, Liu W, He Y, Yang Q. Adipose-derived mesenchymal stem cells-derived exosomes carry microrna-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis. Inflammation 2021; 44(5): 1815-30.
[http://dx.doi.org/10.1007/s10753-021-01460-9] [PMID: 33881681]
[176]
Wang S, Dong J, Li L, et al. Exosomes derived from miR‐129‐5p modified bone marrow mesenchymal stem cells represses ventricular remolding of mice with myocardial infarction. J Tissue Eng Regen Med 2022; 16(2): 177-87.
[http://dx.doi.org/10.1002/term.3268] [PMID: 34814233]
[177]
Cheng H, Chang S, Xu R, et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res Ther 2020; 11(1): 224.
[http://dx.doi.org/10.1186/s13287-020-01737-0] [PMID: 32513270]
[178]
Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 2014; 130 (11_suppl_1)(1): S60-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007917] [PMID: 25200057]
[179]
Gray WD, French KM, Ghosh-Choudhary S, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res 2015; 116(2): 255-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304360] [PMID: 25344555]
[180]
Gou L, Xue C, Tang X, Fang Z. Inhibition of Exo-miR-19a-3p derived from cardiomyocytes promotes angiogenesis and improves heart function in mice with myocardial infarction via targeting HIF-1α. Aging 2020; 12(23): 23609-18.
[http://dx.doi.org/10.18632/aging.103563] [PMID: 33352533]
[181]
Cao C, Wang B, Tang J, et al. Circulating exosomes repair endothelial cell damage by delivering miR‐193a‐5p. J Cell Mol Med 2021; 25(4): 2176-89.
[http://dx.doi.org/10.1111/jcmm.16202] [PMID: 33354912]
[182]
Youn SW, Li Y, Kim YM, et al. Modification of cardiac progenitor cell-derived exosomes by mir-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants 2019; 8(1): 18.
[http://dx.doi.org/10.3390/antiox8010018] [PMID: 30634641]
[183]
Zhang C, Gan X, Liang R, Jian J. Exosomes derived from epigallocatechin gallate-treated cardiomyocytes attenuated acute myocardial infarction by modulating MicroRNA-30a. Front Pharmacol 2020; 11: 126.
[http://dx.doi.org/10.3389/fphar.2020.00126] [PMID: 32161548]
[184]
Liu HY, Yu LF, Zhou TG, et al. Lipopolysaccharide-stimulated bone marrow mesenchymal stem cells-derived exosomes inhibit H2O2-induced cardiomyocyte inflammation and oxidative stress via regulating miR-181a-5p/ATF2 axis. Eur Rev Med Pharmacol Sci 2020; 24(19): 10069-77.
[http://dx.doi.org/10.26355/eurrev_202010_23224] [PMID: 33090414]
[185]
Dong J, Zhu W, Wan D. RETRACTED: Downregulation of microRNA-21-5p from macrophages-derived exosomes represses ventricular remodeling after myocardial infarction via inhibiting tissue inhibitors of metalloproteinase 3. Int Immunopharmacol 2021; 96: 107611.
[http://dx.doi.org/10.1016/j.intimp.2021.107611] [PMID: 33882443]
[186]
Sun LL, Duan MJ, Ma JC, et al. Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice. J Mol Cell Cardiol 2018; 120: 12-27.
[http://dx.doi.org/10.1016/j.yjmcc.2018.05.009] [PMID: 29775643]
[187]
Chen Y, Zhao Y, Chen W, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 2017; 8(1): 268.
[http://dx.doi.org/10.1186/s13287-017-0722-z] [PMID: 29178928]
[188]
Zhu W, Sun L, Zhao P, et al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J Nanobiotechnology 2021; 19(1): 61.
[http://dx.doi.org/10.1186/s12951-021-00808-5] [PMID: 33639970]
[189]
Bu X, Li D, Wang F, Sun Q, Zhang Z. Protective role of astrocyte-derived exosomal microrna-361 in cerebral ischemic-reperfusion injury by regulating the ampk/mtor signaling pathway and targeting CTSB. Neuropsychiatr Dis Treat 2020; 16: 1863-77.
[http://dx.doi.org/10.2147/NDT.S260748] [PMID: 32801720]
[190]
Lai TC, Lee TL, Chang YC, et al. MicroRNA-221/222 mediates ADSC-exosome-induced cardioprotection against ischemia/reperfusion by targeting PUMA and ETS-1. Front Cell Dev Biol 2020; 8: 569150.
[http://dx.doi.org/10.3389/fcell.2020.569150] [PMID: 33344446]
[191]
Li Z, Song Y, He T, et al. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics 2021; 11(3): 1232-48.
[http://dx.doi.org/10.7150/thno.48761] [PMID: 33391532]
[192]
Ai Z, Cheng C, Zhou L, Yin S, Wang L, Liu Y. RETRACTED: Bone marrow mesenchymal stem cells-derived extracellular vesicles carrying microRNA-221-3p protect against ischemic stroke via ATF3. Brain Res Bull 2021; 172: 220-8.
[http://dx.doi.org/10.1016/j.brainresbull.2021.04.022] [PMID: 33932490]
[193]
Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 2017; 48(3): 747-53.
[http://dx.doi.org/10.1161/STROKEAHA.116.015204] [PMID: 28232590]
[194]
Huang L, Hua L, Zhang X. The exosomal microrna profile is responsible for the mesenchymal stromal cell transplantation-induced improvement of functional recovery after stroke in rats. Neuroimmunomodulation 2022; 29(2): 151-60.
[http://dx.doi.org/10.1159/000518637] [PMID: 34569545]
[195]
Wang Y, Ma WQ, Zhu Y, Han XQ, Liu N. Exosomes derived from mesenchymal stromal cells pretreated with advanced glycation end product-bovine serum albumin inhibit calcification of vascular smooth muscle cells. Front Endocrinol 2018; 9: 524.
[http://dx.doi.org/10.3389/fendo.2018.00524] [PMID: 30298051]
[196]
Akerman AW, Blanding WM, Stroud RE, et al. Elevated wall tension leads to reduced mir‐133a in the thoracic aorta by exosome release. J Am Heart Assoc 2019; 8(1): e010332.
[http://dx.doi.org/10.1161/JAHA.118.010332] [PMID: 30572760]
[197]
Mayourian J, Ceholski DK, Gorski PA, et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ Res 2018; 122(7): 933-44.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312420] [PMID: 29449318]
[198]
Yang Y, Li Y, Chen X, Cheng X, Liao Y, Yu X. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med 2016; 94(6): 711-24.
[http://dx.doi.org/10.1007/s00109-016-1387-2] [PMID: 26857375]
[199]
Zhao Y, Gan Y, Xu G, Hua K, Liu D. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci 2020; 260: 118403.
[http://dx.doi.org/10.1016/j.lfs.2020.118403] [PMID: 32926923]
[200]
Pan Q, Kuang X, Cai S, et al. miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 2020; 11(1): 260.
[http://dx.doi.org/10.1186/s13287-020-01761-0] [PMID: 32600449]
[201]
Xu L, Cao H, Xie Y, et al. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res 2019; 1717: 66-73.
[http://dx.doi.org/10.1016/j.brainres.2019.04.009] [PMID: 30986407]
[202]
Xu L, Ji H, Jiang Y, et al. Exosomes derived from CircAkap7-modified adipose-derived mesenchymal stem cells protect against cerebral ischemic injury. Front Cell Dev Biol 2020; 8: 569977.
[http://dx.doi.org/10.3389/fcell.2020.569977] [PMID: 33123535]
[203]
Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 2014; 9(2): e88685.
[http://dx.doi.org/10.1371/journal.pone.0088685] [PMID: 24558412]
[204]
Gollmann-Tepeköylü C, Pölzl L, Graber M, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res 2020; 116(6): 1226-36.
[http://dx.doi.org/10.1093/cvr/cvz209] [PMID: 31410448]
[205]
Li T, Gu J, Yang O, Wang J, Wang Y, Kong J. Bone marrow mesenchymal stem cell-derived exosomal miRNA-29c decreases cardiac ischemia/reperfusion injury through inhibition of excessive autophagy via the PTEN/Akt/mTOR signaling pathway. Circ J 2020; 84(8): 1304-11.
[http://dx.doi.org/10.1253/circj.CJ-19-1060] [PMID: 32581152]
[206]
Xiao J, Pan Y, Li XH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 2016; 7(6): e2277.
[http://dx.doi.org/10.1038/cddis.2016.181] [PMID: 27336721]
[207]
Lin F, Zeng Z, Song Y, et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res Ther 2019; 10(1): 263.
[http://dx.doi.org/10.1186/s13287-019-1377-8] [PMID: 31443679]
[208]
Duan S, Wang F, Cao J, Wang C. Exosomes derived from] microRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Des Devel Ther 2020; 14: 3143-58.
[http://dx.doi.org/10.2147/DDDT.S255828] [PMID: 32821084]
[209]
Wei M, Li C, Yan Z, et al. Activated microglia exosomes mediated mir-383-3p promotes neuronal necroptosis through inhibiting atf4 expression in intracerebral hemorrhage. Neurochem Res 2021; 46(6): 1337-49.
[http://dx.doi.org/10.1007/s11064-021-03268-3] [PMID: 33594583]
[210]
Chen A, Wen J, Lu C, et al. Inhibition of miR 155 5p attenuates the valvular damage induced by rheumatic heart disease. Int J Mol Med 2019; 45(2): 429-40.
[http://dx.doi.org/10.3892/ijmm.2019.4420] [PMID: 31894293]
[211]
Hayasaka T, Takehara N, Aonuma T, et al. Sarcopenia-derived exosomal micro-RNA 16-5p disturbs cardio-repair via a proapoptotic mechanism in myocardial infarction in mice. Sci Rep 2021; 11(1): 19163.
[http://dx.doi.org/10.1038/s41598-021-98761-8] [PMID: 34580402]
[212]
Zhang X, Zhou Y, Ye Y, et al. Human umbilical cord mesenchymal stem cell-derived exosomal microRNA-148a-3p inhibits neointimal hyperplasia by targeting Serpine1. Arch Biochem Biophys 2022; 719: 109155.
[http://dx.doi.org/10.1016/j.abb.2022.109155] [PMID: 35218720]
[213]
Yang W, Tu H, Tang K, Huang H, Ou S, Wu J. MiR-3064 in epicardial adipose-derived exosomes targets neuronatin to regulate adipogenic differentiation of epicardial adipose stem cells. Front Cardiovasc Med 2021; 8: 709079.
[http://dx.doi.org/10.3389/fcvm.2021.709079] [PMID: 34490372]
[214]
Chen YL, Chen YC, Chang YT, et al. GJA1 expression and left atrial remodeling in the incidence of atrial fibrillation in patients with obstructive sleep apnea syndrome. Biomedicines 2021; 9(10): 1463.
[http://dx.doi.org/10.3390/biomedicines9101463] [PMID: 34680580]
[215]
Gartz M, Lin CW, Sussman MA, Lawlor MW, Strande JL. Duchenne muscular dystrophy (DMD) cardiomyocyte-secreted exosomes promote the pathogenesis of DMD-associated cardiomyopathy. Dis Model Mech 2020; 13(11): dmm045559.
[http://dx.doi.org/10.1242/dmm.045559] [PMID: 33188007]
[216]
Song P, Sun H, Chen H, Wang Y, Zhang Q. Decreased serum exosomal mir-152-3p contributes to the progression of acute ischemic stroke Clin Lab 2020. 66(08/2020)
[http://dx.doi.org/10.7754/Clin.Lab.2020.200106] [PMID: 32776748]
[217]
Pan W, Liang J, Tang H, et al. Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification. Int J Biochem Cell Biol 2020; 118: 105645.
[http://dx.doi.org/10.1016/j.biocel.2019.105645] [PMID: 31733402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy