Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Bearing Capacity of Skirted Ring Footing on Dense Sand Overlying Loose Sand

Author(s): Rakesh Kumar Dutta* and Choudhary B. Priyanka

Volume 1, 2023

Published on: 19 October, 2023

Article ID: e120923220973 Pages: 11

DOI: 10.2174/2210299X01666230912144929

Price: $

Abstract

Introduction: The ultimate bearing capacity of an unskirted/skirted ring foundation on dense sand overlying loose sand is estimated using finite element analysis in this study.

Methods: The range of thickness ratio (thickness of top dense sand layer divided by external diameter of ring) was kept between 0.25 and 1.5. The friction angle of the upper dense and bottom loose sand layers was maintained between 40° and 44° and 30° and 34°, respectively. In the case of skirted ring footing, the skirts are attached at the inner edge, outer edge, and both the edges, respectively.

Results: According to the results, the bearing capacity increases with an increase in either the friction angle of upper dense and lower loose sand layers or the thickness ratio. A double-skirted ring footing was observed to provide the greatest bearing capacity, followed by footing with skirts attached at the outer and inner edges, respectively.

Conclusion: To sum up, the bearing capacity of the ring footing was higher than the circular footing for the given friction angle of the top and bottom layer and thickness ratio.

[1]
Gnananandarao, T.; Khatri, V.N.; Dutta, R.K. Performance of multi-edge skirted footings resting on sand. Indian Geotech. J., 2018, 48(3), 510-519.
[http://dx.doi.org/10.1007/s40098-017-0270-6]
[2]
Al-Aghbari, M.Y.; Mohamedzein, Y.E-A. Bearing capacity of strip foundations with structural skirts. Geotech. Geol. Eng., 2004, 22(1), 43-57.
[http://dx.doi.org/10.1023/B:GEGE.0000013997.79473.e0]
[3]
Al-Aghbari, M.Y.; Mohamedzein, Y.; Al-Nasseri, H. Potential use of structural skirts towards improving the bearing capacity of shallow footings exposed to inclined loadings. Int. J. Geotech. Eng., 2021, 15(10), 1278-1283.
[http://dx.doi.org/10.1080/19386362.2019.1617477]
[4]
Al-Aghbari, M.Y.; Dutta, R.K. Performance of square footing with structural skirt resting on sand. Geomech. Geoeng., 2008, 3(4), 271-277.
[http://dx.doi.org/10.1080/17486020802509393]
[5]
Eid, H.T. Bearing capacity and settlement of skirted shallow foundations on sand. Int. J. Geomech., 2013, 13(5), 645-652.
[http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000237]
[6]
Khatri, V.N.; Debbarma, S.P.; Dutta, R.K.; Mohanty, B. Pressure-settlement behavior of square and rectangular skirted footings resting on sand. Geomech. Eng., 2017, 12(4), 689-705.
[http://dx.doi.org/10.12989/gae.2017.12.4.689]
[7]
Al-Aghbari, M.Y.; Mohamedzein, Y.E-A. Improving the performance of circular foundations using structural skirts. Proc. Inst. Civ. Eng.: Ground Improv., 2006, 10(3), 125-132.
[http://dx.doi.org/10.1680/grim.2006.10.3.125]
[8]
Al-Aghbari, M.Y. Settlement of shallow circular foundations with structural skirts resting on sand. J. Eng. Res., 2007, 4(1), 11-16.
[9]
El Wakil, A.Z. Horizontal capacity of skirted circular shallow footings on sand. Alex. Eng. J., 2010, 49(4), 379-385.
[http://dx.doi.org/10.1016/j.aej.2010.07.003]
[10]
EL Wakil, A.Z. Bearing capacity of Skirt circular footing on sand. Alex. Eng. J., 2013, 52(3), 359-364.
[http://dx.doi.org/10.1016/j.aej.2013.01.007]
[11]
Sajjad, G.; Masoud, M. Study of the behaviour of skirted shallow foundations resting on sand. Int. J. Phy. Modelling Geotech.s, 2018, 18(3), 117-130.
[http://dx.doi.org/10.1680/jphmg.16.00079]
[12]
Rezazadeh, S.; Eslami, A. Bearing capacity of semi-deep skirted foundations on clay using stress characteristics and finite element analyses. Mar. Georesour. Geotechnol., 2018, 36(6), 625-639.
[http://dx.doi.org/10.1080/1064119X.2017.1361488]
[13]
Al-Aghbari, M.Y.; Mohamedzein, Y.E.A The use of skirts to improve the performance of a footing in sand. Int. J. Geotech. Eng., 2018, 14(12), 1-8.
[http://dx.doi.org/10.1080/19386362.2018.1429702]
[14]
Mahmood, M.R.; Fattah, M.Y.A.; Khalaf, A. Experimental investigation on the bearing capacity of skirted foundations on submerged gypseous soil. Mar. Georesour. Geotechnol., 2019, 38(10), 1151-1162.
[http://dx.doi.org/10.1080/1064119X.2019.1656311]
[15]
Hu, Y.; Randolph, M.F.; Watson, P.G. Bearing response of skirted foundation on nonhomogeneous soil. J. Geotech. Geoenviron. Eng., 1999, 125(11), 924-935.
[http://dx.doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924)]
[16]
Alzabeebee, S. Dynamic response and design of a skirted strip foundation subjected to vertical vibration. Geomech. Eng., 2020, 20(4), 345-358.
[17]
Bienen, B.; Gaudin, C.; Cassidy, M.J.; Rausch, L.; Purwana, O.A.; Krisdani, H. Numerical modelling of a hybrid skirted foundation under combined loading. Comput. Geotech., 2012, 45, 127-139.
[http://dx.doi.org/10.1016/j.compgeo.2012.05.009]
[18]
Gnananandarao, T.; Dutta, R.K.; Khatri, V.N. Model studies of plus and double box shaped skirted footings resting on sand. Int. J. Geo-Eng., 2020, 11(1), 2.
[http://dx.doi.org/10.1186/s40703-020-00109-0]
[19]
Thakur, A.; Dutta, R.K. A study on bearing capacity of skirted square footings on different sands. Indian Geotech. J., 2020, 50(6), 1057-1073.
[http://dx.doi.org/10.1007/s40098-020-00440-4]
[20]
Thakur, A.; Dutta, R.K. Experimental and numerical studies of skirted hexagonal footings on three sands. S N. Appl. Sci., 2020, 2(3), 487.
[21]
Nazeer, S.; Dutta, R.K. Bearing capacity of embedded and skirted E-shaped footing on layered sand. J. Achieve. Mater. Manufact. Eng., 2021, 1(108), 5-23.
[http://dx.doi.org/10.5604/01.3001.0015.4795]
[22]
Thakur, A.; Dutta, R.K. Study of bearing capacity of skirted irregular pentagonal footings on different sands. J. Achiev. Mater. Manufact. Eng., 2021, 1(105), 5-17.
[http://dx.doi.org/10.5604/01.3001.0014.8741]
[23]
Thakur, A.; Dutta, R.K. A study of bearing capacity of skirted octagonal footings resting on different sands. Archives Mater. Sci. Eng., 2021, 1(107), 21-31.
[http://dx.doi.org/10.5604/01.3001.0014.8191]
[24]
Gnananandarao, T.; Khatri, V.N.; Dutta, R.K. Bearing capacity of double box shaped skirted footings on sand. J. Geotech. Eng., 2021, 8(3), 10-19.
[25]
Gnananandarao, T.; Khatri, V.N.; Dutta, R.K. Pressure settlement ratio behaviour of plus shaped skirted footings resting on sand. J. Civil Eng., 2018, 46(2), 161-170.
[26]
Meyerhof, G.G. Ultimate bearing capacity of footings on sand layer overlying clay. Can. Geotech. J., 1974, 11(2), 223-229.
[http://dx.doi.org/10.1139/t74-018]
[27]
Meyerhof, G.G.; Hanna, A.M. Ultimate bearing capacity of foundations on layered soils under inclined load. Can. Geotech. J., 1978, 15(4), 565-572.
[http://dx.doi.org/10.1139/t78-060]
[28]
Hanna, A.M. Foundations on strong sand overlying weak sand. J. Geotech. Eng., 1981, 107(7), 915-927.
[29]
Hanna, A.M. Bearing capacity of foundations on a weak sand layer overlying a strong deposit. Can. Geotech. J., 1982, 19(3), 392-396.
[http://dx.doi.org/10.1139/t82-043]
[30]
Okamura, M.; Takemura, J.; Kimura, T. Bearing capacity predictions of sand overlying clay based on limit equilibrium methods. Soil Found., 1998, 38(1), 181-194.
[http://dx.doi.org/10.3208/sandf.38.181]
[31]
Cerato, A.B.; Lutenegger, A.J. Scale effects of shallow foundation bearing capacity on granular material. J. Geotech. Geoenviron. Eng., 2007, 133(10), 1192-1202.
[http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192)]
[32]
Shoaei, M.D.; Alkarni, A.; Noorzaei, J.; Jaafar, M.S.; Huat, B.B.K. Review of available approaches for ultimate bearing capacity of two-layered soils. J. Civ. Eng. Manag., 2012, 18(4), 469-482.
[http://dx.doi.org/10.3846/13923730.2012.699930]
[33]
Joshi, V.C.; Dutta, R.K.; Shrivastava, R. Ultimate bearing capacity of circular footing on layered soil. AGH J. Min. Geoeng., 2015, 10(1), 25-34.
[34]
Kumar, J.; Chakraborty, M. Bearing capacity of a circular foundation on layered sand-clay media. Soil Found., 2015, 55(5), 1058-1068.
[http://dx.doi.org/10.1016/j.sandf.2015.09.008]
[35]
Ismail Ibrahim, K.M.H. Bearing capacity of circular footing resting on granular soil overlying soft clay. HBRC J., 2016, 12(1), 71-77.
[http://dx.doi.org/10.1016/j.hbrcj.2014.07.004]
[36]
Khatri, V.N.; Kumar, J.; Akhtar, S. Bearing capacity of foundations with inclusion of dense sand layer over loose sand strata. Int. J. Geomech., 2017, 17(10), 06017018.
[http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000980]
[37]
Van Baars, S. Numerical check of the Meyerhof bearing capacity equation for shallow foundations. Innov. Infrastruc. Sol., 2018, 3(1), 9.
[http://dx.doi.org/10.1007/s41062-017-0116-1]
[38]
Cerato, A.B.; Lutenegger, A.J. Bearing capacity of square and circular footings on a finite layer of granular soil underlain by a rigid base. J. Geotech. Geoenviron. Eng., 2006, 132(11), 1496-1501.
[http://dx.doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1496)]
[39]
Johnson, K.; Christensen, M.; Sivakugan, N.; Karunasena, W. Simulating the response of shallow foundations using finite element modelling. Australian Civil Eng. Trans., 2015, 1-6.
[40]
Hanna, A.M. Finite element analysis of footings on layered soils. Math. Model., 1987, 9(11), 813-819.
[http://dx.doi.org/10.1016/0270-0255(87)90501-X]
[41]
Oda, M.; Win, S. Ultimate bearing-capacity tests on sand with clay layer. J. Geotech. Eng., 1990, 116(12), 1902-1906.
[http://dx.doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1902)]
[42]
Michalowski, R.L.; Shi, L. Bearing capacity of footings over two-layer foundation soil. J. Geotech. Eng., 1995, 121(5), 421-428.
[http://dx.doi.org/10.1061/(ASCE)0733-9410(1995)121:5(421)]
[43]
Burd, H.J.; Frydman, S. Bearing capacity of plane-strain footings on layered soils. Can. Geotech. J., 1997, 34(2), 241-253.
[http://dx.doi.org/10.1139/t96-106]
[44]
Kenny, M.J.; Andrawes, K.Z. The bearing capacity of footings on a sand layer overlying soft clay. Geotechnique, 1997, 47(2), 339-345.
[http://dx.doi.org/10.1680/geot.1997.47.2.339]
[45]
Shiau, J.S.; Lyamin, A.V.; Sloan, S.W. Bearing capacity of a sand layer on clay by finite element limit analysis. Can. Geotech. J., 2003, 40(5), 900-915.
[http://dx.doi.org/10.1139/t03-042]
[46]
Farah, C.A. Ultimate bearing capacity of shallow foundations on layered soils. M.Sc. thesis, Civil and Environmental Engineering, Concordia University, Quebec., 2004.
[47]
Kumar, A.; Ohri, M.L.; Bansal, R.K. Bearing capacity tests of strip footings on reinforced layered soil. Geotech. Geol. Eng., 2007, 25(2), 139-150.
[http://dx.doi.org/10.1007/s10706-006-0011-6]
[48]
Mosadegh, A.; Nikraz, H. Bearing capacity evaluation of footing on a layered‐soil using ABAQUS. J. Earth Sci. Clim. Change, 2015, 6(3), 1000264.
[http://dx.doi.org/10.4172/2157-7617.S1.018]
[49]
Georgiadis, M.; Michalopoulos, A.P. Bearing capacity of gravity bases on layered soil. J. Geotech. Eng., 1985, 111(6), 712-729.
[http://dx.doi.org/10.1061/(ASCE)0733-9410(1985)111:6(712)]
[50]
Gupta, A.; Dutta, R.K.; Shrivastava, R.; Khatri, V.N. Ultimate bearing capacity of square/rectangular footing on layered soil. Indian Geotech. J., 2017, 47(3), 303-313.
[http://dx.doi.org/10.1007/s40098-017-0233-y]
[51]
Zhang, Q.; Wu, S.; Wu, L.; Liu, Z. Theoretical analysis of bearing capacity of shallowly embeded rectangular footing of marine structures. J. Ocean Univ. China, 2019, 18(1), 123-132.
[http://dx.doi.org/10.1007/s11802-019-3792-y]
[52]
Ullah, S.N.; Hossain, M.S.; Hu, Y.; Fourie, A. Numerical modelling of rectangular footing on a sand embankment over mine tailings. In: ACMSM25. Lecture Notes in Civil Engineering; Wang, C.; Ho, J.; Kitipornchai, S., Eds.; Springer: Singapore, 2020; Vol. 37, pp. 1027-1036.
[http://dx.doi.org/10.1007/978-981-13-7603-0_97]
[53]
Egorov, K.E. 1965Calculation of bed for foundation with ring footing. Proceedings of the Sixth International Conference on Soil Mechanics and Foundation of Engineering., Montreal, pp. 41-45.
[54]
Chavda, J.T.; Dodagoudar, G.R. On vertical bearing capacity of ring footings: Finite element analysis, observations and recommendations. Int. J. Geotech. Eng., 2021, 15(10), 1207-1219.
[http://dx.doi.org/10.1080/19386362.2019.1648737]
[55]
Ohri, M.L.; Purhit, D.G.M.; Dubey, M.L. Behavior of ring footings on dune sand overlaying dense sand. Proceedings of International Conference of Civil Engineers., Tehran 1997.
[56]
Naderi, E.; Hataf, N. Model testing and numerical investigation of interference effect of closely spaced ring and circular footings on reinforced sand. Geotext. Geomembr., 2014, 42(3), 191-200.
[http://dx.doi.org/10.1016/j.geotexmem.2013.12.010]
[57]
Abbas, J.K.; Al-Dorry, M.K. Bearing capacity of ring footing on geogrid reinforced sand. IRECE J., 2013, 4, 240-246.
[58]
Al-Sumaiday, H.G.R.; Al-Tikrity, I.S.H. Experimental investigation of the bearing pressure for circular and ring footings on sand. Tikrit J. Eng. Sci., 2013, 20(3), 64-74.
[http://dx.doi.org/10.25130/tjes.20.3.07]
[59]
Mehrjardi, G.T. Bearing capacity and settlement of ring footings. The 14th World Conference on Earthquake Engineering., Beijing, China 2008.
[60]
Shankar, D.; Kumar, V. A comparative study on experimental and theoretical bearing capacity of ring footings, i-manager’s. J. Struct. Eng., 2018, 7(2), 63-69.
[61]
Lavasan, A.; Schanz, T. 2013.Bearing capacity and settlement of an isolated ring footing on sand reinforced with geogrid. International Symposium on Design and Practice of Geosynthetic-Reinforced Soils Structures., Bologna, Italy
[62]
Fattah, M.; Al-Neami, M; Sadan, A.; Mohammed, A. Load carrying capacity of ring footing on geocell reinforced sandy soil. Global J. Eng. Sci. Res. Manag., 2018, 5(10), 32-42.
[63]
Ahmad, S.K.; Srinivasan, V.; Ghosh, P. Analysis of annular footings and anchors lying on elastic soil medium using finite difference technique. 5th International Congress on Computational Mechanics and Simulation., Chennai, India10-13 Dec 2014.
[http://dx.doi.org/10.3850/978-981-09-1139-3_340]
[64]
Gholami, H.; Hosseininia, E.S. Bearing capacity factors of ring footings by using the method of characteristics. Geotech. Geol. Eng., 2017, 35(5), 2137-2146.
[http://dx.doi.org/10.1007/s10706-017-0233-9]
[65]
Chavda, J.T.; Dodagoudar, G.R. Finite element evaluation of vertical bearing capacity factors Nc, Nq′ and Nγ′ for ring footings. Geotech. Geol. Eng., 2019, 37(2), 741-754.
[http://dx.doi.org/10.1007/s10706-018-0645-1]
[66]
Benmebarek, S.; Remadna, M.S.; Benmebarek, N.; Belounar, L. Numerical evaluation of the bearing capacity factor of ring footings. Comput. Geotech., 2012, 44, 132-138.
[http://dx.doi.org/10.1016/j.compgeo.2012.04.004]
[67]
Seyedi Hosseininia, E. Bearing capacity factors of ring footings. Civ. Eng., 2016, 40(2), 121-132.
[http://dx.doi.org/10.1007/s40996-016-0003-6]
[68]
Kumar, J.; Chakraborty, M. Bearing capacity factors for ring foundations. J. Geotech. Geoenviron. Eng., 2015, 141(10), 06015007.
[http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001345]
[69]
Lee, J. K.; Jeong, S. Immediate settlement of ring footings resting on inhomogeneous finite stratum. Appl. Sci., 2018, 8(2), 255.
[http://dx.doi.org/10.3390/app8020255]
[70]
Lee, J.K.; Jeong, S.; Shang, J.Q. Undrained bearing capacity of ring foundations on two-layered clays. Ocean Eng., 2016, 119, 47-57.
[http://dx.doi.org/10.1016/j.oceaneng.2016.04.019]
[71]
Choobbasti, A.J.; Hesami, S.; Najafi, A.; Pirzadeh, S.; Farrokhzad, F.; Zahmatkesh, A. Numerical evaluation of bearing capacity and settlement of ring footing; case study of Kazeroon cooling towers. Int. J. Res. Rev. Appl. Sci., 2010, 4(2), 263-271.
[72]
Vali, R.; Beygi, M.; Saberian, M.; Li, J. Bearing capacity of ring foundation due to various loading positions by finite element limit analysis. Comput. Geotech., 2019, 110, 94-113.
[http://dx.doi.org/10.1016/j.compgeo.2019.02.020]
[73]
Dutta, R.K.; Khatri, V.N.; Hamdani, D.N. Bearing capacity of skirted ring footing on soft clay overlying dense sand. Innov. Infrastruc. Sol., 2022, 7(5), 319.
[http://dx.doi.org/10.1007/s41062-022-00923-8]
[74]
Dutta, R.K.; Khatoon, A. Bearing capacity of skirted ring footing resting on dense sand overlying soft clay. J. Geotech. Eng., 2023, 10(1), 21-32.
[75]
Luo, Z.; Ding, X.; Ou, Q.; Fang, H. Bearing capacity and deformation behavior of rigid strip footings on coral sand slopes. Ocean Eng., 2023, 267(6), 113317.
[http://dx.doi.org/10.1016/j.oceaneng.2022.113317]
[76]
Zhang, L.; Ou, Q.; Zhou, S. Analytical study of the dynamic response of a double-beam model for a geosynthetic-reinforced embankment under traffic loads. Comput. Geotech., 2020, 118(118), 103330.
[http://dx.doi.org/10.1016/j.compgeo.2019.103330]
[77]
Zhou, H.; Hu, Q.; Yu, X.; Zheng, G.; Liu, X.; Xu, H.; Yang, S.; Liu, J.; Tian, K. Quantitative bearing capacity assessment of strip footings adjacent to two-layered slopes considering spatial soil variability. Acta Geotech., 2023. [epub a head of print]
[http://dx.doi.org/10.1007/s11440-023-01875-8]
[78]
Wu, G.; Zhao, M.; Zhao, H.; Xiao, Y. Effect of eccentric load on the undrained bearing capacity of strip footings above voids. Int. J. Geomech., 2020, 20(7), 04020078.
[http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001710]
[79]
Wu, G.; Zhao, M.; Zhang, R.; Liang, G. Ultimate bearing capacity of eccentrically loaded strip footings above voids in rock masses. Comput. Geotech., 2020, 128, 103819.
[http://dx.doi.org/10.1016/j.compgeo.2020.103819]
[80]
Wu, G.; Zhao, M.; Zhang, R.; Lei, M. Ultimate bearing capacity of strip footings on hoek-brown rock slopes using adaptive finite element limit analysis. Rock Mech. Rock Eng., 2021, 54(3), 1621-1628.
[http://dx.doi.org/10.1007/s00603-020-02334-6]
[81]
Wu, G.; Zhao, H.; Zhao, M.; Xiao, Y. Undrained seismic bearing capacity of strip footings lying on two-layered slopes. Comput. Geotech., 2020, 122(June), 103539.
[http://dx.doi.org/10.1016/j.compgeo.2020.103539]
[82]
Wu, G.; Zhao, M.; Zhao, H. Undrained seismic bearing capacity of strip footings horizontally embedded in two-layered slopes. Earthq. Spectra, 2021, 37(2), 637-651.
[http://dx.doi.org/10.1177/8755293020957332]
[83]
Zhang, W.; Han, L.; Feng, L.; Ding, X.; Wang, L.; Chen, Z.; Liu, H.; Aljarmouzi, A.; Sun, W. Study on seismic behaviors of a double box utility tunnel with joint connections using shaking table model tests. Soil. Dyn. Earthquake Eng., 2020, 136, 106118.
[http://dx.doi.org/10.1016/j.soildyn.2020.106118]
[84]
Ding, X.; Feng, L.; Wang, C.; Chen, Z.; Han, L. Shaking table tests of the seismic response of a utility tunnel with a joint connection. Soil. Dyn. Earthquake Eng., 2020, 133(9), 106133.
[http://dx.doi.org/10.1016/j.soildyn.2020.106133]
[85]
Bowles, J.E. Foundation analysis and design; McGraw-Hill: NewYork, 1997.
[86]
El-Sayed, A.A.E-K. Estimation of guide values for the modulus of elasticity of soil. Bull. Faculty Eng., Assiut Uni., 1991, 19(1), 1-7.
[87]
IS 6403 (1981) Code of practice for determination of breaking capacity of shallow foundations. 1981. Available from:https://ia800901.us.archive.org/30/items/gov.in.is.6403.1981/is.6403.1981.pdf
[88]
Szypcio, Z.; Dolzyk, K. The bearing capacity of layered subsoil. Studia Geotech. Mech., 2006, 28(1), 45-60.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy