Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment

Author(s): Majid Dejbakht, Morteza Akhzari, Sajad Jalili, Fouziyeh Faraji and Mahdi Barazesh*

Volume 16, Issue 2, 2024

Published on: 26 September, 2023

Page: [175 - 197] Pages: 23

DOI: 10.2174/2589977516666230915103730

Price: $65

Abstract

Background: Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging.

Aims: This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities.

Conclusion: MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.

Graphical Abstract

[1]
Zalc B. One hundred and fifty years ago Charcot reported multiple sclerosis as a new neurological disease. Brain 2018; 141(12): 3482-8.
[http://dx.doi.org/10.1093/brain/awy287] [PMID: 30462211]
[2]
Höftberger R, Lassmann H. Inflammatory demyelinating diseases of the central nervous system. Handb Clin Neurol 2018; 145: 263-83.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00019-5] [PMID: 28987175]
[3]
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: Non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21(8): 578-600.
[http://dx.doi.org/10.1038/s41573-022-00477-5] [PMID: 35668103]
[4]
Lazibat I, Rubinić Majdak M, Županić S. Multiple Sclerosis: New Aspects of Immunopathogenesis. Acta Clin Croat 2018; 57(2): 352-61.
[http://dx.doi.org/10.20471/acc.2018.57.02.17] [PMID: 30431730]
[5]
Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med 2018; 8(3): a028936.
[http://dx.doi.org/10.1101/cshperspect.a028936] [PMID: 29358320]
[6]
Popescu BFG, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: Where do we stand? Continuum 2013; 19(4): 901-21.
[http://dx.doi.org/10.1212/01.CON.0000433291.23091.65]
[7]
Freiha J, Riachi N, Chalah MA, Zoghaib R, Ayache SS, Ahdab R. Paroxysmal Symptoms in Multiple Sclerosis—A Review of the Literature. J Clin Med 2020; 9(10): 3100.
[http://dx.doi.org/10.3390/jcm9103100] [PMID: 32992918]
[8]
Waubant E, Lucas R, Mowry E, et al. Environmental and genetic risk factors for MS: An integrated review. Ann Clin Transl Neurol 2019; 6(9): 1905-22.
[http://dx.doi.org/10.1002/acn3.50862] [PMID: 31392849]
[9]
Arneth BM. Impact of B cells to the pathophysiology of multiple sclerosis. J Neuroinflammation 2019; 16(1): 128.
[http://dx.doi.org/10.1186/s12974-019-1517-1] [PMID: 31238945]
[10]
Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation 2019; 16(1): 272.
[http://dx.doi.org/10.1186/s12974-019-1674-2] [PMID: 31870389]
[11]
Sen MK, Almuslehi MSM, Shortland PJ, Mahns DA, Coorssen JR. Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. Int J Mol Sci 2021; 22(14): 7377.
[http://dx.doi.org/10.3390/ijms22147377] [PMID: 34298997]
[12]
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99(3): 1381-431.
[http://dx.doi.org/10.1152/physrev.00031.2018] [PMID: 31066630]
[13]
Simons M, Nave KA. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb Perspect Biol 2016; 8(1): a020479.
[http://dx.doi.org/10.1101/cshperspect.a020479] [PMID: 26101081]
[14]
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9: 653101.
[http://dx.doi.org/10.3389/fcell.2021.653101] [PMID: 33763430]
[15]
Yalçın B, Monje M. Microenvironmental interactions of oligodendroglial cells. Dev Cell 2021; 56(13): 1821-32.
[http://dx.doi.org/10.1016/j.devcel.2021.06.006] [PMID: 34192527]
[16]
Ruskamo S, Raasakka A, Pedersen JS, et al. Human myelin proteolipid protein structure and lipid bilayer stacking. Cell Mol Life Sci 2022; 79(8): 419.
[http://dx.doi.org/10.1007/s00018-022-04428-6] [PMID: 35829923]
[17]
Nualart-Marti A, Solsona C, Fields RD. Gap junction communication in myelinating glia. Biochim Biophys Acta Biomembr 2013; 1828(1): 69-78.
[http://dx.doi.org/10.1016/j.bbamem.2012.01.024] [PMID: 22326946]
[18]
Saab AS, Nave KA. Myelin dynamics: Protecting and shaping neuronal functions. Curr Opin Neurobiol 2017; 47: 104-12.
[http://dx.doi.org/10.1016/j.conb.2017.09.013] [PMID: 29065345]
[19]
Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020; 9(4): 812.
[http://dx.doi.org/10.3390/cells9040812] [PMID: 32230947]
[20]
Dimas P, Montani L, Pereira JA, et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife 2019; 8: e44702.
[http://dx.doi.org/10.7554/eLife.44702] [PMID: 31063129]
[21]
Saab AS, Tzvetavona ID, Trevisiol A, et al. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron 2016; 91(1): 119-32.
[http://dx.doi.org/10.1016/j.neuron.2016.05.016] [PMID: 27292539]
[22]
Yang L, Tan D, Piao H. Myelin basic protein citrullination in multiple sclerosis: A potential therapeutic target for the pathology. Neurochem Res 2016; 41(8): 1845-56.
[http://dx.doi.org/10.1007/s11064-016-1920-2] [PMID: 27097548]
[23]
Rasband MN, Macklin WB. Myelin structure and biochemistry Basic neurochemistry. Elsevier 2012; pp. 180-99.
[http://dx.doi.org/10.1016/B978-0-12-374947-5.00010-9]
[24]
Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem 2023; 10: 1041961.
[http://dx.doi.org/10.3389/fchem.2022.1041961] [PMID: 36896314]
[25]
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9(2): 470.
[http://dx.doi.org/10.3390/cells9020470] [PMID: 32085570]
[26]
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125(3): 334-61.
[http://dx.doi.org/10.1111/jnc.12195] [PMID: 23398367]
[27]
Baburina YL, Gordeeva AE, Moshkov DA, et al. Interaction of myelin basic protein and 2′,3′-cyclic nucleotide phosphodiesterase with mitochondria. Biochemistry (Mosc) 2014; 79(6): 555-65.
[http://dx.doi.org/10.1134/S0006297914060091] [PMID: 25100014]
[28]
Truscott R, Friedrich M. Can the Fact That Myelin Proteins Are Old and Break down Explain the Origin of Multiple Sclerosis in Some People? J Clin Med 2018; 7(9): 281.
[http://dx.doi.org/10.3390/jcm7090281] [PMID: 30223497]
[29]
Alghamdi M, Alasmari D, Assiri A, et al. An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019: 1-39.
[http://dx.doi.org/10.1155/2019/7592851] [PMID: 31886309]
[30]
Valdivia AO, Agarwal PK, Bhattacharya SK. Myelin basic protein phospholipid complexation likely competes with deimination in experimental autoimmune encephalomyelitis mouse model. ACS Omega 2020; 5(25): 15454-67.
[http://dx.doi.org/10.1021/acsomega.0c01590] [PMID: 32637820]
[31]
Krugmann B, Radulescu A, Appavou MS, et al. Membrane stiffness and myelin basic protein binding strength as molecular origin of multiple sclerosis. Sci Rep 2020; 10(1): 16691.
[http://dx.doi.org/10.1038/s41598-020-73671-3] [PMID: 33028889]
[32]
Standiford MM, Grund EM, Howe CL. Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination. J Neuroinflammation 2021; 18(1): 305.
[http://dx.doi.org/10.1186/s12974-021-02360-3] [PMID: 34961522]
[33]
Ciesielski O, Biesiekierska M, Panthu B, Soszyński M, Pirola L, Balcerczyk A. Citrullination in the pathology of inflammatory and autoimmune disorders: Recent advances and future perspectives. Cell Mol Life Sci 2022; 79(2): 94.
[http://dx.doi.org/10.1007/s00018-022-04126-3] [PMID: 35079870]
[34]
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24(1): 95.
[http://dx.doi.org/10.3390/ijms24010095] [PMID: 36613560]
[35]
Huang WJ, Chen WW, Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med 2017; 13(6): 3163-6.
[http://dx.doi.org/10.3892/etm.2017.4410] [PMID: 28588671]
[36]
Pruijn GJM. Citrullination and carbamylation in the pathophysiology of rheumatoid arthritis. Front Immunol 2015; 6: 192.
[http://dx.doi.org/10.3389/fimmu.2015.00192] [PMID: 25964785]
[37]
Faigle W, Cruciani C, Wolski W, et al. Brain Citrullination Patterns and T Cell Reactivity of Cerebrospinal Fluid-Derived CD4+ T Cells in Multiple Sclerosis. Front Immunol 2019; 10: 540.
[http://dx.doi.org/10.3389/fimmu.2019.00540] [PMID: 31024521]
[38]
Mamedov A, Vorobyeva N, Filimonova I, et al. Protective allele for multiple sclerosis HLA-DRB1* 01: 01 provides kinetic discrimination of myelin and exogenous antigenic peptides. Front Immunol 2020; 10: 3088.
[http://dx.doi.org/10.3389/fimmu.2019.03088] [PMID: 32010139]
[39]
Høglund RA, Bremel RD, Homan EJ, Torsetnes SB, Lossius A, Holmøy T. CD4+ T Cells in the Blood of MS Patients Respond to Predicted Epitopes From B cell Receptors Found in Spinal Fluid. Front Immunol 2020; 11: 598.
[http://dx.doi.org/10.3389/fimmu.2020.00598] [PMID: 32328067]
[40]
Kalafatakis I, Karagogeos D. Oligodendrocytes and microglia: Key players in myelin development, damage and repair. Biomolecules 2021; 11(7): 1058.
[http://dx.doi.org/10.3390/biom11071058] [PMID: 34356682]
[41]
Bicker KL, Thompson PR. The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers 2013; 99(2): 155-63.
[http://dx.doi.org/10.1002/bip.22127] [PMID: 23175390]
[42]
Witalison E, Thompson P, Hofseth LR, Thompson PJ, Hofseth L. Protein arginine deiminases and associated citrullination: Physiological functions and diseases associated with dysregulation. Curr Drug Targets 2015; 16(7): 700-10.
[http://dx.doi.org/10.2174/1389450116666150202160954] [PMID: 25642720]
[43]
He H, Hu Z, Xiao H, Zhou F, Yang B. The tale of histone modifications and its role in multiple sclerosis. Hum Genomics 2018; 12(1): 31.
[http://dx.doi.org/10.1186/s40246-018-0163-5] [PMID: 29933755]
[44]
Schumacher AM, Mahler C, Kerschensteiner M. Pathology and pathogenesis of progressive multiple sclerosis: Concepts and controversies. Neurology International Open 2017; 1(3): E171-81.
[http://dx.doi.org/10.1055/s-0043-106704]
[45]
Koushik S, Joshi N, Nagaraju S, et al. PAD4: Pathophysiology, current therapeutics and future perspective in rheumatoid arthritis. Expert Opin Ther Targets 2017; 21(4): 433-47.
[http://dx.doi.org/10.1080/14728222.2017.1294160] [PMID: 28281906]
[46]
Padhy DS, Palit P, Ikbal AMA, Das N, Roy DK, Banerjee S. Selective inhibition of peptidyl-arginine deiminase (PAD): Can it control multiple inflammatory disorders as a promising therapeutic strategy? Inflammopharmacology 2023; 31(2): 731-44.
[http://dx.doi.org/10.1007/s10787-023-01149-5] [PMID: 36806957]
[47]
Calabrese R, Zampieri M, Mechelli R, Annibali V, Guastafierro T, Ciccarone F, et al. Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler 2012; 18(3): 299-304.
[48]
GS Chirivi R, van Rosmalen J, Jenniskens G, Pruijn G, Raats J. Citrullination: A Target for Disease Intervention in Multiple Sclerosis and other Inflammatory Diseases? J Clin Cell Immunol 2013; 4(3): 4.
[http://dx.doi.org/10.4172/2155-9899.1000146]
[49]
Moscarello MA, Lei H, Mastronardi FG, et al. Inhibition of peptidyl- arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Dis Model Mech 2013; 6(2): dmm.010520.
[http://dx.doi.org/10.1242/dmm.010520] [PMID: 23118341]
[50]
Luchicchi A, Hart B, Frigerio I, et al. Axon-Myelin Unit Blistering as Early Event in MS Normal Appearing White Matter. Ann Neurol 2021; 89(4): 711-25.
[http://dx.doi.org/10.1002/ana.26014] [PMID: 33410190]
[51]
Mondal S, Thompson PR. Protein Arginine Deiminases (PADs): Biochemistry and Chemical Biology of Protein Citrullination. Acc Chem Res 2019; 52(3): 818-32.
[http://dx.doi.org/10.1021/acs.accounts.9b00024] [PMID: 30844238]
[52]
Mondal S, Thompson PR. Chemical biology of protein citrullination by the protein A arginine deiminases. Curr Opin Chem Biol 2021; 63: 19-27.
[http://dx.doi.org/10.1016/j.cbpa.2021.01.010] [PMID: 33676233]
[53]
Slack JL, Jones LE Jr, Bhatia MM, Thompson PR. Autodeimination of protein arginine deiminase 4 alters protein-protein interactions but not activity. Biochemistry 2011; 50(19): 3997-4010.
[http://dx.doi.org/10.1021/bi200309e] [PMID: 21466234]
[54]
Slade DJ, Fang P, Dreyton CJ, et al. Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design. ACS Chem Biol 2015; 10(4): 1043-53.
[http://dx.doi.org/10.1021/cb500933j] [PMID: 25621824]
[55]
Knuckley B, Causey CP, Jones JE, et al. Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 2010; 49(23): 4852-63.
[http://dx.doi.org/10.1021/bi100363t] [PMID: 20469888]
[56]
Witalison E, Thompson P, Hofseth L. Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation. Curr Drug Targets 2015; 16(7): 700-10.
[http://dx.doi.org/10.2174/1389450116666150202160954] [PMID: 25642720]
[57]
Martinsen V, Kursula P. Multiple sclerosis and myelin basic protein: Insights into protein disorder and disease. Amino Acids 2022; 54(1): 99-109.
[http://dx.doi.org/10.1007/s00726-021-03111-7] [PMID: 34889995]
[58]
Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J 2017; 19(1): 1-10.
[PMID: 28367411]
[59]
Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Rev Neurol (Paris) 2016; 172(1): 3-13.
[http://dx.doi.org/10.1016/j.neurol.2015.10.006] [PMID: 26718593]
[60]
Yamout BI, Assaad W, Tamim H, Mrabet S, Goueider R. Epidemiology and phenotypes of multiple sclerosis in the Middle East North Africa (MENA) region. Mult Scler J Exp Transl Clin 2020; 6(1)
[http://dx.doi.org/10.1177/2055217319841881] [PMID: 31984137]
[61]
Alroughani R, Boyko A. Pediatric multiple sclerosis: A review. BMC Neurol 2018; 18(1): 27.
[http://dx.doi.org/10.1186/s12883-018-1026-3] [PMID: 29523094]
[62]
Wallin MT, Culpepper WJ, Campbell JD, et al. The prevalence of MS in the United States. Neurology 2019; 92(10): e1029-40.
[http://dx.doi.org/10.1212/WNL.0000000000007035] [PMID: 30770430]
[63]
Romero-Pinel L, Bau L, Matas E, et al. The age at onset of relapsing-remitting multiple sclerosis has increased over the last five decades. Mult Scler Relat Disord 2022; 68: 104103.
[http://dx.doi.org/10.1016/j.msard.2022.104103] [PMID: 36029708]
[64]
Kronzer VL, Bridges SL Jr, Davis JM III. Why women have more autoimmune diseases than men: An evolutionary perspective. Evol Appl 2021; 14(3): 629-33.
[http://dx.doi.org/10.1111/eva.13167] [PMID: 33767739]
[65]
Walton C. "King r, rechtman l." Kaye W, leray E, Marrie ra, robertson N, la rocca N, Uitdehaag B, van der Mei I, et al: rising prevalence of multiple sclerosis worldwide: Insights from the atlas of MS, third edition. Mult Scler J. 2020; 26: pp. 1816-21.
[66]
Siva A, Asymptomatic MS, Asymptomatic MS. Clin Neurol Neurosurg 2013; 115 (Suppl. 1): S1-5.
[http://dx.doi.org/10.1016/j.clineuro.2013.09.012] [PMID: 24321147]
[67]
Mecha M, Carrillo-Salinas FJ, Mestre L, Feliú A, Guaza C. Viral models of multiple sclerosis: Neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog Neurobiol 2013; 101-102: 46-64.
[http://dx.doi.org/10.1016/j.pneurobio.2012.11.003] [PMID: 23201558]
[68]
Lubetzki C, Stankoff B. Demyelination in multiple sclerosis. Handb Clin Neurol 2014; 122: 89-99.
[http://dx.doi.org/10.1016/B978-0-444-52001-2.00004-2] [PMID: 24507514]
[69]
Amor S, Peferoen LAN, Vogel DYS, et al. Inflammation in neurodegenerative diseases - an update. Immunology 2014; 142(2): 151-66.
[http://dx.doi.org/10.1111/imm.12233] [PMID: 24329535]
[70]
Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 2014; 10(4): 225-38.
[http://dx.doi.org/10.1038/nrneurol.2014.37] [PMID: 24638138]
[71]
Serra A, Chisari CG, Matta M. Eye Movement Abnormalities in Multiple Sclerosis: Pathogenesis, Modeling, and Treatment. Front Neurol 2018; 9: 31.
[http://dx.doi.org/10.3389/fneur.2018.00031] [PMID: 29467711]
[72]
Gentile F, Bertini A, Priori A, Bocci T. Movement disorders and neuropathies: Overlaps and mimics in clinical practice. J Neurol 2022; 269(9): 4646-62.
[http://dx.doi.org/10.1007/s00415-022-11200-0] [PMID: 35657406]
[73]
Afonso Ribeiro J, Simeoni S, De Min L, et al. Lower urinary tract and bowel dysfunction in spinocerebellar ataxias. Ann Clin Transl Neurol 2021; 8(2): 321-31.
[http://dx.doi.org/10.1002/acn3.51266] [PMID: 33338328]
[74]
Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond) 2020; 20(4): 380-3.
[http://dx.doi.org/10.7861/clinmed.2020-0292] [PMID: 32675142]
[75]
Hou Y, Jia Y, Hou J. Natural Course of Clinically Isolated Syndrome: A Longitudinal Analysis Using a Markov Model. Sci Rep 2018; 8(1): 10857.
[http://dx.doi.org/10.1038/s41598-018-29206-y] [PMID: 30022111]
[76]
Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol 2012; 11(2): 157-69.
[http://dx.doi.org/10.1016/S1474-4422(11)70274-5] [PMID: 22265211]
[77]
Fadda G, Flanagan EP, Cacciaguerra L, et al. Myelitis features and outcomes in CNS demyelinating disorders: Comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front Neurol 2022; 13: 1011579.
[http://dx.doi.org/10.3389/fneur.2022.1011579] [PMID: 36419536]
[78]
Rice CM, Cottrell D, Wilkins A, Scolding NJ. Primary progressive multiple sclerosis: Progress and challenges. J Neurol Neurosurg Psychiatry 2013; 84(10): 1100-6.
[http://dx.doi.org/10.1136/jnnp-2012-304140] [PMID: 23418213]
[79]
Hauser SL, Goodin DS. Multiple sclerosis and other demyelinating diseasesHarrison’s Neurology in Clinical Medicine. New York, NY: McGraw-Hill Education 2018.
[80]
Eshaghi A, Young AL, Wijeratne PA, et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun 2021; 12(1): 2078.
[http://dx.doi.org/10.1038/s41467-021-22265-2] [PMID: 33824310]
[81]
Van Le H, Le Truong CT, Kamauu AWC, Holmén J, Fillmore C, Kobayashi MG, et al. Identifying Patients With Relapsing-Remitting Multiple Sclerosis Using Algorithms Applied to US Integrated Delivery Network Healthcare Data. Value Health 2019; 22(1): 77-84.
[http://dx.doi.org/10.1016/j.jval.2018.06.014]
[82]
Cree BAC, Arnold DL, Chataway J, et al. Secondary Progressive Multiple Sclerosis. Neurology 2021; 97(8): 378-88.
[http://dx.doi.org/10.1212/WNL.0000000000012323] [PMID: 34088878]
[83]
Klineova S, Lublin FD. Clinical Course of Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8(9): a028928.
[http://dx.doi.org/10.1101/cshperspect.a028928] [PMID: 29358317]
[84]
McKay KA, Kwan V, Duggan T, Tremlett H. Risk factors associated with the onset of relapsing-remitting and primary progressive multiple sclerosis: A systematic review. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/817238] [PMID: 25802867]
[85]
Kaymakamzade B, Kiliç AK, Kurne AT, Karabudak R. Progressive Onset Multiple Sclerosis: Demographic, Clinical and Laboratory Characteristics of Patients With and Without Relapses in the Course. Noro Psikiyatri Arsivi 2019; 56(1): 23-6.
[PMID: 30911233]
[86]
Ontaneda D, Fox RJ. Progressive multiple sclerosis. Curr Opin Neurol 2015; 28(3): 237-43.
[http://dx.doi.org/10.1097/WCO.0000000000000195] [PMID: 25887766]
[87]
Ward M, Goldman MD. Epidemiology and Pathophysiology of Multiple Sclerosis. Continuum (Minneap Minn) 2022; 28(4): 988-1005.
[http://dx.doi.org/10.1212/CON.0000000000001136] [PMID: 35938654]
[88]
Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019; 8(11): 1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[89]
Koike H, Katsuno M. Macrophages and Autoantibodies in Demyelinating Diseases. Cells 2021; 10(4): 844.
[http://dx.doi.org/10.3390/cells10040844] [PMID: 33917929]
[90]
Wildner P, Stasiołek M, Matysiak M. Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Mult Scler Relat Disord 2020; 37: 101452.
[http://dx.doi.org/10.1016/j.msard.2019.101452] [PMID: 31670010]
[91]
Sechi E, Cacciaguerra L, Chen JJ, et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol 2022; 13: 885218.
[http://dx.doi.org/10.3389/fneur.2022.885218] [PMID: 35785363]
[92]
Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry 2022; 27(6): 2659-73.
[http://dx.doi.org/10.1038/s41380-022-01511-z] [PMID: 35361905]
[93]
Armada-Moreira A, Gomes JI, Pina CC, et al. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14: 90.
[http://dx.doi.org/10.3389/fncel.2020.00090] [PMID: 32390802]
[94]
Passos GRD, Sato DK, Becker J, Fujihara K. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications. Mediators Inflamm 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/5314541] [PMID: 26941483]
[95]
Perriard G, Mathias A, Enz L, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation 2015; 12(1): 119.
[http://dx.doi.org/10.1186/s12974-015-0335-3] [PMID: 26077779]
[96]
Peng Y, Deng X, Zeng Q, Tang Y. Tc17 cells in autoimmune diseases. Chin Med J (Engl) 2022; 135(18): 2167-77.
[http://dx.doi.org/10.1097/CM9.0000000000002083] [PMID: 36525604]
[97]
Papiri G, D’Andreamatteo G, Cacchiò G, et al. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45(2): 1443-70.
[http://dx.doi.org/10.3390/cimb45020094] [PMID: 36826039]
[98]
Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol 2021; 12: 624685.
[http://dx.doi.org/10.3389/fimmu.2021.624685] [PMID: 33679769]
[99]
Liu R, Du S, Zhao L, et al. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13: 996469.
[http://dx.doi.org/10.3389/fimmu.2022.996469] [PMID: 36211343]
[100]
Legroux L, Arbour N. Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol 2015; 10(4): 528-46.
[http://dx.doi.org/10.1007/s11481-015-9614-0] [PMID: 25946987]
[101]
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4+ T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13: 817473.
[http://dx.doi.org/10.3389/fimmu.2022.817473] [PMID: 35250997]
[102]
Kant R, Pasi S, Surolia A. Auto-Reactive Th17-Cells Trigger Obsessive-Compulsive-Disorder Like Behavior in Mice With Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9: 2508.
[http://dx.doi.org/10.3389/fimmu.2018.02508] [PMID: 30429853]
[103]
Kitz A, Dominguez-Villar M. Molecular mechanisms underlying Th1-like Treg generation and function. Cell Mol Life Sci 2017; 74(22): 4059-75.
[http://dx.doi.org/10.1007/s00018-017-2569-y] [PMID: 28624966]
[104]
Kitz A, Singer E, Hafler D, Regulatory T, Regulatory T. Cells: From Discovery to Autoimmunity. Cold Spring Harb Perspect Med 2018; 8(12): a029041.
[http://dx.doi.org/10.1101/cshperspect.a029041] [PMID: 29311129]
[105]
Kaskow BJ, Baecher-Allan C, Effector T, Effector T. Cells in Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8(4): a029025.
[http://dx.doi.org/10.1101/cshperspect.a029025] [PMID: 29358315]
[106]
Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, et al. Paving the way towards an effective treatment for multiple sclerosis: Advances in cell therapy. Cell Mol Immunol 2021; 18(6): 1353-74.
[http://dx.doi.org/10.1038/s41423-020-00618-z] [PMID: 33958746]
[107]
Huseby ES, Huseby PG, Shah S, Smith R, Stadinski BD. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front Immunol 2012; 3: 64.
[http://dx.doi.org/10.3389/fimmu.2012.00064] [PMID: 22566945]
[108]
Prajeeth CK, Kronisch J, Khorooshi R, et al. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J Neuroinflammation 2017; 14(1): 204.
[http://dx.doi.org/10.1186/s12974-017-0978-3] [PMID: 29037246]
[109]
Bakr NM, Hashim NA, El-Baz HAED, Khalaf EM, Elharoun AS. Polymorphisms in proinflammatory cytokines genes and susceptibility to Multiple Sclerosis. Mult Scler Relat Disord 2021; 47: 102654.
[http://dx.doi.org/10.1016/j.msard.2020.102654] [PMID: 33302229]
[110]
Basak J, Piotrzkowska D, Majsterek I, Kucharska E. Relationship between the Occurrence of Genetic Variants of Single Nucleotide Polymorphism in microRNA Processing Genes and the Risk of Developing Multiple Sclerosis. Biomedicines 2022; 10(12): 3124.
[http://dx.doi.org/10.3390/biomedicines10123124] [PMID: 36551880]
[111]
Cotsapas C, Mitrovic M. Genome-wide association studies of multiple sclerosis. Clin Transl Immunology 2018; 7(6): e1018.
[http://dx.doi.org/10.1002/cti2.1018] [PMID: 29881546]
[112]
Parnell GP, Booth DR. The multiple sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to MS pathogenesis and identify novel therapeutic opportunities. Front Immunol 2017; 8: 425.
[http://dx.doi.org/10.3389/fimmu.2017.00425] [PMID: 28458668]
[113]
Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95: 100-23.
[http://dx.doi.org/10.1016/j.jaut.2018.10.012] [PMID: 30509385]
[114]
Pachner AR. The neuroimmunology of multiple sclerosis: Fictions and facts. Front Neurol 2022; 12: 796378.
[http://dx.doi.org/10.3389/fneur.2021.796378] [PMID: 35197914]
[115]
Wang C, Zhou Y, Feinstein A. Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiol Dis 2023; 177: 106005.
[http://dx.doi.org/10.1016/j.nbd.2023.106005] [PMID: 36680805]
[116]
Yokote H, Okano K, Toru S. Theory of mind and its neuroanatomical correlates in people with multiple sclerosis. Mult Scler Relat Disord 2021; 55: 103156.
[http://dx.doi.org/10.1016/j.msard.2021.103156] [PMID: 34332459]
[117]
Bar-Or A, Pender MP, Khanna R, et al. Epstein–Barr virus in multiple sclerosis: Theory and emerging immunotherapies. Trends Mol Med 2020; 26(3): 296-310.
[http://dx.doi.org/10.1016/j.molmed.2019.11.003] [PMID: 31862243]
[118]
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15(3): 782.
[http://dx.doi.org/10.3390/v15030782] [PMID: 36992490]
[119]
Pradeu T, Cooper EL. The danger theory: 20 years later. Front Immunol 2012; 3: 287.
[http://dx.doi.org/10.3389/fimmu.2012.00287] [PMID: 23060876]
[120]
Pineda B, Magana-Maldonado R, Ramiro AS, et al. PAMP-DAMPs interactions mediates development and progression of multiple sclerosis. Front Biosci (Schol Ed) 2016; 8(1): 13-28.
[http://dx.doi.org/10.2741/s443] [PMID: 26709893]
[121]
Farrugia M, Baron B. The Role of Toll-Like Receptors in Autoimmune Diseases through Failure of the Self-Recognition Mechanism. Int J Inflamm 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/8391230] [PMID: 28553556]
[122]
Govindarajan V, de Rivero Vaccari JP, Keane RW. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J Neuroinflammation 2020; 17(1): 260.
[http://dx.doi.org/10.1186/s12974-020-01944-9] [PMID: 32878648]
[123]
Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med 2019; 9(4): a028944.
[http://dx.doi.org/10.1101/cshperspect.a028944] [PMID: 29735578]
[124]
Kotelnikova E, Kiani NA, Abad E, et al. Dynamics and heterogeneity of brain damage in multiple sclerosis. PLOS Comput Biol 2017; 13(10): e1005757.
[http://dx.doi.org/10.1371/journal.pcbi.1005757] [PMID: 29073203]
[125]
Wingerchuk DM. Environmental factors in multiple sclerosis: Epstein-Barr virus, vitamin D, and cigarette smoking. Mt Sinai J Med 2011; 78(2): 221-30.
[http://dx.doi.org/10.1002/msj.20240] [PMID: 21425266]
[126]
Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord 2017; 14: 35-45.
[http://dx.doi.org/10.1016/j.msard.2017.03.014] [PMID: 28619429]
[127]
Kočovská E, Gaughran F, Krivoy A, Meier UC. Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism. Front Psychiatry 2017; 8: 47.
[http://dx.doi.org/10.3389/fpsyt.2017.00047] [PMID: 28396640]
[128]
Ismailova K, Poudel P, Parlesak A, Frederiksen P, Heitmann BL. Vitamin D in early life and later risk of multiple sclerosis—A systematic review, meta-analysis. PLoS One 2019; 14(8): e0221645.
[http://dx.doi.org/10.1371/journal.pone.0221645] [PMID: 31454391]
[129]
Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective? Front Neurol 2022; 13: 796933.
[http://dx.doi.org/10.3389/fneur.2022.796933] [PMID: 35651353]
[130]
Galoppin M, Kari S, Soldati S, et al. Full spectrum of vitamin D immunomodulation in multiple sclerosis: Mechanisms and therapeutic implications. Brain Commun 2022; 4(4): fcac171.
[http://dx.doi.org/10.1093/braincomms/fcac171] [PMID: 35813882]
[131]
Koch-Henriksen N, Sorensen PS. Why does the north–south gradient of incidence of multiple sclerosis seem to have disappeared on the Northern hemisphere? J Neurol Sci 2011; 311(1-2): 58-63.
[http://dx.doi.org/10.1016/j.jns.2011.09.003] [PMID: 21982346]
[132]
Ghadirian P, Dadgostar B, Azani R, Maisonneuve P. A case-control study of the association between socio-demographic, lifestyle and medical history factors and multiple sclerosis. Can J Public Health 2001; 92(4): 281-5.
[http://dx.doi.org/10.1007/BF03404961]
[133]
Salzer J, Hallmans G, Nyström M, Stenlund H, Wadell G, Sundström P. Smoking as a risk factor for multiple sclerosis. Sage J 2013; 19(8)
[http://dx.doi.org/10.1177/1352458512470862]
[134]
Manouchehrinia A, Huang J, Hillert J, et al. Smoking Attributable Risk in Multiple Sclerosis. Front Immunol 2022; 13: 840158.
[http://dx.doi.org/10.3389/fimmu.2022.840158] [PMID: 35309300]
[135]
Costantini E, Masciarelli E, Casorri L, Di Luigi M, Reale M. Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. Front Cell Neurosci 2022; 16: 985943.
[http://dx.doi.org/10.3389/fncel.2022.985943] [PMID: 36439198]
[136]
Sturm ET, Castro C, Mendez-Colmenares A, et al. Risk Factors for Brain Health in Agricultural Work: A Systematic Review. Int J Environ Res Public Health 2022; 19(6): 3373.
[http://dx.doi.org/10.3390/ijerph19063373] [PMID: 35329061]
[137]
Patsopoulos NA. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb Perspect Med 2018; 8(7): a028951.
[http://dx.doi.org/10.1101/cshperspect.a028951] [PMID: 29440325]
[138]
Kular L, Jagodic M. Epigenetic insights into multiple sclerosis disease progression. J Intern Med 2020; 288(1): 82-102.
[http://dx.doi.org/10.1111/joim.13045] [PMID: 32614160]
[139]
Didonna A, Oksenberg JR. The genetics of multiple sclerosis. Exon Publications 2017; pp. 3-16.
[140]
Traboulsee AL, Bernales CQ, Ross JP, Lee JD, Sadovnick AD, Vilariño-Güell C. Genetic variants in IL2RA and IL7R affect multiple sclerosis disease risk and progression. Neurogenetics 2014; 15(3): 165-9.
[http://dx.doi.org/10.1007/s10048-014-0403-3] [PMID: 24770783]
[141]
Boullerne AI, Skias D, Hartman EM, et al. A single-nucleotide polymorphism in serine-threonine kinase 11, the gene encoding liver kinase B1, is a risk factor for multiple sclerosis. ASN Neuro 2015; 7(1)
[http://dx.doi.org/10.1177/1759091415568914] [PMID: 25694554]
[142]
Park TJ, Kim HJ, Kim JH, et al. Associations of CD6, TNFRSF1A and IRF8 polymorphisms with risk of inflammatory demyelinating diseases. Neuropathol Appl Neurobiol 2013; 39(5): 519-30.
[http://dx.doi.org/10.1111/j.1365-2990.2012.01304.x] [PMID: 22994200]
[143]
Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci 2020; 21(24): 9626.
[http://dx.doi.org/10.3390/ijms21249626] [PMID: 33348854]
[144]
Zheleznyakova GY, Piket E, Marabita F, et al. Epigenetic research in multiple sclerosis: Progress, challenges, and opportunities. Physiol Genomics 2017; 49(9): 447-61.
[http://dx.doi.org/10.1152/physiolgenomics.00060.2017] [PMID: 28754822]
[145]
Sharma P, Azebi S, England P, Christensen T, Møller-Larsen A, Petersen T, et al. Citrullination of histone H3 interferes with HP1- mediated transcriptional repression. PLoS Genet 2012; 8(9): e1002934.
[http://dx.doi.org/10.1371/journal.pgen.1002934]
[146]
Baulina N, Kulakova O, Kiselev I, et al. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 2018; 317: 67-76.
[http://dx.doi.org/10.1016/j.jneuroim.2018.01.005] [PMID: 29325906]
[147]
Paul A, Comabella M, Gandhi R. Biomarkers in Multiple Sclerosis. Cold Spring Harb Perspect Med 2019; 9(3): a029058.
[http://dx.doi.org/10.1101/cshperspect.a029058] [PMID: 29500303]
[148]
Nociti V, Romozzi M, Mirabella M. Update on Multiple Sclerosis Molecular Biomarkers to Monitor Treatment Effects. J Pers Med 2022; 12(4): 549.
[http://dx.doi.org/10.3390/jpm12040549] [PMID: 35455665]
[149]
Filippi M, Preziosa P, Arnold DL, et al. Present and future of the diagnostic work-up of multiple sclerosis: The imaging perspective. J Neurol 2023; 270(3): 1286-99.
[http://dx.doi.org/10.1007/s00415-022-11488-y] [PMID: 36427168]
[150]
Deisenhammer F, Zetterberg H, Fitzner B, Zettl UK. The Cerebrospinal Fluid in Multiple Sclerosis. Front Immunol 2019; 10: 726.
[http://dx.doi.org/10.3389/fimmu.2019.00726] [PMID: 31031747]
[151]
Karrenbauer VD, Bedri SK, Hillert J, Manouchehrinia A. Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: A retrospective cohort study. Sci Rep 2021; 11(1): 14987.
[http://dx.doi.org/10.1038/s41598-021-94423-x] [PMID: 34294805]
[152]
Kuerten S, Lanz TV, Lingampalli N, et al. Autoantibodies against central nervous system antigens in a subset of B cell–dominant multiple sclerosis patients. Proc Natl Acad Sci USA 2020; 117(35): 21512-8.
[http://dx.doi.org/10.1073/pnas.2011249117] [PMID: 32817492]
[153]
Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, et al. BDNF and Tau as biomarkers of severity in multiple sclerosis. Biomarkers Med 2018; 12(7): 717-26.
[http://dx.doi.org/10.2217/bmm-2017-0374] [PMID: 29865854]
[154]
Dziadkowiak E, Wieczorek M, Zagrajek M, et al. Multimodal Evoked Potentials as Potential Biomarkers of Disease Activity in Patients With Clinically Isolated Syndrome. Front Neurol 2022; 12: 678035.
[http://dx.doi.org/10.3389/fneur.2021.678035] [PMID: 35211070]
[155]
Schwenkenbecher P, Wurster U, Konen FF, et al. Impact of the McDonald Criteria 2017 on Early Diagnosis of Relapsing-Remitting Multiple Sclerosis. Front Neurol 2019; 10: 188.
[http://dx.doi.org/10.3389/fneur.2019.00188] [PMID: 30930829]
[156]
Mantero V, Abate L, Balgera R, La Mantia L, Salmaggi A. Clinical Application of 2017 McDonald Diagnostic Criteria for Multiple Sclerosis. J Clin Neurol 2018; 14(3): 387-92.
[http://dx.doi.org/10.3988/jcn.2018.14.3.387] [PMID: 29971979]
[157]
Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019; 156(1): 9-22.
[http://dx.doi.org/10.1111/imm.13004] [PMID: 30222193]
[158]
Wang S, Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta Gene Regul Mech 2013; 1829(10): 1126-35.
[http://dx.doi.org/10.1016/j.bbagrm.2013.07.003] [PMID: 23860259]
[159]
Christensen AO, Li G, Young CH, et al. Peptidylarginine deiminase enzymes and citrullinated proteins in female reproductive physiology and associated diseases. Biol Reprod 2022; 107(6): 1395-410.
[http://dx.doi.org/10.1093/biolre/ioac173] [PMID: 36087287]
[160]
Krieger S, Sorrells SF, Nickerson M, Pace TWW. Mechanistic insights into corticosteroids in multiple sclerosis: War horse or chameleon? Clin Neurol Neurosurg 2014; 119: 6-16.
[http://dx.doi.org/10.1016/j.clineuro.2013.12.021] [PMID: 24635918]
[161]
Murgia F, Giagnoni F, Lorefice L, et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines 2022; 10(12): 3107.
[http://dx.doi.org/10.3390/biomedicines10123107] [PMID: 36551863]
[162]
Brummer T, Ruck T, Meuth SG, Zipp F, Bittner S. Treatment approaches to patients with multiple sclerosis and coexisting autoimmune disorders. Ther Adv Neurol Disord 2021; 14.
[http://dx.doi.org/10.1177/17562864211035542] [PMID: 34457039]
[163]
Bross M, Hackett M, Bernitsas E. Approved and Emerging Disease Modifying Therapies on Neurodegeneration in Multiple Sclerosis. Int J Mol Sci 2020; 21(12): 4312.
[http://dx.doi.org/10.3390/ijms21124312] [PMID: 32560364]
[164]
Cohan SL, Hendin BA, Reder AT, et al. Interferons and Multiple Sclerosis: Lessons from 25 Years of Clinical and Real-World Experience with Intramuscular Interferon Beta-1a (Avonex). CNS Drugs 2021; 35(7): 743-67.
[http://dx.doi.org/10.1007/s40263-021-00822-z] [PMID: 34228301]
[165]
Kasindi A, Fuchs DT, Koronyo Y, Rentsendorj A, Black K, Koronyo-Hamaoui M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022; 11(9): 1578.
[http://dx.doi.org/10.3390/cells11091578] [PMID: 35563884]
[166]
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol 2020; 11: 549842.
[http://dx.doi.org/10.3389/fimmu.2020.549842] [PMID: 33072089]
[167]
Frisch ES, Pretzsch R, Weber MS. A Milestone in Multiple Sclerosis Therapy: Monoclonal Antibodies Against CD20—Yet Progress Continues. Neurotherapeutics 2021; 18(3): 1602-22.
[http://dx.doi.org/10.1007/s13311-021-01048-z] [PMID: 33880738]
[168]
Callegari I, Derfuss T, Galli E. Update on treatment in multiple sclerosis. Presse Med 2021; 50(2): 104068.
[http://dx.doi.org/10.1016/j.lpm.2021.104068] [PMID: 34033862]
[169]
Najafian J, Nasri A, Etemadifar M, Salehzadeh F. Late cardiotoxicity in MS patients treated with mitoxantrone. Int J Prev Med 2019; 10(1): 211.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_477_17] [PMID: 31921403]
[170]
Buttmann M, Seuffert L, Mäder U, Toyka KV. Malignancies after mitoxantrone for multiple sclerosis. Neurology 2016; 86(23): 2203-7.
[http://dx.doi.org/10.1212/WNL.0000000000002745] [PMID: 27170571]
[171]
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13: 807639.
[http://dx.doi.org/10.3389/fphar.2022.807639] [PMID: 35250559]
[172]
Aly L, Hemmer B, Korn T. From leflunomide to teriflunomide: Drug development and immunosuppressive oral drugs in the treatment of multiple sclerosis. Curr Neuropharmacol 2017; 15(6): 874-91.
[PMID: 27928949]
[173]
Ruggieri S, Tortorella C, Gasperini C. Pharmacology and clinical efficacy of dimethyl fumarate (BG-12) for treatment of relapsing-remitting multiple sclerosis. Ther Clin Risk Manag 2014; 10: 229-39.
[PMID: 24707183]
[174]
Guerriero C, Puliatti G, Di Marino T, Tata AM. Effects mediated by dimethyl fumarate on in vitro Oligodendrocytes: Implications in multiple sclerosis. Int J Mol Sci 2022; 23(7): 3615.
[http://dx.doi.org/10.3390/ijms23073615] [PMID: 35408975]
[175]
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11: 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[176]
ELBini-Dhouib I, Manai M, Neili N, et al. Dual Mechanism of Action of Curcumin in Experimental Models of Multiple Sclerosis. Int J Mol Sci 2022; 23(15): 8658.
[http://dx.doi.org/10.3390/ijms23158658] [PMID: 35955792]
[177]
Chan MWY, Chang CB, Tung CH, Sun J, Suen JL, Wu SF. Low-dose 5-aza-2′-deoxycytidine pretreatment inhibits experimental autoimmune encephalomyelitis by induction of regulatory T cells. Mol Med 2014; 20(1): 248-56.
[http://dx.doi.org/10.2119/molmed.2013.00159] [PMID: 24869907]
[178]
Nasri F, Mohtasebi MS, Hashemi E, Zarrabi M, Gholijani N, Sarvestani EK. Therapeutic Efficacy of Mesenchymal Stem Cells and Mesenchymal Stem Cells-derived Neural Progenitors in Experimental Autoimmune Encephalomyelitis. Int J Stem Cells 2018; 11(1): 68-77.
[http://dx.doi.org/10.15283/ijsc17052] [PMID: 29699380]
[179]
Kim Y, Rebman AW, Johnson TP, et al. Peptidylarginine Deiminase 2 Autoantibodies Are Linked to Less Severe Disease in Multiple Sclerosis and Post-treatment Lyme Disease. Front Neurol 2022; 13: 874211.
[http://dx.doi.org/10.3389/fneur.2022.874211] [PMID: 35734473]
[180]
Lange S, Rocha-Ferreira E, Thei L, et al. Peptidylarginine deiminases: Novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem 2014; 130(4): 555-62.
[http://dx.doi.org/10.1111/jnc.12744] [PMID: 24762056]
[181]
Aliko A, Kamińska M, Falkowski K, et al. Discovery of Novel Potential Reversible Peptidyl Arginine Deiminase Inhibitor. Int J Mol Sci 2019; 20(9): 2174.
[http://dx.doi.org/10.3390/ijms20092174] [PMID: 31052493]
[182]
Knuckley B, Luo Y, Thompson PR. Profiling Protein Arginine Deiminase 4 (PAD4): A novel screen to identify PAD4 inhibitors. Bioorg Med Chem 2008; 16(2): 739-45.
[http://dx.doi.org/10.1016/j.bmc.2007.10.021] [PMID: 17964793]
[183]
Causey CP, Jones JE, Slack JL, et al. The Development of N-α-(2-Carboxyl)benzoyl-N5-(2-fluoro-1-iminoethyl)-l-ornithine Amide (o -F-amidine) and N-α-(2-Carboxyl)benzoyl-N5-(2-chloro-1-iminoethyl)-l-ornithine Amide ( o -Cl-amidine) As Second Generation Protein Arginine Deiminase (PAD) Inhibitors. J Med Chem 2011; 54(19): 6919-35.
[http://dx.doi.org/10.1021/jm2008985] [PMID: 21882827]
[184]
Jones JE, Slack JL, Fang P, et al. Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chem Biol 2012; 7(1): 160-5.
[http://dx.doi.org/10.1021/cb200258q] [PMID: 22004374]
[185]
Wang Y, Li P, Wang S, et al. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 2012; 287(31): 25941-53.
[http://dx.doi.org/10.1074/jbc.M112.375725] [PMID: 22605338]
[186]
Dreyton CJ, Anderson ED, Subramanian V, Boger DL, Thompson PR. Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation. Bioorg Med Chem 2014; 22(4): 1362-9.
[http://dx.doi.org/10.1016/j.bmc.2013.12.064] [PMID: 24440480]
[187]
Dreyton CJ, Knuckley B, Jones JE, Lewallen DM, Thompson PR. Mechanistic studies of protein arginine deiminase 2: Evidence for a substrate-assisted mechanism. Biochemistry 2014; 53(27): 4426-33.
[http://dx.doi.org/10.1021/bi500554b] [PMID: 24989433]
[188]
Araman C, van Gent ME, Meeuwenoord NJ, et al. Amyloid-like Behavior of Site-Specifically Citrullinated Myelin Oligodendrocyte Protein (MOG) Peptide Fragments inside EBV-Infected B-Cells Influences Their Cytotoxicity and Autoimmunogenicity. Biochemistry 2019; 58(6): 763-75.
[http://dx.doi.org/10.1021/acs.biochem.8b00852] [PMID: 30513201]
[189]
Martín Monreal MT, Rebak AS, Massarenti L, et al. Applicability of Small-Molecule Inhibitors in the Study of Peptidyl Arginine Deiminase 2 (PAD2) and PAD4. Front Immunol 2021; 12: 716250.
[http://dx.doi.org/10.3389/fimmu.2021.716250] [PMID: 34737738]
[190]
Muth A, Subramanian V, Beaumont E, et al. Development of a selective inhibitor of protein arginine deiminase 2. J Med Chem 2017; 60(7): 3198-211.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00274] [PMID: 28328217]
[191]
Amin M, Hersh CM. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener Dis Manag 2023; 13(1): 47-70.
[http://dx.doi.org/10.2217/nmt-2021-0058] [PMID: 36314777]
[192]
Knuckley B, Bhatia M, Thompson PR. Protein arginine deiminase 4: Evidence for a reverse protonation mechanism. Biochemistry 2007; 46(22): 6578-87.
[http://dx.doi.org/10.1021/bi700095s] [PMID: 17497940]
[193]
Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al. Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening. BMC Bioinformatics 2012; 13 (Suppl. 17): S4.
[194]
Kosgodage US, Matewele P, Mastroianni G, et al. Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment. Front Cell Infect Microbiol 2019; 9: 227.
[http://dx.doi.org/10.3389/fcimb.2019.00227] [PMID: 31316918]
[195]
Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 2015; 11(3): 189-91.
[http://dx.doi.org/10.1038/nchembio.1735] [PMID: 25622091]
[196]
Zhou Y, An LL, Chaerkady R, et al. Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils. Sci Rep 2018; 8(1): 15228.
[http://dx.doi.org/10.1038/s41598-018-33385-z] [PMID: 30323221]
[197]
Dubey N, Peng BY, Lin CM, et al. NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway. Int J Mol Sci 2018; 19(6): 1625.
[http://dx.doi.org/10.3390/ijms19061625] [PMID: 29857489]
[198]
Dreyton CJ, Jones JE, Knuckley BA, Subramanian V, Anderson ED, Brown SJ, et al. Optimization and characterization of a pan protein arginine deiminase (PAD) inhibitor Probe Reports from the NIH Molecular Libraries Program Bethesda (MD). US: National Center for Biotechnology Information 2010.
[199]
Luo Y, Arita K, Bhatia M, et al. Inhibitors and inactivators of protein arginine deiminase 4: Functional and structural characterization. Biochemistry 2006; 45(39): 11727-36.
[http://dx.doi.org/10.1021/bi061180d] [PMID: 17002273]
[200]
Biron BM, Chung CS, O’Brien XM, Chen Y, Reichner JS, Ayala A. Cl-Amidine Prevents Histone 3 Citrullination and Neutrophil Extracellular Trap Formation, and Improves Survival in a Murine Sepsis Model. J Innate Immun 2017; 9(1): 22-32.
[http://dx.doi.org/10.1159/000448808] [PMID: 27622642]
[201]
Zhao X, Gu C, Wang Y. PAD4 selective inhibitor TDFA protects lipopolysaccharide-induced acute lung injury by modulating nuclear p65 localization in epithelial cells. Int Immunopharmacol 2020; 88: 106923.
[http://dx.doi.org/10.1016/j.intimp.2020.106923] [PMID: 32889238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy