Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Role of Vitamins in Cardiovascular Health: Know Your Facts - Part 1

Author(s): Antonis A. Manolis, Theodora Manolis, Helen Melita and Antonis S. Manolis*

Volume 21, Issue 6, 2023

Published on: 17 October, 2023

Page: [378 - 398] Pages: 21

DOI: 10.2174/1570161121666230912155548

Price: $65

Abstract

Cardiovascular (CV) disease (CVD) is a major cause of morbidity and mortality world-wide, thus it is important to adopt preventive interventions. Observational data demonstrating CV benefits of vitamin supplements, advanced by self-proclaimed experts have resulted in ~50% of Americans reporting the use of multivitamins for health promotion; this practice has led to a multi-billion-dollar business of the multivitamin-industry. However, the data on the extensive use of multivitamins show no consistent benefit for CVD prevention or all-cause mortality, while the use of certain vitamins might prove harmful. Thus, the focus of this two-part review is on the attributes or concerns about specific vitamins on CVD.

In Part 1, the CV effects of specific vitamins are discussed, indicating the need for further supportive evidence of potential benefits. Vitamin A preserves CV homeostasis as it participates in many biologic functions, including atherosclerosis. However, supplementation could potentially be harmful. Betacarotene, a pro-vitamin A, conveys pro-oxidant actions that may mitigate any other benefits. Folic acid alone and certain B-vitamins (e.g., B1/B2/B6/B12) may reduce CVD, heart failure, and/or stroke, while niacin might increase mortality. Vitamin C has antioxidant and cardioprotective effects. Vitamin D may confer CV protection, but all the data are not in agreement. Combined vitamin E and C have antiatherogenic effects but clinical evidence is inconsistent. Vitamin K seems neutral. Thus, there are individual vitamin actions with favorable CV impact (certain B-vitamins and vitamins C and D), but other vitamins (β-carotene, niacin) may potentially have deleterious effects, which also holds true for high doses of fat-soluble vitamins (A/D/E/K).

Graphical Abstract

[1]
Caulfield T. The multivitamin industry rakes in billions of dollars. But science says we're not getting healthier. 2018. Available from: https://www.nbcnews.com/think/opinion/multivitamin-industry-rakes-billions-dollars-science-says-we-re-not-ncna898191
[2]
PrecedenceResearch. Vitamin Supplements Market. 2022. Available from: https://www.precedenceresearch.com/vitamin-supplements-market
[3]
White ND. Messaging and multivitamin use: Rethinking the “It Can’t Hurt” philosophy. Am J Lifestyle Med 2019; 13(3): 243-5.
[http://dx.doi.org/10.1177/1559827619826572] [PMID: 31105485]
[4]
Manolis AA, Manolis TA, Melita H, Manolis AS. Features of a balanced healthy diet with cardiovascular and other benefits. Curr Vasc Pharmacol 2023; 21(3): 163-84.
[http://dx.doi.org/10.2174/1570161121666230327135916] [PMID: 36974413]
[5]
Simsek B, Selte A, Egeli BH, Çakatay U. Effects of vitamin supplements on clinical cardiovascular outcomes: Time to move on! – A comprehensive review. Clin Nutr ESPEN 2021; 42: 1-14.
[http://dx.doi.org/10.1016/j.clnesp.2021.02.014] [PMID: 33745562]
[6]
Sesso HD, Rist PM, Aragaki AK, et al. Multivitamins in the prevention of cancer and cardiovascular disease: The COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am J Clin Nutr 2022; 115(6): 1501-10.
[http://dx.doi.org/10.1093/ajcn/nqac056] [PMID: 35294969]
[7]
Sunkara A, Raizner A. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Methodist DeBakey Cardiovasc J 2019; 15(3): 179-84.
[http://dx.doi.org/10.14797/mdcj-15-3-179] [PMID: 31687096]
[8]
Honarbakhsh S, Schachter M. Vitamins and cardiovascular disease. Br J Nutr 2009; 101(8): 1113-31.
[http://dx.doi.org/10.1017/S000711450809123X] [PMID: 18826726]
[9]
Jenkins DJA, Spence JD, Giovannucci EL, et al. Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol 2018; 71(22): 2570-84.
[http://dx.doi.org/10.1016/j.jacc.2018.04.020] [PMID: 29852980]
[10]
Ingles DP, Cruz Rodriguez JB, Garcia H. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Curr Cardiol Rep 2020; 22(4): 22.
[http://dx.doi.org/10.1007/s11886-020-1270-1] [PMID: 32067177]
[11]
Jenkins DJA, Spence JD, Giovannucci EL, et al. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. J Am Coll Cardiol 2021; 77(4): 423-36.
[http://dx.doi.org/10.1016/j.jacc.2020.09.619] [PMID: 33509399]
[12]
Manolis AA, Manolis TA, Melita H, Manolis AS. Role of vitamins in cardiovascular health: Know your facts-Part II. Curr Vasc Pharmacol 2023; 21. in press
[13]
Shah AK, Dhalla NS. Effectiveness of some vitamins in the prevention of cardiovascular disease: A narrative review. Front Physiol 2021; 12: 729255.
[http://dx.doi.org/10.3389/fphys.2021.729255] [PMID: 34690803]
[14]
Guéant JL, Guéant-Rodriguez RM, Oussalah A, Zuily S, Rosenberg I. Hyperhomocysteinemia in cardiovascular diseases: Revisiting observational studies and clinical trials. Thromb Haemost 2023; 123(3): 270-82.
[http://dx.doi.org/10.1055/a-1952-1946] [PMID: 36170884]
[15]
Rodrigo R, Prieto JC, Aguayo R, et al. Joint cardioprotective effect of vitamin C and other antioxidants against reperfusion injury in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Molecules 2021; 26(18): 5702.
[http://dx.doi.org/10.3390/molecules26185702] [PMID: 34577176]
[16]
Khan SA, Bhattacharjee S, Ghani MOA, Walden R, Chen QM. Vitamin C for cardiac protection during percutaneous coronary intervention: A systematic review of randomized controlled trials. Nutrients 2020; 12(8): 2199.
[http://dx.doi.org/10.3390/nu12082199] [PMID: 32718091]
[17]
Dziedzic EA, Gąsior JS, Tuzimek A, Dąbrowski M, Jankowski P. The association between serum vitamin D concentration and new in-flammatory biomarkers—systemic inflammatory index (SII) and systemic inflammatory response (SIRI)—in patients with ischemic heart disease. Nutrients 2022; 14(19): 4212.
[http://dx.doi.org/10.3390/nu14194212] [PMID: 36235864]
[18]
Manolis AS, Manolis TA, Melita H. Atherosclerosis: An athero-thrombo-inflammatory disease. Hosp Chron 2012; 7(4): 195-201.
[19]
Kose M, Senkal N, Tukek T, et al. Severe vitamin D deficiency is associated with endothelial inflammation in healthy individuals even in the absence of subclinical atherosclerosis. Eur Rev Med Pharmacol Sci 2022; 26(19): 7046-52.
[PMID: 36263552]
[20]
Zhou Y, Jiang M, Sun JY, et al. The association between vitamin D levels and the 10-year risk of atherosclerotic cardiovascular disease. J Cardiovasc Nurs 2022.
[http://dx.doi.org/10.1097/JCN.0000000000000943] [PMID: 36178328]
[21]
Uguz B, Oztas S, Zengin I, et al. Relationship between vitamin D deficiency and thrombus load in patients with ST-elevation myocardial infarction. Eur Rev Med Pharmacol Sci 2022; 26(19): 7015-23.
[PMID: 36263549]
[22]
Polytarchou K, Dimitroglou Y, Varvarousis D, et al. Methylmalonic acid and vitamin B12 in patients with heart failure. Hellenic J Cardiol 2020; 61(5): 330-7.
[http://dx.doi.org/10.1016/j.hjc.2019.10.010] [PMID: 31740360]
[23]
DiNicolantonio JJ, Liu J, O’Keefe JH. Thiamine and cardiovascular disease: A literature review. Prog Cardiovasc Dis 2018; 61(1): 27-32.
[http://dx.doi.org/10.1016/j.pcad.2018.01.009] [PMID: 29360523]
[24]
Abe K, Kibe R, David K, Reddy V, Allard B, Fakaosita M. Reversible right-sided heart failure and pulmonary hypertension caused by scurvy in a 7-year-old boy with autism spectrum disorder and a review of the literature. Paediatr Int Child Health 2021; 1-5: 1-5.
[http://dx.doi.org/10.1080/20469047.2021.1901406] [PMID: 34033530]
[25]
Wu JR, Song EK, Moser DK, Lennie TA. Dietary vitamin C deficiency is associated with health-related quality of life and cardiac event-free survival in adults with heart failure. J Cardiovasc Nurs 2019; 34(1): 29-35.
[http://dx.doi.org/10.1097/JCN.0000000000000521] [PMID: 30211815]
[26]
Shinke T, Shite J, Takaoka H, et al. Vitamin C restores the contractile response to dobutamine and improves myocardial efficiency in patients with heart failure after anterior myocardial infarction. Am Heart J 2007; 154(4): 645.e1-8.
[http://dx.doi.org/10.1016/j.ahj.2007.07.005] [PMID: 17892985]
[27]
Viswanatha Swamy AHM, Koti BC, Ronad PM, Wangikar U, Thippeswamy AHM, Manjula DV. Cardioprotective effect of ascorbic acid on doxorubicin-induced myocardial toxicity in rats. Indian J Pharmacol 2011; 43(5): 507-11.
[http://dx.doi.org/10.4103/0253-7613.84952] [PMID: 22021990]
[28]
Song EK, Kang SM, Vitamin C. Vitamin C deficiency, high-sensitivity creactive protein, and cardiac event-free survival in patients with heart failure. J Cardiovasc Nurs 2018; 33(1): 6-12.
[http://dx.doi.org/10.1097/JCN.0000000000000389] [PMID: 27984333]
[29]
Hemilä H, Chalker E, de Man AME, Vitamin C. Vitamin C may improve left ventricular ejection fraction: A meta-analysis. Front Cardiovasc Med 2022; 9: 789729.
[http://dx.doi.org/10.3389/fcvm.2022.789729] [PMID: 35282368]
[30]
Hazique M, Khan KI, Ramesh P, et al. A study of vitamin D and its correlation with severity and complication of congestive heart failure: A systematic review. Cureus 2022; 14(9): e28873.
[http://dx.doi.org/10.7759/cureus.28873] [PMID: 36225454]
[31]
Zhang Y, Liu M, Zhou C, et al. Inverse association between dietary vitamin A intake and new-onset hypertension. Clin Nutr 2021; 40(5): 2868-75.
[http://dx.doi.org/10.1016/j.clnu.2021.04.004] [PMID: 33940400]
[32]
Lv J, Wang Y, Zhao Y, et al. Plasma levels of vitamin A in early pregnancy and correlationship with hypertensive disorder. Comput Math Methods Med 2022; 2022: 1-5.
[http://dx.doi.org/10.1155/2022/3081720] [PMID: 35633926]
[33]
Li H, He P, Lin T, et al. Association between plasma retinol levels and the risk of all‐cause mortality in general hypertensive patients: A nested case‐control study. J Clin Hypertens 2020; 22(5): 906-13.
[http://dx.doi.org/10.1111/jch.13866] [PMID: 32352642]
[34]
Ran L, Zhao W, Tan X, et al. Association between serum vitamin C and the blood pressure: A systematic review and meta-analysis of observational studies. Cardiovasc Ther 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/4940673] [PMID: 32426036]
[35]
Wu Z, Wu Y, Rao J, et al. Associations among vitamin D, tobacco smoke, and hypertension: A cross-sectional study of the NHANES 2001–2016. Hypertens Res 2022; 45(12): 1986-96.
[http://dx.doi.org/10.1038/s41440-022-01023-x] [PMID: 36202982]
[36]
Zhang Y, Yang S, Wu Q, et al. Dietary vitamin E intake and new-onset hypertension. Hypertens Res 2023; 46(5): 1267-75.
[http://dx.doi.org/10.1038/s41440-022-01163-0] [PMID: 36609495]
[37]
Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin d, diabetes, and ethnicity in the third national health and nutrition examination survey. Diabetes Care 2004; 27(12): 2813-8.
[http://dx.doi.org/10.2337/diacare.27.12.2813] [PMID: 15562190]
[38]
Alrefai AA, Elsalamony E, Fatani SH, Kasemy ZA, Fatani A, Mohamed Kamel HF. The association between vitamin D hypovitaminosis and cardiovascular disease risk in Saudi diabetic patients type II. Biochem Res Int 2022; 2022: 1-8.
[http://dx.doi.org/10.1155/2022/6097864] [PMID: 36193546]
[39]
Pittas AG, Kawahara T, Jorde R, et al. Vitamin D and risk for type 2 diabetes in people with prediabetes. Ann Intern Med 2023; 176(3): 355-63.
[http://dx.doi.org/10.7326/M22-3018] [PMID: 36745886]
[40]
Wu S, Feng P, Li W, et al. Dietary folate, vitamin B6, and vitamin B12 and risk of cardiovascular diseases among individuals with type 2 diabetes: A case-control study. Ann Nutr Metab 2023; 79(1): 5-15.
[http://dx.doi.org/10.1159/000527529] [PMID: 36228591]
[41]
Fung GJ, Steffen LM, Zhou X, et al. Vitamin D intake is inversely related to risk of developing metabolic syndrome in African American and white men and women over 20 y: The Coronary Artery Risk Development in Young Adults study. Am J Clin Nutr 2012; 96(1): 24-9.
[http://dx.doi.org/10.3945/ajcn.112.036863] [PMID: 22648727]
[42]
Zhu J, Chen C, Lu L, Shikany JM, D’Alton ME, Kahe K. Folate, vitamin B 6, and vitamin B 12 status in association with metabolic syndrome incidence. JAMA Netw Open 2023; 6(1): e2250621.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.50621] [PMID: 36630134]
[43]
Shi J, Fang H, Cheng X, et al. Nutrient patterns and its association and metabolic syndrome among chinese children and adolescents aged 7–17. Nutrients 2022; 15(1): 117.
[http://dx.doi.org/10.3390/nu15010117] [PMID: 36615775]
[44]
Shivkar RR, Gawade GC, Padwal MK, Diwan AG, Mahajan SA, Kadam CY. Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms with serum homocysteine, folate and vitamin B12 in patients with young coronary artery disease. Indian J Clin Biochem 2022; 37(2): 224-31.
[http://dx.doi.org/10.1007/s12291-021-00982-1] [PMID: 35463099]
[45]
Hoţoleanu C, Porojan-Iuga M, Rusu ML, Andercou A. Hyperhomocysteinemia: Clinical and therapeutical involvement in venous throm-bosis. Rom J Intern Med 2007; 45(2): 159-64.
[PMID: 18333369]
[46]
Mohan IV, Jagroop IA, Mikhailidis DP, Stansby GP. Homocysteine activates platelets in vitro. Clin Appl Thromb Hemost 2008; 14(1): 8-18.
[http://dx.doi.org/10.1177/1076029607308390] [PMID: 18160593]
[47]
Gonzalez A, Smith GH, Gambello MJ, Sokolová J, Kožich V, Li H. Elevated homocysteine levels: What inborn errors of metabolism might we be missing? Am J Med Genet A 2023; 191(1): 130-4.
[http://dx.doi.org/10.1002/ajmg.a.63001] [PMID: 36271828]
[48]
Zhang T, Liang Z, Lin T, et al. Cost-effectiveness of folic acid therapy for primary prevention of stroke in patients with hypertension. BMC Med 2022; 20(1): 407.
[http://dx.doi.org/10.1186/s12916-022-02601-z] [PMID: 36280851]
[49]
Yuan S, Chen J, Dan L, et al. Homocysteine, folate, and nonalcoholic fatty liver disease: A systematic review with meta-analysis and Mendelian randomization investigation. Am J Clin Nutr 2022; 116(6): 1595-609.
[http://dx.doi.org/10.1093/ajcn/nqac285] [PMID: 36205540]
[50]
Qin X, Spence JD, Li J, et al. Interaction of serum vitamin B 12 and folate with MTHFR genotypes on risk of ischemic stroke. Neurology 2020; 94(11): e1126-36.
[http://dx.doi.org/10.1212/WNL.0000000000008932] [PMID: 31932513]
[51]
Yang HT, Lee M, Hong KS, Ovbiagele B, Saver JL. Efficacy of folic acid supplementation in cardiovascular disease prevention: An updated meta-analysis of randomized controlled trials. Eur J Intern Med 2012; 23(8): 745-54.
[http://dx.doi.org/10.1016/j.ejim.2012.07.004] [PMID: 22884409]
[52]
Ji Y, Tan S, Xu Y, et al. Vitamin B supplementation, homocysteine levels, and the risk of cerebrovascular disease: A meta-analysis. Neurology 2013; 81(15): 1298-307.
[http://dx.doi.org/10.1212/WNL.0b013e3182a823cc] [PMID: 24049135]
[53]
Zhao M, Wu G, Li Y, et al. Meta-analysis of folic acid efficacy trials in stroke prevention. Neurology 2017; 88(19): 1830-8.
[http://dx.doi.org/10.1212/WNL.0000000000003909] [PMID: 28404799]
[54]
Vergatti A, Abate V, Zarrella AF, et al. 25-Hydroxy-vitamin D and risk of recurrent stroke: A dose response meta-analysis. Nutrients 2023; 15(3): 512.
[http://dx.doi.org/10.3390/nu15030512] [PMID: 36771220]
[55]
Lees JS, Chapman FA, Witham MD, Jardine AG, Mark PB. Vitamin K status, supplementation and vascular disease: A systematic review and meta-analysis. Heart 2019; 105(12): 938-45.
[PMID: 30514729]
[56]
Kosciuszek ND, Kalta D, Singh M, Savinova OV. Vitamin K antagonists and cardiovascular calcification: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9: 938567.
[http://dx.doi.org/10.3389/fcvm.2022.938567] [PMID: 36061545]
[57]
Mohan A, Kumar R, Kumar V, Yadav M. Homocysteine, vitamin B12 and folate level: Possible risk factors in the progression of chronic heart and kidney disorders. Curr Cardiol Rev 2023; 19(4): e090223213539.
[http://dx.doi.org/10.2174/1573403X19666230209111854] [PMID: 36757031]
[58]
Gholipur-Shahraki T, Badri S, Vahdat S, Seirafian S, Pourfarzam M, Ataei S. Homocysteine-lowering interventions in chronic kidney disease. J Res Pharm Pract 2021; 10(3): 114-24.
[http://dx.doi.org/10.4103/jrpp.jrpp_75_21] [PMID: 35198504]
[59]
Qin X, Huo Y, Xie D, Hou F, Xu X, Wang X. Homocysteine-lowering therapy with folic acid is effective in cardiovascular disease prevention in patients with kidney disease: A meta-analysis of randomized controlled trials. Clin Nutr 2013; 32(5): 722-7.
[http://dx.doi.org/10.1016/j.clnu.2012.12.009] [PMID: 23313356]
[60]
Capelli I, Cianciolo G, Gasperoni L, et al. Folic acid and vitamin B12 Administration in CKD, why not? Nutrients 2019; 11(2): 383.
[http://dx.doi.org/10.3390/nu11020383] [PMID: 30781775]
[61]
Angelini A, Cappuccilli ML, Magnoni G, et al. The link between homocysteine, folic acid and vitamin B12 in chronic kidney disease. G Ital Nefrol 2021; 38(4): 2021-vol4.
[PMID: 34469084]
[62]
Xiao W, Ye P, Wang F, Cao R, Bai Y, Wang X. Plasma homocysteine is a predictive factor for accelerated renal function decline and chronic kidney disease in a community-dwelling population. Kidney Blood Press Res 2021; 46(5): 541-9.
[http://dx.doi.org/10.1159/000514360] [PMID: 34365457]
[63]
Shih YL, Shih CC, Chen JY. Elevated homocysteine level as an indicator for chronic kidney disease in community-dwelling middle-aged and elderly populations in Taiwan: A community-based cross-sectional study. Front Med 2022; 9: 964101.
[http://dx.doi.org/10.3389/fmed.2022.964101] [PMID: 36004372]
[64]
Xiong Y, Zhang Y, Zhang F, et al. Genetic evidence supporting the causal role of homocysteine in chronic kidney disease: A mendelian randomization study. Front Nutr 2022; 9: 843534.
[http://dx.doi.org/10.3389/fnut.2022.843534] [PMID: 35495913]
[65]
Park S, Lee S, Kim Y, et al. Causal Effects of homocysteine, folate, and cobalamin on kidney function: A mendelian randomization study. Nutrients 2021; 13(3): 906.
[http://dx.doi.org/10.3390/nu13030906] [PMID: 33799553]
[66]
Li Y, Spence JD, Wang X, Huo Y, Xu X, Qin X. Effect of vitamin B12 levels on the association between folic acid treatment and CKD Progression: A post hoc analysis of a folic acid interventional trial. Am J Kidney Dis 2020; 75(3): 325-32.
[http://dx.doi.org/10.1053/j.ajkd.2019.07.020] [PMID: 31629573]
[67]
Reno-Bernstein CM, Oxspring M, Bayles J, Huang EY, Holiday I, Fisher SJ. Vitamin E treatment in insulin-deficient diabetic rats reduces cardiac arrhythmias and mortality during severe hypoglycemia. Am J Physiol Endocrinol Metab 2022; 323(5): E428-34.
[http://dx.doi.org/10.1152/ajpendo.00188.2022] [PMID: 36198111]
[68]
Hemilä H, Suonsyrjä T. Vitamin C for preventing atrial fibrillation in high risk patients: A systematic review and meta-analysis. BMC Cardiovasc Disord 2017; 17(1): 49.
[http://dx.doi.org/10.1186/s12872-017-0478-5] [PMID: 28143406]
[69]
Talasaz AH, Salehiomran A, Heidary Z, et al. The effects of vitamin D supplementation on postoperative atrial fibrillation after coronary artery bypass grafting in patients with vitamin D deficiency. J Card Surg 2022; 37(7): 2219-24.
[http://dx.doi.org/10.1111/jocs.16550] [PMID: 35470909]
[70]
Olsen T, Blomhoff R. Retinol, retinoic acid, and retinol-binding protein 4 are differentially associated with cardiovascular disease, type 2 diabetes, and obesity: An overview of human studies. Adv Nutr 2020; 11(3): 644-66.
[http://dx.doi.org/10.1093/advances/nmz131] [PMID: 31868199]
[71]
Yadav AS, Isoherranen N, Rubinow KB. Vitamin A homeostasis and cardiometabolic disease in humans: Lost in translation? J Mol Endocrinol 2022; 69(3): R95-R108.
[http://dx.doi.org/10.1530/JME-22-0078] [PMID: 35900842]
[72]
Deng Q, Chen J. Potential therapeutic effect of all-trans retinoic acid on atherosclerosis. Biomolecules 2022; 12(7): 869.
[http://dx.doi.org/10.3390/biom12070869] [PMID: 35883425]
[73]
Schiborn C, Weber D, Grune T, et al. Retinol and retinol binding protein 4 levels and cardiometabolic disease risk. Circ Res 2022; 131(7): 637-49.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.321295] [PMID: 36017698]
[74]
Yang J, Zhang Y, Na X, Zhao A. β-Carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2022; 14(6): 1284.
[http://dx.doi.org/10.3390/nu14061284] [PMID: 35334942]
[75]
Peterson CT, Rodionov DA, Osterman AL, Peterson SN. B vitamins and their role in immune regulation and cancer. Nutrients 2020; 12(11): 3380.
[http://dx.doi.org/10.3390/nu12113380] [PMID: 33158037]
[76]
Zhang B, Dong H, Xu Y, Xu D, Sun H, Han L. Associations of dietary folate, vitamin B6 and B12 intake with cardiovascular outcomes in 115664 participants: A large UK population-based cohort. Eur J Clin Nutr 2023; 77(3): 299-307.
[http://dx.doi.org/10.1038/s41430-022-01206-2] [PMID: 36100703]
[77]
Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: A Mendelian randomization study. BMC Med 2021; 19(1): 97.
[http://dx.doi.org/10.1186/s12916-021-01977-8] [PMID: 33888102]
[78]
Darand M, Hassanizadeh S, Martami F, Shams S, Mirzaei M, Hosseinzadeh M. The association between B vitamins and the risk of COVID-19. Br J Nutr 2023; 130(1): 155-63.
[http://dx.doi.org/10.1017/S0007114522003075] [PMID: 36348570]
[79]
Wan Z, Zheng J, Zhu Z, et al. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9: 1031502.
[http://dx.doi.org/10.3389/fnut.2022.1031502] [PMID: 36583209]
[80]
Barone M, D’Amico F, Brigidi P, Turroni S. Gut microbiome–micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors 2022; 48(2): 307-14.
[http://dx.doi.org/10.1002/biof.1835] [PMID: 35294077]
[81]
Rohun J, Dorniak K, Młodziński K, et al. Vitamin B1 deficiency and perimyocarditis fulminans: A case study of shoshin syndrome in a woman following an unbalanced dietary pattern followed by a literature review. Life 2023; 13(1): 205.
[http://dx.doi.org/10.3390/life13010205] [PMID: 36676154]
[82]
Candrasatria RM, Adiarto S, Sukmawan R. Methylenetetrahydrofolate reductase C677T gene polymorphism as a risk factor for hypertension in a rural population. Int J Hypertens 2020; 2020: 1-6.
[http://dx.doi.org/10.1155/2020/4267246] [PMID: 32411440]
[83]
Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: A thermolabile variant of methylenetetrahydro-folate reductase. Am J Hum Genet 1988; 43(4): 414-21.
[PMID: 3177384]
[84]
Antoniades C, Shirodaria C, Leeson P, et al. MTHFR 677 C>T Polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation 2009; 119(18): 2507-15.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.808675] [PMID: 19398669]
[85]
Niu W-Q, You Y-G, Qi Y. Strong association of methylenetetrahydrofolate reductase gene C677T polymorphism with hypertension and hypertension-in-pregnancy in Chinese: A meta-analysis. J Hum Hypertens 2012; 26(4): 259-67.
[http://dx.doi.org/10.1038/jhh.2011.11] [PMID: 21346782]
[86]
Qian X, Lu Z, Tan M, Liu H, Lu D. A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur J Hum Genet 2007; 15(12): 1239-45.
[http://dx.doi.org/10.1038/sj.ejhg.5201914] [PMID: 17726486]
[87]
Wu YL, Hu CY, Lu SS, et al. Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and essential hypertension: A systematic review and meta-analysis. Metabolism 2014; 63(12): 1503-11.
[http://dx.doi.org/10.1016/j.metabol.2014.10.001] [PMID: 25458833]
[88]
Yang B, Fan S, Zhi X, et al. Associations of MTHFR gene polymorphisms with hypertension and hypertension in pregnancy: A meta-analysis from 114 studies with 15411 cases and 21970 controls. PLoS One 2014; 9(2): e87497.
[http://dx.doi.org/10.1371/journal.pone.0087497] [PMID: 24505291]
[89]
McNulty H, Dowey LRC, Strain JJ, et al. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C->T polymorphism. Circulation 2006; 113(1): 74-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.580332] [PMID: 16380544]
[90]
Horigan G, McNulty H, Ward M, Strain JJ, Purvis J, Scott JM. Riboflavin lowers blood pressure in cardiovascular disease patients homo-zygous for the 677C→T polymorphism in MTHFR. J Hypertens 2010; 28(3): 478-86.
[http://dx.doi.org/10.1097/HJH.0b013e328334c126] [PMID: 19952781]
[91]
McNulty H, Strain JJ, Hughes CF, Ward M. Riboflavin, MTHFR genotype and blood pressure: A personalized approach to prevention and treatment of hypertension. Mol Aspects Med 2017; 53: 2-9.
[http://dx.doi.org/10.1016/j.mam.2016.10.002] [PMID: 27720779]
[92]
Li M, Shi Z. Riboflavin intake inversely associated with cardiovascular-disease mortality and interacting with folate intake: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2016. Nutrients 2022; 14(24): 5345.
[http://dx.doi.org/10.3390/nu14245345] [PMID: 36558504]
[93]
Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011; 365(24): 2255-67.
[http://dx.doi.org/10.1056/NEJMoa1107579] [PMID: 22085343]
[94]
Ronsein GE, Vaisar T, Davidson WS, et al. Niacin increases atherogenic proteins in high-density lipoprotein of statin-treated subjects. Arterioscler Thromb Vasc Biol 2021; 41(8): 2330-41.
[http://dx.doi.org/10.1161/ATVBAHA.121.316278] [PMID: 34134520]
[95]
Song S, Lee CJ, Oh J, Park S, Kang SM, Lee SH. Effect of niacin on carotid atherosclerosis in patients at low-density lipoprotein-cholesterol goal but high lipoprotein (a) Level: A 2-year follow-up study. J Lipid Atheroscler 2019; 8(1): 58-66.
[http://dx.doi.org/10.12997/jla.2019.8.1.58] [PMID: 32821700]
[96]
Garg A, Sharma A, Krishnamoorthy P, et al. Role of Niacin in Current Clinical Practice: A Systematic Review. Am J Med 2017; 130(2): 173-87.
[http://dx.doi.org/10.1016/j.amjmed.2016.07.038] [PMID: 27793642]
[97]
D’Andrea E, Hey SP, Ramirez CL, Kesselheim AS. Assessment of the role of niacin in managing cardiovascular disease outcomes. JAMA Netw Open 2019; 2(4): e192224.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.2224] [PMID: 30977858]
[98]
Sun P, Weng H, Fan F, et al. Association between plasma vitamin B5 and coronary heart disease: Results from a case-control study. Front Cardiovasc Med 2022; 9: 906232.
[http://dx.doi.org/10.3389/fcvm.2022.906232] [PMID: 36312288]
[99]
Wojtczak L, Slyshenkov VS. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals - The role of gluta-thione. Biofactors 2003; 17(1-4): 61-73.
[http://dx.doi.org/10.1002/biof.5520170107] [PMID: 12897429]
[100]
Said HM. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 2011; 437(3): 357-72.
[http://dx.doi.org/10.1042/BJ20110326] [PMID: 21749321]
[101]
Evans M, Rumberger J, Azumano I, Napolitano J, Citrolo D, Kamiya T. Pantethine, a derivative of vitamin B5, favorably alters total, LDL and non-HDL cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: A triple-blinded placebo and diet-controlled investigation. Vasc Health Risk Manag 2014; 10: 89-100.
[http://dx.doi.org/10.2147/VHRM.S57116] [PMID: 24600231]
[102]
Scott LN, Fiume M, Bergfeld WF, et al. Safety assessment of panthenol, pantothenic acid, and derivatives as used in cosmetics. Int J Toxicol 2022; 41(3_suppl)(Suppl.): 77-128.
[http://dx.doi.org/10.1177/10915818221124809] [PMID: 36177798]
[103]
Tahiliani AG, Beinlich CJ. Pantothenic acid in health and disease. Vitam Horm 1991; 46: 165-228.
[http://dx.doi.org/10.1016/S0083-6729(08)60684-6] [PMID: 1746161]
[104]
Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmuni-ty. Med Hypotheses 2016; 94: 103-7.
[http://dx.doi.org/10.1016/j.mehy.2016.07.007] [PMID: 27515213]
[105]
Ostman-Smith I, Brown G, Johnson A, Land JM. Dilated cardiomyopathy due to type II X-linked 3-methylglutaconic aciduria: Successful treatment with pantothenic acid. Heart 1994; 72(4): 349-53.
[http://dx.doi.org/10.1136/hrt.72.4.349] [PMID: 7833193]
[106]
Leonardi R, Jackowski S. Biosynthesis of pantothenic Acid and Coenzyme A. Ecosal Plus 2007; 2(2): ecosalplus.3.6.3.4.
[http://dx.doi.org/10.1128/ecosalplus.3.6.3.4] [PMID: 26443589]
[107]
Carrara P, Matturri L, Galbussera M, Lovati MR, Franceschini G, Sirtori CR. Pantethine reduces plasma cholesterol and the severity of arterial lesions in experimental hypercholesterolemic rabbits. Atherosclerosis 1984; 53(3): 255-64.
[http://dx.doi.org/10.1016/0021-9150(84)90126-6] [PMID: 6442152]
[108]
Houston MC, Fazio S, Chilton FH, et al. Nonpharmacologic treatment of dyslipidemia. Prog Cardiovasc Dis 2009; 52(2): 61-94.
[http://dx.doi.org/10.1016/j.pcad.2009.02.002] [PMID: 19732602]
[109]
Pins JJ, Keenan JM. Dietary and nutraceutical options for managing the hypertriglyceridemic patient. Prog Cardiovasc Nurs 2006; 21(2): 89-93.
[http://dx.doi.org/10.1111/j.0889-7204.2006.01776.x] [PMID: 16760691]
[110]
Houston M. The role of nutraceutical supplements in the treatment of dyslipidemia. J Clin Hypertens 2012; 14(2): 121-32.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00576.x] [PMID: 22277145]
[111]
Lopaschuk GD, Michalak M, Tsang H. Regulation of pantothenic acid transport in the heart. Involvement of a Na+-cotransport system. J Biol Chem 1987; 262(8): 3615-9.
[http://dx.doi.org/10.1016/S0021-9258(18)61397-3] [PMID: 3818658]
[112]
Kalkan F, Parlakpinar H, Disli OM, et al. Protective and therapeutic effects of dexpanthenol on isoproterenol‐induced cardiac damage in rats. J Cell Biochem 2018; 119(9): 7479-89.
[http://dx.doi.org/10.1002/jcb.27058] [PMID: 29775243]
[113]
Demirci B, Demir O, Dost T, Birincioglu M. Protective effect of vitamin B5 (dexpanthenol) on cardiovascular damage induced by streptozocin in rats. Bratisl Med J 2014; 115(4): 190-6.
[http://dx.doi.org/10.4149/BLL_2014_040] [PMID: 24797592]
[114]
Zhou H, Zhang H, Ye R, et al. Pantothenate protects against obesity via brown adipose tissue activation. Am J Physiol Endocrinol Metab 2022; 323(1): E69-79.
[http://dx.doi.org/10.1152/ajpendo.00293.2021] [PMID: 35575231]
[115]
Koyanagi T, Hareyama S, Kikuchi R, Kimura T. Effect of diet on the pantothenic acid content in serum and on the incidence of hypertension among villagers. Tohoku J Exp Med 1966; 88(1): 93-7.
[http://dx.doi.org/10.1620/tjem.88.93] [PMID: 5920634]
[116]
Schwabedal PE, Pietrzik K, Wittkowski W. Pantothenic acid deficiency as a factor contributing to the development of hypertension. Cardiology 1985; 72(1): 187-9.
[http://dx.doi.org/10.1159/000173972] [PMID: 4053129]
[117]
Hong Y, Zhou Z, Zhang N, et al. Association between plasma Vitamin B5 levels and all‐cause mortality: A nested case‐control study. J Clin Hypertens 2022; 24(7): 945-54.
[http://dx.doi.org/10.1111/jch.14516] [PMID: 35699663]
[118]
Jeon J, Park K. Dietary vitamin B6 intake associated with a decreased risk of cardiovascular disease: A prospective cohort study. Nutrients 2019; 11(7): 1484.
[http://dx.doi.org/10.3390/nu11071484] [PMID: 31261898]
[119]
Zhang N, Li Z, Wu Q, et al. Associations of Dietary Zinc–Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999–2016. Nutrients 2023; 15(2): 420.
[http://dx.doi.org/10.3390/nu15020420] [PMID: 36678291]
[120]
Dasgupta A. Immunoassay design and biotin interference. Adv Clin Chem 2022; 109: 165-83.
[http://dx.doi.org/10.1016/bs.acc.2022.03.005] [PMID: 35953126]
[121]
Zempleni J, Kuroishi T. Biotin. Adv Nutr 2012; 3(2): 213-4.
[http://dx.doi.org/10.3945/an.111.001305] [PMID: 22516729]
[122]
Belda E, Voland L, Tremaroli V, et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: Effect of biotin and prebiotic supplementation on improved metabolism. Gut 2022; 71(12): 2463-80.
[http://dx.doi.org/10.1136/gutjnl-2021-325753] [PMID: 35017197]
[123]
Bowen R, Benavides R, Colón-Franco JM, et al. Best practices in mitigating the risk of biotin interference with laboratory testing. Clin Biochem 2019; 74: 1-11.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.08.012] [PMID: 31473202]
[124]
Schrapp A, Fraissinet F, Hervouet C, Girot H, Brunel V. Biotin and high-sensitivity cardiac troponin T assay. Biochem Med (Zagreb) 2018; 28(3): 030901.
[http://dx.doi.org/10.11613/BM.2018.030901] [PMID: 30429682]
[125]
Avery G. Biotin interference in immunoassay: A review for the laboratory scientist. Ann Clin Biochem 2019; 56(4): 424-30.
[http://dx.doi.org/10.1177/0004563219842231] [PMID: 31023057]
[126]
Espiritu AI, Remalante-Rayco PPM. High-dose biotin for multiple sclerosis: A systematic review and meta-analyses of randomized controlled trials. Mult Scler Relat Disord 2021; 55: 103159.
[http://dx.doi.org/10.1016/j.msard.2021.103159] [PMID: 34332461]
[127]
Watanabe-Kamiyama M, Kamiyama S, Horiuchi K, et al. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br J Nutr 2008; 99(4): 756-63.
[http://dx.doi.org/10.1017/S0007114507841122] [PMID: 18179728]
[128]
Schutte AE, van Rooyen JM, Huisman HW, Kruger HS, Malan NT, De Ridder JH. Dietary risk markers that contribute to the aetiology of hypertension in black South African children: The THUSA BANA study. J Hum Hypertens 2003; 17(1): 29-35.
[http://dx.doi.org/10.1038/sj.jhh.1001508] [PMID: 12571614]
[129]
Agrawal S, Agrawal A, Said HM. Biotin deficiency enhances the inflammatory response of human dendritic cells. Am J Physiol Cell Physiol 2016; 311(3): C386-91.
[http://dx.doi.org/10.1152/ajpcell.00141.2016] [PMID: 27413170]
[130]
Pistulli R, Andreas E, König S, et al. Characterization of dendritic cells in human and experimental myocarditis. ESC Heart Fail 2020; 7(5): 2305-17.
[http://dx.doi.org/10.1002/ehf2.12767] [PMID: 32619089]
[131]
Velázquez-Arellano A, Hernández-Esquivel ML, Sánchez RM, et al. Functional and metabolic implications of biotin deficiency for the rat heart. Mol Genet Metab 2008; 95(4): 213-9.
[http://dx.doi.org/10.1016/j.ymgme.2008.08.002] [PMID: 18824381]
[132]
Huo Y, Li J, Qin X, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 2015; 313(13): 1325-35.
[http://dx.doi.org/10.1001/jama.2015.2274] [PMID: 25771069]
[133]
Tu YR, Tu KH, Lee CC, et al. Supplementation with folic acid and cardiovascular outcomes in end-stage kidney disease: A multi-institution cohort study. Nutrients 2022; 14(19): 4162.
[http://dx.doi.org/10.3390/nu14194162] [PMID: 36235814]
[134]
Huang K, Wu Y, Zhang Y, Youn JY, Cai H. Combination of folic acid with nifedipine is completely effective in attenuating aortic aneurysm formation as a novel oral medication. Redox Biol 2022; 58: 102521.
[http://dx.doi.org/10.1016/j.redox.2022.102521] [PMID: 36459715]
[135]
Lian Z, Wu Z, Gu R, et al. Evaluation of cardiovascular toxicity of folic acid and 6S-5-Methyltetrahydrofolate-Calcium in early embryonic development. Cells 2022; 11(24): 3946.
[http://dx.doi.org/10.3390/cells11243946] [PMID: 36552710]
[136]
Webber DM, Li M, MacLeod SL, et al. Gene–folic acid interactions and risk of conotruncal heart defects: Results from the national birth defects prevention study. Genes 2023; 14(1): 180.
[http://dx.doi.org/10.3390/genes14010180] [PMID: 36672920]
[137]
Yan MX, Zhao Y, Zhao DD, et al. The association of folic acid, iron nutrition during pregnancy and congenital heart disease in northwestern China: A matched case-control study. Nutrients 2022; 14(21): 4541.
[http://dx.doi.org/10.3390/nu14214541] [PMID: 36364804]
[138]
Jacques PF, Bostom AG, Wilson PWF, Rich S, Rosenberg IH, Selhub J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 2001; 73(3): 613-21.
[http://dx.doi.org/10.1093/ajcn/73.3.613] [PMID: 11237940]
[139]
Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270(22): 2693-8.
[http://dx.doi.org/10.1001/jama.1993.03510220049033] [PMID: 8133587]
[140]
De Luca M, Valvano A, Striano P, et al. Effects of three-months folate supplementation on early vascular abnormalities in hyperhomocysteinemic patients with epilepsy. Seizure 2022; 103: 120-5.
[http://dx.doi.org/10.1016/j.seizure.2022.11.009] [PMID: 36402110]
[141]
Savic-Hartwig M, Kerlikowsky F, van de Flierdt E, Hahn A, Schuchardt JP. A micronutrient supplement modulates homocysteine levels regardless of vitamin B biostatus in elderly subjects. Int J Vitam Nutr Res 2023; 0300-9831/a000777.
[http://dx.doi.org/10.1024/0300-9831/a000777] [PMID: 36715360]
[142]
Wang X, Li W, Xiang M. Increased serum methylmalonic acid levels were associated with the presence of cardiovascular diseases. Front Cardiovasc Med 2022; 9: 966543.
[http://dx.doi.org/10.3389/fcvm.2022.966543] [PMID: 36299874]
[143]
Dhar I, Lysne V, Ulvik A, et al. Plasma methylmalonic acid predicts risk of acute myocardial infarction and mortality in patients with coronary heart disease: A prospective 2‐cohort study. J Intern Med 2023; 293(4): 508-19.
[http://dx.doi.org/10.1111/joim.13610] [PMID: 36682040]
[144]
Fu L, Wang Y, Hu YQ. Causal effects of B vitamins and homocysteine on obesity and musculoskeletal diseases: A Mendelian randomization study. Front Nutr 2022; 9: 1048122.
[http://dx.doi.org/10.3389/fnut.2022.1048122] [PMID: 36505230]
[145]
Fu L, Li Y, Luo D, Deng S, Hu YQ. Plausible relationship between homocysteine and obesity risk viaMTHFR gene: A meta-analysis of 38,317 individuals implementing Mendelian randomization. Diabetes Metab Syndr Obes 2019; 12: 1201-12.
[http://dx.doi.org/10.2147/DMSO.S205379] [PMID: 31413611]
[146]
Collaboration HLT. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. BMJ 1998; 316(7135): 894-8.
[http://dx.doi.org/10.1136/bmj.316.7135.894] [PMID: 9569395]
[147]
Manolis AS, Manolis TA, Poulidakis E, Melita H. Beware of the ailments of vitamin B12 deficiency. Hosp Chron 2013; 8(2): 51-7.
[148]
Lawlor DA, Smith GD, Bruckdorfer KR, Kundu D, Ebrahim S. Those confounded vitamins: What can we learn from the differences between observational versus randomised trial evidence? Lancet 2004; 363(9422): 1724-7.
[http://dx.doi.org/10.1016/S0140-6736(04)16260-0] [PMID: 15158637]
[149]
Mangione CM, Barry MJ, Nicholson WK, et al. Vitamin, Mineral, and Multivitamin Supplementation to Prevent Cardiovascular Disease and Cancer. JAMA 2022; 327(23): 2326-33.
[http://dx.doi.org/10.1001/jama.2022.8970] [PMID: 35727271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy