Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Neoteric Role of Quercetin in Visual Disorders

Author(s): Noor Hassan Sulaiman Khil, Shaweta Sharma*, Pramod Kumar Sharma and Md Aftab Alam

Volume 16, Issue 2, 2024

Published on: 22 September, 2023

Page: [164 - 174] Pages: 11

DOI: 10.2174/2589977515666230822114324

Price: $65

Abstract

Flavonoids are a family of secondary metabolites found in plants and fungi that exhibit strong antioxidant properties and low toxicity, making them potential candidates for medicinal use. Quercetin, a flavonoid present in various plant-based foods, has gained attention for its numerous biological benefits, including anti-inflammatory, anti-fibrosis, and antioxidant properties. The ocular surface research community has recently focused on quercetin’s therapeutic potential for managing ocular diseases, such as dry eye, keratoconus, corneal inflammation, and neovascularization. In this paper, we discuss the role of quercetin for ocular disease prevention, highlighting its fundamental characteristics, common biological properties, and recent applications. By reviewing the latest research conducted in the last 10 years which was focused on novel herbal formulations for ocular diseases, we aim to provide insights into the role of quercetin in managing ocular diseases and offer perspectives on its potential as a therapeutic agent.

Graphical Abstract

[1]
Stevens GA, White RA, Flaxman SR, et al. Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990-2010. Ophthalmology 2013; 120(12): 2377-84.
[http://dx.doi.org/10.1016/j.ophtha.2013.05.025] [PMID: 23850093]
[2]
Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: Soft drugs and chemical delivery systems. AAPS J 2005; 7(4): E820-33.
[http://dx.doi.org/10.1208/aapsj070479] [PMID: 16594634]
[3]
Coroi MC, Bungau S, Tit M. Preservatives from the eye drops and the ocular surface. Rom J Ophthalmol 2015; 59(1): 2-5.
[PMID: 27373107]
[4]
Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: Characterisation and research methods. ScientificWorldJournal 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/861904] [PMID: 24772038]
[5]
Parasuraman S, Anand David AV, Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev 2016; 10(20): 84-9.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[6]
Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel-Daim MM, Atanasov AG. Antioxidants: Scientific literature landscape analysis. Oxid Med Cell Longev 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/8278454] [PMID: 30728893]
[7]
Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients 2016; 8(3): 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[8]
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155: 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[9]
Wu XJ, Zhou XB, Chen C, Mao W. Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology. Comb Chem High Throughput Screen 2019; 22(6): 411-20.
[http://dx.doi.org/10.2174/1386207322666190717124507] [PMID: 31573877]
[10]
Nam JS, Sharma A, Nguyen L, Chakraborty C, Sharma G, Lee SS. Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine. Molecules 2016; 21(1): 108.
[http://dx.doi.org/10.3390/molecules21010108] [PMID: 26797598]
[11]
Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid Med Cell Longev 2016; 2016: 2986796.
[http://dx.doi.org/10.1155/2016/2986796]
[12]
McKay TB, Karamichos D. Quercetin and the ocular surface: What we know and where we are going. Exp Biol Med 2017; 242(6): 565-72.
[http://dx.doi.org/10.1177/1535370216685187] [PMID: 28056553]
[13]
Zhou Y, Lu N, Zhang H, et al. Corrigendum to “HQS-3, a newly synthesized flavonoid, possesses potent anti-tumor effect in vivo and in vitro” [European Journal of Pharmaceutical Science (2013) 649-658]. Eur J Pharm Sci 2019; 140: 105074.
[14]
Wang L, Cheng X, Li H, et al. Quercetin reduces oxidative stress and inhibits activation of c-Jun N-terminal kinase/activator protein-1 signaling in an experimental mouse model of abdominal aortic aneurysm. Mol Med Rep 2014; 9(2): 435-42.
[http://dx.doi.org/10.3892/mmr.2013.1846] [PMID: 24337353]
[15]
Kels BD, Grzybowski A, Grant-Kels JM. Human ocular anatomy. Clin Dermatol 2015; 33(2): 140-6.
[http://dx.doi.org/10.1016/j.clindermatol.2014.10.006] [PMID: 25704934]
[16]
Kuntić V, Pejić N, Mićić S, Malešev D, Vujić Z. Determination of dissociation constants of quercetin. Pharmazie 2003; 58(6): 439-40.
[PMID: 12857017]
[17]
Nie X Jnr, Chen Z, Pang L, et al. Oral Nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine 2020; 15: 10215-40.
[http://dx.doi.org/10.2147/IJN.S285134] [PMID: 33364755]
[18]
Salehi B, Machin L, Monzote L, et al. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega 2020; 5(20): 11849-72.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[19]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[20]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[21]
Aqil M, Gupta H, Khar R, Ali A, Bhatnagar A, Mittal G. Nanoparticles laden in situ gel for sustained ocular drug delivery. J Pharm Bioallied Sci 2013; 5(2): 162-5.
[http://dx.doi.org/10.4103/0975-7406.111824] [PMID: 23833523]
[22]
Maurice DM, Mishima S. Ocular pharmacokinetics. In: Pharmacology of the Eye. Berlin, Heidelberg: Springer 1984; 69: pp. 16-119.
[http://dx.doi.org/10.1007/978-3-642-69222-2_2]
[23]
Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 2006; 58(11): 1131-5.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[24]
Kandemir K, Tomas M, McClements DJ, Capanoglu E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci Technol 2022; 119: 192-200.
[http://dx.doi.org/10.1016/j.tifs.2021.11.032]
[25]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81(1): 230S-42S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[26]
Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 1995; 62(6): 1276-82.
[http://dx.doi.org/10.1093/ajcn/62.6.1276] [PMID: 7491892]
[27]
Murota K, Terao J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch Biochem Biophys 2003; 417(1): 12-7.
[http://dx.doi.org/10.1016/S0003-9861(03)00284-4] [PMID: 12921774]
[28]
Day AJ, Mellon F, Barron D, Sarrazin G, Morgan MRA, Williamson G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic Res 2001; 35(6): 941-52.
[http://dx.doi.org/10.1080/10715760100301441] [PMID: 11811545]
[29]
Janisch KM, Williamson G, Needs P, Plumb GW. Properties of quercetin conjugates: Modulation of LDL oxidation and binding to human serum albumin. Free Radic Res 2004; 38(8): 877-84.
[http://dx.doi.org/10.1080/10715760410001728415] [PMID: 15493462]
[30]
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 2001; 126(2): 485-93.
[http://dx.doi.org/10.1104/pp.126.2.485] [PMID: 11402179]
[31]
Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 2002; 5(3): 218-23.
[http://dx.doi.org/10.1016/S1369-5266(02)00256-X] [PMID: 11960739]
[32]
Groot H, Rauen U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol 1998; 12(3): 249-55.
[http://dx.doi.org/10.1111/j.1472-8206.1998.tb00951.x] [PMID: 9646056]
[33]
Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2(4): 152-9.
[http://dx.doi.org/10.1016/S1360-1385(97)01018-2]
[34]
Wittig J, Herderich M, Graefe EU, Veit M. Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr, Biomed Appl 2001; 753(2): 237-43.
[http://dx.doi.org/10.1016/S0378-4347(00)00549-1] [PMID: 11334336]
[35]
Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Donpunha W. Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can J Physiol Pharmacol 2012; 90(10): 1345-53.
[http://dx.doi.org/10.1139/y2012-101] [PMID: 22873715]
[36]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[37]
Hollman PCH, Gaag MVD, Mengelers MJB, Van Trijp JMP, De Vries JHM, Katan MB. Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic Biol Med 1996; 21(5): 703-7.
[http://dx.doi.org/10.1016/0891-5849(96)00129-3] [PMID: 8891673]
[38]
Heijnen CGM, Haenen GRMM, Minou Oostveen R, Stalpers EM, Bast A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radic Res 2002; 36(5): 575-81.
[http://dx.doi.org/10.1080/10715760290025951] [PMID: 12150545]
[39]
Arts MJTJ, Sebastiaan Dallinga J, Voss HP, Haenen GRMM, Bast A. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem 2004; 88(4): 567-70.
[http://dx.doi.org/10.1016/j.foodchem.2004.02.008]
[40]
Rogerio AP, Dora CL, Andrade EL, et al. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res 2010; 61(4): 288-97.
[http://dx.doi.org/10.1016/j.phrs.2009.10.005] [PMID: 19892018]
[41]
Sah S, Tirkey N, Kuhad A, Chopra K. Effect of quercetin on lipopolysaccharide induced-sickness behavior and oxidative stress in rats. Indian J Pharmacol 2011; 43(2): 192-6.
[http://dx.doi.org/10.4103/0253-7613.77365] [PMID: 21572657]
[42]
Geraets L, Moonen HJJ, Brauers K, Wouters EFM, Bast A, Hageman GJ. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J Nutr 2007; 137(10): 2190-5.
[http://dx.doi.org/10.1093/jn/137.10.2190] [PMID: 17884996]
[43]
Bureau G, Longpré F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86(2): 403-10.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[44]
Comalada M, Camuesco D, Sierra S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol 2005; 35(2): 584-92.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[45]
MacNee W. Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 2001; 429(1-3): 195-207.
[http://dx.doi.org/10.1016/S0014-2999(01)01320-6] [PMID: 11698041]
[46]
Xu H, He Y, Yang X, et al. Anti-malarial agent artesunate inhibits TNF- -induced production of proinflammatory cytokines via inhibition of NF- B and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 2007; 46(6): 920-6.
[http://dx.doi.org/10.1093/rheumatology/kem014] [PMID: 17314215]
[47]
Nair MP, Mahajan S, Reynolds JL, et al. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κ β system. Clin Vaccine Immunol 2006; 13(3): 319-28.
[http://dx.doi.org/10.1128/CVI.13.3.319-328.2006] [PMID: 16522772]
[48]
Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011; 2011: 1-15.
[http://dx.doi.org/10.1093/ecam/neq053] [PMID: 21792362]
[49]
Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: Antioxidant and anticancer properties. World J Pharm Pharm Sci 2012; 1(1): 146-60.
[50]
Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J Cell Biochem 2009; 106(1): 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[51]
Li C, Wang T, Zhang C, Xuan J, Su C, Wang Y. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene 2016; 577(2): 275-80.
[http://dx.doi.org/10.1016/j.gene.2015.12.012] [PMID: 26680104]
[52]
Maurya AK, Vinayak M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep 2015; 42(9): 1419-29.
[http://dx.doi.org/10.1007/s11033-015-3921-7] [PMID: 26311153]
[53]
Parmenter BH, Croft KD, Hodgson JM, et al. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct 2020; 11(8): 6777-806.
[http://dx.doi.org/10.1039/D0FO01118E] [PMID: 32725042]
[54]
Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr 2007; 137(11): 2405-11.
[http://dx.doi.org/10.1093/jn/137.11.2405] [PMID: 17951477]
[55]
Egert S, Bosy-Westphal A, Seiberl J, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br J Nutr 2009; 102(7): 1065-74.
[http://dx.doi.org/10.1017/S0007114509359127] [PMID: 19402938]
[56]
Overman A, Chuang C-C, McIntosh M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. Int J Obes 2011; 35(9): 1165-72.
[http://dx.doi.org/10.1038/ijo.2010.272] [PMID: 21224828]
[57]
Chuang CC, Martinez K, Xie G, et al. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-α–mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 2010; 92(6): 1511-21.
[http://dx.doi.org/10.3945/ajcn.2010.29807] [PMID: 20943792]
[58]
Prince PSM, Sathya B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiotoxic male Wistar rats. Eur J Pharmacol 2010; 635(1-3): 142-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.019] [PMID: 20206157]
[59]
Kleemann R, Verschuren L, Morrison M, et al. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011; 218(1): 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[60]
McCarty CA, Keeffe JE, Taylor HR. The need for cataract surgery: Projections based on lens opacity, visual acuity, and personal concern. Br J Ophthalmol 1999; 83(1): 62-5.
[http://dx.doi.org/10.1136/bjo.83.1.62] [PMID: 10209437]
[61]
Braakhuis AJ, Donaldson CI, Lim JC, Donaldson PJ. Nutritional strategies to prevent lens cataract: Current status and future strategies. Nutrients 2019; 11(5): 1186.
[http://dx.doi.org/10.3390/nu11051186] [PMID: 31137834]
[62]
Weikel KA, Garber C, Baburins A, Taylor A. Nutritional modulation of cataract. Nutr Rev 2014; 72(1): 30-47.
[http://dx.doi.org/10.1111/nure.12077] [PMID: 24279748]
[63]
Tewari D, Samoilă O, Gocan D, et al. Medicinal plants and natural products used in cataract management. Front Pharmacol 2019; 10: 466.
[http://dx.doi.org/10.3389/fphar.2019.00466] [PMID: 31263410]
[64]
Heruye SH, Maffofou Nkenyi LN, Singh NU, et al. Current trends in the pharmacotherapy of cataracts. Pharmaceuticals 2020; 13(1): 15.
[http://dx.doi.org/10.3390/ph13010015] [PMID: 31963166]
[65]
Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet 2017; 390(10094): 600-12.
[http://dx.doi.org/10.1016/S0140-6736(17)30544-5] [PMID: 28242111]
[66]
Truscott RJW. Age-related nuclear cataract—oxidation is the key. Exp Eye Res 2005; 80(5): 709-25.
[http://dx.doi.org/10.1016/j.exer.2004.12.007] [PMID: 15862178]
[67]
Ferlemi AV, Makri OE, Mermigki PG, Lamari FN, Georgakopoulos CD. Quercetin glycosides and chlorogenic acid in highbush blueberry leaf decoction prevent cataractogenesis in vivo and in vitro: Investigation of the effect on calpains, antioxidant and metal chelating properties. Exp Eye Res 2016; 145: 258-68.
[http://dx.doi.org/10.1016/j.exer.2016.01.012] [PMID: 26808488]
[68]
Patil KK, Meshram RJ, Barage SH, Gacche RN. Dietary flavonoids inhibit the glycation of lens proteins: Implications in the management of diabetic cataract. 3 Biotech 2019; 9(2): 1-5.
[69]
Matsuda H, Morikawa T, Toguchida I, Yoshikawa M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 2002; 50(6): 788-95.
[http://dx.doi.org/10.1248/cpb.50.788] [PMID: 12045333]
[70]
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA 2014; 311(18): 1901-11.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[71]
Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: A review. Open Ophthalmol J 2010; 4(1): 52-9.
[http://dx.doi.org/10.2174/1874364101004010052] [PMID: 21293732]
[72]
Gadia R, Sihota R, Dada T, Gupta V. Current profile of secondary glaucomas. Indian J Ophthalmol 2008; 56(4): 285-9.
[http://dx.doi.org/10.4103/0301-4738.41411] [PMID: 18579986]
[73]
Zhou X, Li G, Yang B, Wu J. Quercetin enhances inhibitory synaptic inputs and reduces excitatory synaptic inputs to OFF-and ON-type retinal ganglion cells in a chronic glaucoma rat model. Front Neurosci 2019; 13: 672.
[http://dx.doi.org/10.3389/fnins.2019.00672] [PMID: 31293381]
[74]
Gao FJ, Zhang SH, Xu P, et al. Quercetin declines apoptosis, ameliorates mitochondrial function and improves retinal ganglion cell survival and function in in vivo model of glaucoma in rat and retinal ganglion cell culture in vitro. Front Mol Neurosci 2017; 10: 285.
[http://dx.doi.org/10.3389/fnmol.2017.00285] [PMID: 28936163]
[75]
Stapleton F, Alves M, Bunya VY, et al. Tfos dews II epidemiology report. Ocul Surf 2017; 15(3): 334-65.
[http://dx.doi.org/10.1016/j.jtos.2017.05.003] [PMID: 28736337]
[76]
Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf 2017; 15(3): 276-83.
[http://dx.doi.org/10.1016/j.jtos.2017.05.008] [PMID: 28736335]
[77]
Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J 2016; 7(1): 15.
[http://dx.doi.org/10.1186/s13167-016-0065-3] [PMID: 27413414]
[78]
Guo H, Lee C, Shah M, et al. A novel elastin-like polypeptide drug carrier for cyclosporine A improves tear flow in a mouse model of Sjögren’s syndrome. J Control Release 2018; 292: 183-95.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.026] [PMID: 30359668]
[79]
O’Neil EC, Henderson M, Massaro-Giordano M, Bunya VY. Advances in dry eye disease treatment. Curr Opin Ophthalmol 2019; 30(3): 166-78.
[http://dx.doi.org/10.1097/ICU.0000000000000569] [PMID: 30883442]
[80]
Oh HN, Kim CE, Lee JH, Yang JW. Effects of quercetin in a mouse model of experimental dry eye. Cornea 2015; 34(9): 1130-6.
[http://dx.doi.org/10.1097/ICO.0000000000000543] [PMID: 26203745]
[81]
Abengózar-Vela A, Schaumburg CS, Stern ME, Calonge M, Enríquez-de-Salamanca A, González-García MJ. Topical quercetin and resveratrol protect the ocular surface in experimental dry eye disease. Ocul Immunol Inflamm 2019; 27(6): 1023-32.
[http://dx.doi.org/10.1080/09273948.2018.1497664] [PMID: 30096001]
[82]
Garrity JA, Bahn RS. Pathogenesis of graves ophthalmopathy: Implications for prediction, prevention, and treatment. Am J Ophthalmol 2006; 142(1): 147-153.e2.
[http://dx.doi.org/10.1016/j.ajo.2006.02.047] [PMID: 16815265]
[83]
Bahn RS. Graves’ ophthalmopathy. N Engl J Med 2010; 362(8): 726-38.
[http://dx.doi.org/10.1056/NEJMra0905750] [PMID: 20181974]
[84]
Lehmann GM, Feldon SE, Smith TJ, Phipps RP. Immune mechanisms in thyroid eye disease. Thyroid 2008; 18(9): 959-65.
[http://dx.doi.org/10.1089/thy.2007.0407] [PMID: 18752427]
[85]
Madhavan HN, Rao SB, Vijaya L, Neelakantan A. In vitro sensitivity of human Tenon’s capsule fibroblasts to mitomycin C and its correlation with outcome of glaucoma filtration surgery. Ophthalmic Surg Lasers Imaging Retina 1995; 26(1): 61-7.
[http://dx.doi.org/10.3928/1542-8877-19950101-14] [PMID: 7746629]
[86]
Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev 2003; 24(6): 802-35.
[http://dx.doi.org/10.1210/er.2002-0020] [PMID: 14671007]
[87]
Yoon JS, Chae MK, Jang SY, Lee SY, Lee EJ. Antifibrotic effects of quercetin in primary orbital fibroblasts and orbital fat tissue cultures of Graves’ orbitopathy. Invest Ophthalmol Vis Sci 2012; 53(9): 5921-9.
[http://dx.doi.org/10.1167/iovs.12-9646] [PMID: 22871832]
[88]
Cheng C, Ng DSW, Chan TK, et al. Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy 2013; 68(2): 195-203.
[http://dx.doi.org/10.1111/all.12077] [PMID: 23253152]
[89]
Origlieri C, Bielory L. Emerging drugs for conjunctivitis. Expert Opin Emerg Drugs 2009; 14(3): 523-36.
[http://dx.doi.org/10.1517/14728210903103818] [PMID: 19708819]
[90]
Liu G, Keane-Myers A, Miyazaki D, Tai A, Ono SJ. Molecular and cellular aspects of allergic conjunctivitis. Chem Immunol 1999; 73: 39-58.
[http://dx.doi.org/10.1159/000058748] [PMID: 10590573]
[91]
Ding Y, Li C, Zhang Y, et al. Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis. Food Chem Toxicol 2020; 135: 110924.
[http://dx.doi.org/10.1016/j.fct.2019.110924] [PMID: 31672514]
[92]
Abengózar-Vela A, Calonge M, Stern ME, González-García MJ, Enríquez-De-Salamanca A. Quercetin and resveratrol decrease the inflammatory and oxidative responses in human ocular surface epithelial cells. Invest Ophthalmol Vis Sci 2015; 56(4): 2709-19.
[http://dx.doi.org/10.1167/iovs.15-16595] [PMID: 26066604]
[93]
Menon BS, Alagaratnam J, Juraida E, Mohamed M, Ibrahim H, Naing NN. Late presentation of retinoblastoma in Malaysia. Pediatr Blood Cancer 2009; 52(2): 215-7.
[http://dx.doi.org/10.1002/pbc.21791] [PMID: 18855905]
[94]
Abramson DH, Frank CM, Susman M, Whalen MP, Dunkel IJ, Boyd NW III. Presenting signs of retinoblastoma. J Pediatr 1998; 132(3): 505-8.
[http://dx.doi.org/10.1016/S0022-3476(98)70028-9] [PMID: 9544909]
[95]
Kivelä T. The epidemiological challenge of the most frequent eye cancer: Retinoblastoma, an issue of birth and death. Br J Ophthalmol 2009; 93(9): 1129-31.
[http://dx.doi.org/10.1136/bjo.2008.150292] [PMID: 19704035]
[96]
Leal-Leal C, Flores-Rojo M, Medina-Sansón A, et al. A multicentre report from the Mexican Retinoblastoma Group. Br J Ophthalmol 2004; 88(8): 1074-7.
[http://dx.doi.org/10.1136/bjo.2003.035642] [PMID: 15258028]
[97]
Dimaras H, Kimani K, Dimba EAO, et al. Retinoblastoma. Lancet 2012; 379(9824): 1436-46.
[http://dx.doi.org/10.1016/S0140-6736(11)61137-9] [PMID: 22414599]
[98]
Shields CL, Shields JA. Basic understanding of current classification and management of retinoblastoma. Curr Opin Ophthalmol 2006; 17(3): 228-34.
[http://dx.doi.org/10.1097/01.icu.0000193079.55240.18] [PMID: 16794434]
[99]
Saxena P, Kaur J. Differential expression of genes in retinoblastoma. Clin Chim Acta 2011; 412(23-24): 2015-21.
[http://dx.doi.org/10.1016/j.cca.2010.10.009] [PMID: 20951689]
[100]
Liu H, Zhou M. Antitumor effect of Quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complement Altern Med 2017; 17(1): 531.
[http://dx.doi.org/10.1186/s12906-017-2023-6] [PMID: 29237430]
[101]
Fournié P, Touboul D, Arné JL, Colin J, Malecaze F. Kératocône. French J Ophthalmol 2013; 36(7): 618-26.
[102]
Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye 2014; 28(2): 189-95.
[http://dx.doi.org/10.1038/eye.2013.278] [PMID: 24357835]
[103]
McKay TB, Lyon D, Sarker-Nag A, Priyadarsini S, Asara JM, Karamichos D. Quercetin attenuates lactate production and extracellular matrix secretion in keratoconus. Sci Rep 2015; 5(1): 9003.
[http://dx.doi.org/10.1038/srep09003] [PMID: 25758533]
[104]
McKay TB, Sarker-Nag A, Lyon D, Asara JM, Karamichos D. Quercetin modulates keratoconus metabolism in vitro. Cell Biochem Funct 2015; 33(5): 341-50.
[http://dx.doi.org/10.1002/cbf.3122] [PMID: 26173740]
[105]
Zhao L, Wang H, Du X. The therapeutic use of quercetin in ophthalmology: Recent applications. Biomed Pharmacother 2021; 137: 111371.
[http://dx.doi.org/10.1016/j.biopha.2021.111371] [PMID: 33561647]
[106]
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2016; 51: 125-55.
[http://dx.doi.org/10.1016/j.preteyeres.2015.07.005] [PMID: 26209346]
[107]
Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 2017; 60: 44-65.
[http://dx.doi.org/10.1016/j.preteyeres.2017.08.001] [PMID: 28807717]
[108]
Cai W, Yu D, Fan J, et al. Quercetin inhibits transforming growth factor β1-induced epithelial–mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway. Drug Des Devel Ther 2018; 12: 4149-61.
[http://dx.doi.org/10.2147/DDDT.S185618] [PMID: 30584279]
[109]
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020; 8: e10136.
[http://dx.doi.org/10.7717/peerj.10136] [PMID: 33150072]
[110]
Bashinsky AL. Retinopathy of prematurity. N C Med J 2017; 78(2): 124-8.
[http://dx.doi.org/10.18043/ncm.78.2.124] [PMID: 28420777]
[111]
Jonas JB, Monés J, Glacet-Bernard A, Coscas G. Retinal vein occlusions. Dev Ophthalmol 2017; 58: 139-67.
[http://dx.doi.org/10.1159/000455278] [PMID: 28351046]
[112]
Arikan S, Ersan I, Karaca T, et al. Quercetin protects the retina by reducing apoptosis due to ischemia-reperfusion injury in a rat model. Arq Bras Oftalmol 2015; 78(2): 100-4.
[http://dx.doi.org/10.5935/0004-2749.20150026] [PMID: 25945531]
[113]
Kumar B, Gupta SK, Nag TC, et al. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res 2014; 125: 193-202.
[http://dx.doi.org/10.1016/j.exer.2014.06.009] [PMID: 24952278]
[114]
Owen CG, Fletcher AE, Donoghue M, Rudnicka AR. How big is the burden of visual loss caused by age related macular degeneration in the United Kingdom? Br J Ophthalmol 2003; 87(3): 312-7.
[http://dx.doi.org/10.1136/bjo.87.3.312] [PMID: 12598445]
[115]
Friedman DS, O’Colmain BJ, Muñoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122(4): 564-72.
[http://dx.doi.org/10.1001/archopht.1941.00870100042005] [PMID: 15078675]
[116]
Thylefors B. A global initiative for the elimination of avoidable blindness. Am J Ophthalmol 1998; 125(1): 90-3.
[http://dx.doi.org/10.1016/S0002-9394(99)80239-6] [PMID: 17492014]
[117]
Gehrs KM, Jackson JR, Brown EN, Allikmets R, Hageman GS. Complement, age-related macular degeneration and a vision of the future. Arch Ophthalmol 2010; 128(3): 349-58.
[http://dx.doi.org/10.1001/archophthalmol.2010.18] [PMID: 20212207]
[118]
Zhuang P, Shen Y, Lin BQ, Zhang WY, Chiou GC. Effect of quercetin on formation of choroidal neovascularization (CNV) in age-related macular degeneration (AMD). Yan Ke Xue Bao 2011; 26(1): 23-9.
[PMID: 21425492]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy