Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Metal-based Nanoparticles in the Treatment of Infectious Diseases

Author(s): Popat Kumbhar, Onkar Patil, Preeti Karade, Rajdeep Bhokare, Gaurav Gupta, Sachin Kumar Singh, Kamal Dua, John Disouza* and Vandana Patravale*

Volume 14, Issue 2, 2024

Published on: 06 October, 2023

Article ID: e120923220972 Pages: 10

DOI: 10.2174/2210681213666230912144049

Price: $65

Abstract

Infectious diseases caused by different pathogens are responsible for high mortality across the globe. Multi-drug resistance (MDR) of microorganisms towards different antibiotics has posed a great challenge in treating infectious diseases efficiently. The metal-based nanoparticles (MNPs) have demonstrated great promise in treating infectious diseases because of their inherent antimicrobial potential. Besides, these NPs show site-specific delivery of antibiotic therapeutics, thereby minimizing dose, dose frequency, and side effects. Further, the synergistic effect of MNPs with an antibiotic can reduce the MDR. However, the fabrication of MNPs using an apt fabrication technique with proper control of charge, size, and morphology is highly required to achieve better therapeutic performance. This review focuses on MNPs as a potential avenue to treat infectious diseases. The role of MNPs in combating MDR, different sorts of MNPs, and their fabrication techniques are discussed. Furthermore, assorted types of MNPs employed in antibiotic delivery to treat infectious diseases are discussed with manifold case studies. In short, MNPs alone or as a carrier of antibiotics seems to be an effective strategy in wiping out infectious diseases.

Graphical Abstract

[1]
Fauci, A.S.; Morens, D.M. The perpetual challenge of infectious diseases. N. Engl. J. Med., 2012, 366(5), 454-461.
[http://dx.doi.org/10.1056/NEJMra1108296] [PMID: 22296079]
[2]
Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev., 2008, 72(3), 457-470.
[http://dx.doi.org/10.1128/MMBR.00004-08] [PMID: 18772285]
[3]
World Health Organization. World health statistics 2022. Available from: https://www.who.int/news/item/20-05-2022-world-healthstatistics-
[4]
Gu, J.; Zhou, Z.; Wang, Y. Editorial: Evolutionary mechanisms of infectious diseases. Front. Microbiol., 2021, 12, 667561.
[http://dx.doi.org/10.3389/fmicb.2021.667561] [PMID: 34054775]
[5]
Ismail, B.; Shafei, M.N.; Harun, A.; Ali, S.; Omar, M.; Deris, Z.Z. Predictors of polymyxin B treatment failure in Gram-negative healthcare-associated infections among critically ill patients. J. Microbiol. Immunol. Infect., 2018, 51(6), 763-769.
[http://dx.doi.org/10.1016/j.jmii.2017.03.007] [PMID: 28716359]
[6]
Lee, N.Y.; Ko, W.C.; Hsueh, P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol., 2019, 10, 1153.
[http://dx.doi.org/10.3389/fphar.2019.01153] [PMID: 31636564]
[7]
Ammons, M. Anti-biofilm strategies and the need for innovations in wound care. Recent Patents Anti-Infect. Drug Disc., 2010, 5(1), 10-17.
[http://dx.doi.org/10.2174/157489110790112581] [PMID: 19807676]
[8]
Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect., 2015, 17(3), 173-183.
[http://dx.doi.org/10.1016/j.micinf.2015.01.004] [PMID: 25637951]
[9]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[10]
Munita, J. M.; Arias, C. A. Mechanisms of antibiotic resistance. Microbiol. Spectrum 4, VMBF, 2016, 2016, 0016-2015.
[11]
Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol., 2021, 16(4), 369-384.
[http://dx.doi.org/10.1038/s41565-021-00866-8] [PMID: 33753915]
[12]
Hemeg, H. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomedicine, 2017, 12(12), 8211-8225.
[http://dx.doi.org/10.2147/IJN.S132163] [PMID: 29184409]
[13]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[14]
Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem., 2020, 8, 286.
[http://dx.doi.org/10.3389/fchem.2020.00286] [PMID: 32391321]
[15]
Sreekanth, T.V.M.; Nagajyothi, P.C.; Muthuraman, P.; Enkhtaivan, G.; Vattikuti, S.V.P.; Tettey, C.O.; Kim, D.H.; Shim, J.; Yoo, K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J. Photochem. Photobiol. B, 2018, 188, 6-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.013] [PMID: 30176393]
[16]
Wang, Y.; Xia, Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett., 2004, 4(10), 2047-2050.
[http://dx.doi.org/10.1021/nl048689j]
[17]
Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. J. Nanostructure Chem., 2018, 8(3), 217-254.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[18]
Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater., 2022, 5(6), 1593-1615.
[http://dx.doi.org/10.1007/s42247-021-00335-x] [PMID: 35005431]
[19]
Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release, 2016, 224, 86-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.008] [PMID: 26772877]
[20]
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/246012] [PMID: 25861355]
[21]
Saha, B.; Bhattacharya, J.; Mukherjee, A.; Ghosh, A.; Santra, C.; Dasgupta, A.K.; Karmakar, P. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res. Lett., 2007, 2(12), 614-622.
[http://dx.doi.org/10.1007/s11671-007-9104-2]
[22]
Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine , 2016, 12(3), 789-799.
[http://dx.doi.org/10.1016/j.nano.2015.11.016] [PMID: 26724539]
[23]
Raza, M.; Kanwal, Z.; Rauf, A.; Sabri, A.; Riaz, S.; Naseem, S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials , 2016, 6(4), 74.
[http://dx.doi.org/10.3390/nano6040074] [PMID: 28335201]
[24]
Tallury, P.; Malhotra, A.; Byrne, L.M.; Santra, S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev., 2010, 62(4-5), 424-437.
[http://dx.doi.org/10.1016/j.addr.2009.11.014] [PMID: 19931579]
[25]
Rabiee, N.; Ahmadi, S.; Akhavan, O.; Luque, R. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials (Basel), , 2022, 15(5), 1799.
[http://dx.doi.org/10.3390/ma15051799] [PMID: 35269031]
[26]
Giri, K.; Rivas Yepes, L.; Duncan, B.; Kolumam Parameswaran, P.; Yan, B.; Jiang, Y.; Bilska, M.; Moyano, D.F.; Thompson, M.A.; Rotello, V.M.; Prakash, Y.S. Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Advances, 2015, 5(128), 105551-105559.
[http://dx.doi.org/10.1039/C5RA16305F] [PMID: 26877871]
[27]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[28]
Chu, G.; Chen, Y. Research progress of antibacterial mechanism and application of nano-gold. J. Shanghai Jiaotong Univ., 2013, 11, 1386.
[29]
Nawaz, A.; Ali, S.M.; Rana, N.F.; Tanweer, T.; Batool, A.; Webster, T.J.; Menaa, F.; Riaz, S.; Rehman, Z.; Batool, F.; Fatima, M.; Maryam, T.; Shafique, I.; Saleem, A.; Iqbal, A. Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An in vivo assessment. Nanomaterials , 2021, 11(11), 3152.
[http://dx.doi.org/10.3390/nano11113152] [PMID: 34835916]
[30]
Abadi, L.F.; Kumar, P.; Paknikar, K.; Gajbhiye, V.; Kulkarni, S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery: An in vivo proof of concept. J. Nanobiotech., 2023, 21, 1-24.
[31]
Olivares, M.; Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr., 1996, 63(5), 791S-796S.
[http://dx.doi.org/10.1093/ajcn/63.5.791] [PMID: 8615366]
[32]
Barceloux, D.G.; Barceloux, D. Copper. J. Toxicol. Clin. Toxicol., 1999, 37(2), 217-230.
[http://dx.doi.org/10.1081/CLT-100102421] [PMID: 10382557]
[33]
Gyawali, R.; Ibrahim, S.A.; Abu Hasfa, S.H.; Smqadri, S.Q.; Haik, Y. Antimicrobial (activity of copper alone and in combination with lactic acid against Escherichia coli O157: H7 in laboratory medium and on the surface of lettuce and tomatoes. J. Pathogens, 2011, 2011, 650968.
[34]
Salvadori, M.R.; Ando, R.A.; Oller do Nascimento, C.A.; Corrêa, B. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 2014, 9(1), e87968.
[http://dx.doi.org/10.1371/journal.pone.0087968] [PMID: 24489975]
[35]
Raffi, M.; Mehrwan, S.; Bhatti, T.M.; Akhter, J.I.; Hameed, A.; Yawar, W. ul Hasan, M.M. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol., 2010, 60(1), 75-80.
[http://dx.doi.org/10.1007/s13213-010-0015-6]
[36]
O’Gorman, J.; Humphreys, H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect., 2012, 81(4), 217-223.
[http://dx.doi.org/10.1016/j.jhin.2012.05.009] [PMID: 22738611]
[37]
Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol., 2018, 124(5), 1032-1046.
[http://dx.doi.org/10.1111/jam.13681] [PMID: 29280540]
[38]
Dollwet, H.H. Historic uses of copper compounds in medicine. Trace Elem. Med., 1985, 2, 80-87.
[39]
Zangeneh, M.M.; Ghaneialvar, H.; Akbaribazm, M.; Ghanimatdan, M.; Abbasi, N.; Goorani, S.; Pirabbasi, E.; Zangeneh, A. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J. Photochem. Photobiol. B, 2019, 197, 111556.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111556]
[40]
Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A. Copper oxide nanoparticles: Synthesis, characterization and their antibacterial activity. J. Cluster Sci., 2011, 22(2), 121-129.
[http://dx.doi.org/10.1007/s10876-011-0349-7]
[41]
Das, D.; Nath, B.C.; Phukon, P.; Dolui, S.K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B Biointerfaces, 2013, 101, 430-433.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.002] [PMID: 23010051]
[42]
Rani, R.; Kumar, H.; Salar, R.K.; Purewal, S.S. Antibacterial activity of copper oxide nanoparticles against gram-negative bacterial strain synthesized by reverse micelle technique. Int. J. Pharm. Res. Dev., 2014, 6, 72-78.
[43]
Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 2014, 25(13), 135101.
[http://dx.doi.org/10.1088/0957-4484/25/13/135101] [PMID: 24584282]
[44]
Verma, V.; Kaushik, D. Mupirocin mounted copper nanoparticle offered augmented drug delivery against resistant bacteria. IJPER, 2020, 54(3), 637-646.
[http://dx.doi.org/10.5530/ijper.54.3.113]
[45]
Ezealigo, U.S.; Ezealigo, B.N.; Aisida, S.O.; Ezema, F.I. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open, 2021, 4, 100027.
[http://dx.doi.org/10.1016/j.jciso.2021.100027]
[46]
Hasany, S.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol., 2012, 2(6), 148-158.
[http://dx.doi.org/10.5923/j.nn.20120206.01]
[47]
Saqib, S.; Munis, M.F.H.; Zaman, W.; Ullah, F.; Shah, S.N.; Ayaz, A.; Farooq, M.; Bahadur, S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc. Res. Tech., 2019, 82(4), 415-420.
[http://dx.doi.org/10.1002/jemt.23182] [PMID: 30565799]
[48]
Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J.; Gao, J.; Li, X.; Chen, X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31(11), 3016-3022.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.010] [PMID: 20092887]
[49]
Liu, J.; Xu, J.; Zhou, J.; Zhang, Y.; Guo, D.; Wang, Z. Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int. J. Nanomedicine, 2017, 12, 1113-1126.
[http://dx.doi.org/10.2147/IJN.S123228] [PMID: 28223802]
[50]
Vilas-Boas, V.; Espiña, B.; Kolen’ko, Y.V.; Bañobre-López, M.; Brito, M.; Martins, V.; Duarte, J.A.; Petrovykh, D.Y.; Freitas, P.; Carvalho, F. Effectiveness and safety of a nontargeted boost for a CXCR4-targeted magnetic hyperthermia treatment of cancer cells. ACS Omega, 2019, 4(1), 1931-1940.
[http://dx.doi.org/10.1021/acsomega.8b02199]
[51]
Velusamy, P.; Chia-Hung, S.; Shritama, A.; Kumar, G.V.; Jeyanthi, V.; Pandian, K. Synthesis of oleic acid coated iron oxide nanoparticles and its role in anti-biofilm activity against clinical isolates of bacterial pathogens. J. Taiwan Inst. Chem. Eng., 2016, 59, 450-456.
[http://dx.doi.org/10.1016/j.jtice.2015.07.018]
[52]
Lee, J.H.; Ju, J.E.; Kim, B.I.; Pak, P.J.; Choi, E.K.; Lee, H.S.; Chung, N. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ. Toxicol. Chem., 2014, 33(12), 2759-2766.
[http://dx.doi.org/10.1002/etc.2735] [PMID: 25176020]
[53]
Grumezescu, A.; Gestal, M.; Holban, A.; Grumezescu, V.; Vasile, B.; Mogoantă, L.; Iordache, F.; Bleotu, C.; Mogoșanu, G. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria. Molecules, 2014, 19(4), 5013-5027.
[http://dx.doi.org/10.3390/molecules19045013] [PMID: 24759068]
[54]
Masadeh, M.M.; Karasneh, G.A.; Al-Akhras, M.A.; Albiss, B.A.; Aljarah, K.M.; Al-azzam, S.I.; Alzoubi, K.H. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology, 2015, 67(3), 427-435.
[http://dx.doi.org/10.1007/s10616-014-9701-8] [PMID: 24643389]
[55]
Nomiya, K.; Yoshizawa, A.; Tsukagoshi, K.; Kasuga, N.C.; Hirakawa, S.; Watanabe, J. Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J. Inorg. Biochem., 2004, 98(1), 46-60.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.07.002] [PMID: 14659632]
[56]
Lazar, V. Quorum sensing in biofilms – How to destroy the bacterial citadels or their cohesion/power? Anaerobe, 2011, 17(6), 280-285.
[http://dx.doi.org/10.1016/j.anaerobe.2011.03.023] [PMID: 21497662]
[57]
Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 2002, 15(2), 167-193.
[http://dx.doi.org/10.1128/CMR.15.2.167-193.2002] [PMID: 11932229]
[58]
Taraszkiewicz, A.; Fila, G.; Grinholc, M.; Nakonieczna, J. Innovative strategies to overcome biofilm resistance. BioMed Res. Int., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/150653] [PMID: 23509680]
[59]
Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep., 2016, 6(1), 20414.
[http://dx.doi.org/10.1038/srep20414] [PMID: 26829907]
[60]
Robertson, P.K.J.; Robertson, J.M.C.; Bahnemann, D.W. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J. Hazard. Mater., 2012, 211-212(212), 161-171.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.058] [PMID: 22178373]
[61]
Seong, M.; Lee, D.G. Silver nanoparticles against salmonella enterica serotype typhimurium: Role of inner membrane dysfunction. Curr. Microbiol., 2017, 74(6), 661-670.
[http://dx.doi.org/10.1007/s00284-017-1235-9] [PMID: 28321528]
[62]
Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.H.; Liu, R.; Tolaymat, T.; Telesca, D.; Zink, J.I.; Cohen, Y.; Holden, P.A.; Godwin, H.A. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 2014, 8(1), 374-386.
[http://dx.doi.org/10.1021/nn4044047] [PMID: 24341736]
[63]
Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 2019, 14, e0224904.
[64]
Alizadeh, A.; Salouti, M.; Alizadeh, H.; Kazemizadeh, A.R.; Safari, A.A.; Mahmazi, S. Enhanced antibacterial effect of azlocillin in conjugation with silver nanoparticles against Pseudomonas aeruginosa. IET Nanobiotechnol., 2017, 11(8), 942-947.
[http://dx.doi.org/10.1049/iet-nbt.2017.0009] [PMID: 29155393]
[65]
Ipe, D.S.; Kumar, P.T.S.; Love, R.M.; Hamlet, S.M. Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Front. Microbiol., 2020, 11, 1074.
[http://dx.doi.org/10.3389/fmicb.2020.01074] [PMID: 32670214]
[66]
Kaur, A.; Kumar, R. Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Advances, 2019, 9(2), 1095-1105.
[http://dx.doi.org/10.1039/C8RA07980C] [PMID: 35517620]
[67]
Chen, T.; Zhao, T.; Wei, D.; Wei, Y.; Li, Y.; Zhang, H. Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr. Polym., 2013, 92(2), 1124-1132.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.022] [PMID: 23399137]
[68]
Staedler, D.; Magouroux, T.; Hadji, R.; Joulaud, C.; Extermann, J.; Schwung, S.; Passemard, S.; Kasparian, C.; Clarke, G.; Gerrmann, M.; Le Dantec, R.; Mugnier, Y.; Rytz, D.; Ciepielewski, D.; Galez, C.; Gerber-Lemaire, S.; Juillerat-Jeanneret, L.; Bonacina, L.; Wolf, J.P. Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility. ACS Nano, 2012, 6(3), 2542-2549.
[http://dx.doi.org/10.1021/nn204990n] [PMID: 22324660]
[69]
Akhtar, M.J.; Ahamed, M.; Kumar, S.; Khan, M.M.; Ahmad, J.; Alrokayan, S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomedicine, 2012, 7, 845-857.
[PMID: 22393286]
[70]
Siddiqi, K.S.; ur Rahman, A.; Tajuddin,; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[71]
Narasimha, G.; Sridevi, A.; Devi, P.B.; Praveen, K.B. Chemical synthesis of Zinc Oxide (ZnO) nanoparticles and their antibacterial activity against a clinical isolate Staphylococcus aureus. Int. J. Nanodimens., 2014, 5, 337-340.
[72]
Seil, J.T.; Webster, T.J. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnology, 2012, 23(49), 495101.
[http://dx.doi.org/10.1088/0957-4484/23/49/495101] [PMID: 23149720]
[73]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[74]
Voicu, G.; Oprea, O.; Vasile, B.S.; Andronescu, E. Antiba\cterial activity of zinc oxide-gentamicin hybrid material. Dig. J. Nanomater. Biostruct., 2013, 8, 1191-1203.
[75]
Chauhan, R.; Reddy, A.; Abraham, J. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl. Nanosci., 2015, 5(1), 63-71.
[http://dx.doi.org/10.1007/s13204-014-0292-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy