Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

MXenes-based Multifunctional Nanomaterials for Lithium-ion Batteries: Opportunities and Challenges

Author(s): Tika Ram Bhandari, Yub Narayan Thapa, Chiranjibi Dhakal and Rameshwar Adhikari*

Volume 13, Issue 5, 2023

Published on: 09 October, 2023

Article ID: e110923220925 Pages: 11

DOI: 10.2174/2210681213666230911161526

Price: $65

Abstract

MXene-based multicomponent materials are 2D substances derived from transition metal (M) with carbide/nitride combinations having several propitious uses, including the fabrication of highperformance electrode materials utilized in Lithium- ion batteries (LIBs), particularly for energy storage devices. The suitability of these new classes of materials for LIB electrodes can be attributed to their high conductivity combined with their excellent surface properties desirable for electrode applications, such as fast charge-discharge capability, high storage capacity and high rate capacity. However, there are several challenges possessed by MXene-based nanomaterials in the application of their electrodes in future flexible and wearable devices, demanding more research work and development strategies. After a brief overview of MXenes used in batteries, this paper deals with the synthesis, morphology-properties correlations, and their performance. Finally, this paper highlights the advantages, limitations, and challenges of MXene-based electrodes for LIBs, ending with concluding remarks.

[1]
Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev., 2018, 47(14), 5109-5124.
[http://dx.doi.org/10.1039/C7CS00838D] [PMID: 29667670]
[2]
Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc., 2013, 135(43), 15966-15969.
[http://dx.doi.org/10.1021/ja405735d] [PMID: 24144164]
[3]
Deysher, G.; Shuck, C.E.; Hantanasirisakul, K.; Frey, N.C.; Foucher, A.C.; Maleski, K.; Sarycheva, A.; Shenoy, V.B.; Stach, E.A.; Anasori, B.; Gogotsi, Y. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano, 2020, 14(1), 204-217.
[http://dx.doi.org/10.1021/acsnano.9b07708] [PMID: 31804797]
[4]
Gogotsi, Y.; Anasori, B. The rise of mxenes. ACS Nano, 2019, 13(8), 8491-8494.
[http://dx.doi.org/10.1021/acsnano.9b06394] [PMID: 31454866]
[5]
Han, M.; Maleski, K.; Shuck, C.E.; Yang, Y.; Glazar, J.T.; Foucher, A.C.; Hantanasirisakul, K.; Sarycheva, A.; Frey, N.C.; May, S.J.; Shenoy, V.B.; Stach, E.A.; Gogotsi, Y. Tailoring electronic and optical properties of mxenes through forming solid solutions. J. Am. Chem. Soc., 2020, 142(45), 19110-19118.
[http://dx.doi.org/10.1021/jacs.0c07395] [PMID: 33108178]
[6]
Li, M.; Xi, N.; Wang, Y.; Liu, L. Advances in atomic force microscopy for single-cell analysis. Nano Res., 2019, 12(4), 703-718.
[http://dx.doi.org/10.1007/s12274-018-2260-0]
[7]
Li, N.; Peng, J.; Ong, W.J.; Ma, T. Arramel; Zhang, P.; Jiang, J.; Yuan, X.; Zhang, C.J. MXenes: An emerging platform for wearable electronics and looking beyond. Matter, 2021, 4(2), 377-407.
[http://dx.doi.org/10.1016/j.matt.2020.10.024]
[8]
Tang, Y.; Yang, C.; Sheng, M.; Yin, X.; Que, W. Synergistically coupling phosphorus-doped molybdenum carbide with mxene as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Sustain. Chem.& Eng., 2020, 8(34), 12990-12998.
[http://dx.doi.org/10.1021/acssuschemeng.0c03840]
[9]
Yoon, J.; Shin, M.; Lim, J.; Lee, J.Y.; Choi, J.W. Recent advances in mxene nanocomposite-based biosensors. Biosensors, 2020, 10(11), 185.
[http://dx.doi.org/10.3390/bios10110185] [PMID: 33233574]
[10]
Zhang, Y.Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J.K.; Kim, H.; Alshareef, H.N. MXene printing and patterned coating for device applications. Adv. Mater., 2020, 32(21), 1908486.
[http://dx.doi.org/10.1002/adma.201908486] [PMID: 32239560]
[11]
Sakaguchi, H.; Toda, T.; Nagao, Y.; Esaka, T. Anode properties of lithium storage alloy electrodes prepared by gas-deposition. Electrochem. Solid-State Lett., 2007, 10(11), J146.
[http://dx.doi.org/10.1149/1.2772409]
[12]
Sasaki, T.; Ukyo, Y.; Novák, P. Memory effect in a lithium-ion battery. Nat. Mater., 2013, 12(6), 569-575.
[http://dx.doi.org/10.1038/nmat3623] [PMID: 23584142]
[13]
Zhu, X.; Shen, J.; Chen, X.; Li, Y.; Peng, W.; Zhang, G.; Zhang, F.; Fan, X. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem. Eng. J., 2019, 378, 122212.
[http://dx.doi.org/10.1016/j.cej.2019.122212]
[14]
Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater., 2011, 23(15), 1695-1715.
[http://dx.doi.org/10.1002/adma.201003587] [PMID: 21394791]
[15]
Chaudhari, N.K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S.H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(47), 24564-24579.
[http://dx.doi.org/10.1039/C7TA09094C]
[16]
Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P., II Materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater., 2016, 6(23), 1600671.
[http://dx.doi.org/10.1002/aenm.201600671]
[17]
Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang, Y.; Wu, M.; Wang, G. Nanoengineering of 2D MXene‐based materials for energy storage applications. Small, 2021, 17(9), 1902085.
[http://dx.doi.org/10.1002/smll.201902085] [PMID: 31290615]
[18]
Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev., 2019, 2(1), 1-28.
[http://dx.doi.org/10.1007/s41918-018-0022-z]
[19]
Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun., 2012, 16(1), 61-64.
[http://dx.doi.org/10.1016/j.elecom.2012.01.002]
[20]
Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529), 78-81.
[http://dx.doi.org/10.1038/nature13970] [PMID: 25470044]
[21]
Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Näslund, L.Å.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; Barsoum, M.W. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014, 26(7), 2374-2381.
[http://dx.doi.org/10.1021/cm500641a] [PMID: 24741204]
[22]
Lukatskaya, M.R.; Halim, J.; Dyatkin, B.; Naguib, M.; Buranova, Y.S.; Barsoum, M.W.; Gogotsi, Y. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed., 2014, 53(19), 4877-4880.
[http://dx.doi.org/10.1002/anie.201402513] [PMID: 24692047]
[23]
Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; Zhang, W.; Abbas, W.; Naz, R.; Zhang, D. Fluorine‐free synthesis of high‐purity Ti3C2 Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed., 2018, 57(21), 6115-6119.
[http://dx.doi.org/10.1002/anie.201800887] [PMID: 29633442]
[24]
Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P.L.; Zhao, M.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22), 11385-11391.
[http://dx.doi.org/10.1039/C6NR02253G] [PMID: 27211286]
[25]
Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; Persson, P.O.Å.; Du, S.; Chai, Z.; Huang, Z.; Huang, Q. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated max phases and mxenes. J. Am. Chem. Soc., 2019, 141(11), 4730-4737.
[http://dx.doi.org/10.1021/jacs.9b00574] [PMID: 30821963]
[26]
Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.L.; Cheng, H.M.; Ren, W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 2015, 14(11), 1135-1141.
[http://dx.doi.org/10.1038/nmat4374] [PMID: 26280223]
[27]
Salim, O.; Mahmoud, K.A.; Pant, K.K.; Joshi, R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem., 2019, 14, 100191.
[http://dx.doi.org/10.1016/j.mtchem.2019.08.010]
[28]
Zhang, F.; Zhang, Z.; Wang, H.; Chan, C.H.; Chan, N.Y.; Chen, X.X.; Dai, J.Y. Plasma-enhanced pulsed-laser deposition of single-crystalline Mo2 Cultrathin superconducting films. Phys. Rev. Mater., 2017, 1(3), 034002.
[http://dx.doi.org/10.1103/PhysRevMaterials.1.034002]
[29]
Champagne, A.; Charlier, J.C. Physical properties of 2D MXenes: From a theoretical perspective. JPhys Mater., 2021, 3(3), 032006.
[http://dx.doi.org/10.1088/2515-7639/ab97ee]
[30]
Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, 2(2), 16098.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[31]
Lu, L.L.; Ge, J.; Yang, J.N.; Chen, S.M.; Yao, H.B.; Zhou, F.; Yu, S.H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett., 2016, 16(7), 4431-4437.
[http://dx.doi.org/10.1021/acs.nanolett.6b01581] [PMID: 27253417]
[32]
Greaves, M.; Barg, S.; Bissett, M.A. MXene‐based anodes for metal‐ion batteries. Batter. Supercaps, 2020, 3(3), 214-235.
[http://dx.doi.org/10.1002/batt.201900165]
[33]
VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of twodimensional carbides and nitrides (MXenes). Science, 2021, 372(6547), eabf1581.
[http://dx.doi.org/10.1126/science.abf1581] [PMID: 34112665]
[34]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti 3 C 2 Tx MXene). Chem. Mater., 2017, 29(18), 7633-7644.
[http://dx.doi.org/10.1021/acs.chemmater.7b02847]
[35]
Jyoti, J.; Singh, B.P.; Sandhu, M.; Tripathi, S.K. New insights on mxene and its advanced hybrid materials for lithium-ion batteries. Sustain. Energy Fuels, 2022, 6(4), 971-1013.
[http://dx.doi.org/10.1039/D1SE01681D]
[36]
Xiong, D.; Shi, Y.; Yang, H.Y. Rational design of MXene-based films for energy storage: Progress, prospects. Mater. Today, 2021, 46, 183-211.
[http://dx.doi.org/10.1016/j.mattod.2020.12.004]
[37]
Shiva, K.; Ramakrishna Matte, H.S.S.; Rajendra, H.B.; Bhattacharyya, A.J.; Rao, C.N.R. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy, 2013, 2(5), 787-793.
[http://dx.doi.org/10.1016/j.nanoen.2013.02.001]
[38]
Abbasi, N.M.; Xiao, Y.; Zhang, L.; Peng, L.; Duo, Y.; Wang, L.; Yin, P.; Ge, Y.; Zhu, H.; Zhang, B.; Xie, N.; Duan, Y.; Wang, B.; Zhang, H. Heterostructures of titanium-based MXenes in energy conversion and storage devices. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(27), 8395-8465.
[http://dx.doi.org/10.1039/D1TC00327E]
[39]
Hui, X.; Zhao, R.; Zhang, P.; Li, C.; Wang, C.; Yin, L. Low‐temperature reduction strategy synthesized Si/Ti 3 C 2 MXene composite anodes for high‐performance li‐ion batteries. Adv. Energy Mater., 2019, 9(33), 1901065.
[http://dx.doi.org/10.1002/aenm.201901065]
[40]
Xie, Y.; Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.; Nam, K.W.; Yang, X.Q.; Kolesnikov, A.I.; Kent, P.R.C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc., 2014, 136(17), 6385-6394.
[http://dx.doi.org/10.1021/ja501520b] [PMID: 24678996]
[41]
Tang, Q.; Zhou, Z.; Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc., 2012, 134(40), 16909-16916.
[http://dx.doi.org/10.1021/ja308463r] [PMID: 22989058]
[42]
Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun., 2013, 4(1), 1716.
[http://dx.doi.org/10.1038/ncomms2664] [PMID: 23591883]
[43]
Bao, W.; Tang, X.; Guo, X.; Choi, S.; Wang, C.; Gogotsi, Y.; Wang, G. Porous cryo-dried mxene for efficient capacitive deionization. Joule, 2018, 2(4), 778-787.
[http://dx.doi.org/10.1016/j.joule.2018.02.018]
[44]
Ren, C.E.; Zhao, M.Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M.W.; Gogotsi, Y. Porous two‐dimensional transition metal carbide (mxene) flakes for high‐performance li‐ion storage. ChemElectroChem, 2016, 3(5), 689-693.
[http://dx.doi.org/10.1002/celc.201600059]
[45]
Zhao, Y.; Liao, Q.; Zhang, G.; Zhang, Z.; Liang, Q.; Liao, X.; Zhang, Y. High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy, 2015, 11, 719-727.
[http://dx.doi.org/10.1016/j.nanoen.2014.11.061]
[46]
Syamsai, R.; Rodriguez, J.R.; Pol, V.G.; Van Le, Q.; Batoo, K.M.; Adil, S.F.; Pandiaraj, S.; Muthumareeswaran, M.R.; Raslan, E.H.; Grace, A.N. Double transition metal MXene (TixTa4−xC3) 2D materials as anodes for Li-ion batteries. Sci. Rep., 2021, 11(1), 688.
[http://dx.doi.org/10.1038/s41598-020-79991-8] [PMID: 33436822]
[47]
Shi, Y.; Zhu, G.; Guo, X.; Jing, Q.; Pang, H.; Zhang, Y. Three-dimensional MXene-encapsulated porous Ni-NDC nanosheets as anodes for enhanced lithium-ion batteries. Nano Res., 2023, 16(2), 2528-2535.
[http://dx.doi.org/10.1007/s12274-022-5168-7]
[48]
Tao, Q.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M.W.; Persson, P.O.Å.; Rosen, J. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun., 2017, 8(1), 14949.
[http://dx.doi.org/10.1038/ncomms14949] [PMID: 28440271]
[49]
Dong, H.; Xiao, P.; Jin, N.; Wang, B.; Liu, Y.; Lin, Z. Molten Salt Derived Nb 2 CTx MXene Anode for Li‐ion Batteries. ChemElectroChem, 2021, 8(5), 957-962.
[http://dx.doi.org/10.1002/celc.202100142]
[50]
Li, X.; Ran, F.; Yang, F.; Long, J.; Shao, L. Advances in MXene Films: Synthesis, assembly, and applications. Transa. Tianj. Univ., 2021, 27(3), 217-247.
[http://dx.doi.org/10.1007/s12209-021-00282-y]
[51]
Zhou, J.; Zha, X.; Zhou, X.; Chen, F.; Gao, G.; Wang, S.; Shen, C.; Chen, T.; Zhi, C.; Eklund, P.; Du, S.; Xue, J.; Shi, W.; Chai, Z.; Huang, Q. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 2017, 11(4), 3841-3850.
[http://dx.doi.org/10.1021/acsnano.7b00030] [PMID: 28375599]
[52]
Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano, 2015, 9(5), 5198-5207.
[http://dx.doi.org/10.1021/acsnano.5b00582] [PMID: 25868870]
[53]
Xiong, C.; Wang, Z.; Peng, X.; Guo, Y.; Xu, S.; Zhao, T. Bifunctional effect of laser-induced nucleation-preferable microchannels and in situ formed LiF SEI in MXenes for stable lithium-metal batteries. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(28), 14114-14125.
[http://dx.doi.org/10.1039/D0TA04302H]
[54]
Hui, X.; Zhao, D.; Wang, P.; Di, H.; Ge, X.; Zhang, P.; Yin, L. Oxide nanoclusters on ti 3 c 2 mxenes to deactivate defects for enhanced lithium ion storage performance. Small, 2022, 18(5), 2104439.
[http://dx.doi.org/10.1002/smll.202104439] [PMID: 34816595]
[55]
Luo, J.; Matios, E.; Wang, H.; Tao, X.; Li, W. Interfacial structure design of MXENE‐BASED nanomaterials for electrochemical energy storage and conversion. InfoMat, 2020, 2(6), 1057-1076.
[http://dx.doi.org/10.1002/inf2.12118]
[56]
Luo, J.; Tao, X.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L.; Gan, Y.; Liang, C.; Zhang, W. Sn 4+ Ion decorated highly conductive ti 3 c 2 mxene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016, 10(2), 2491-2499.
[http://dx.doi.org/10.1021/acsnano.5b07333] [PMID: 26836262]
[57]
Liu, Y.; He, Y.; Vargun, E.; Plachy, T.; Saha, P.; Cheng, Q. 3D Porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage. Nanomaterials, 2020, 10(4), 695.
[http://dx.doi.org/10.3390/nano10040695] [PMID: 32272560]
[58]
Guo, Z.; Wang, D.; Wang, Z.; Gao, Y.; Liu, J. A Free-Standing α-MoO3/MXene composite anode for high-performance lithium storage. Nanomaterials, 2022, 12(9), 1422.
[http://dx.doi.org/10.3390/nano12091422] [PMID: 35564131]
[59]
Zhang, Y.; Chen, P.; Wang, Q.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J.; Zhang, Q. High‐capacity and kinetically accelerated lithium storage in MoO 3 enabled by oxygen vacancies and heterostructure. Adv. Energy Mater., 2021, 11(31), 2101712.
[http://dx.doi.org/10.1002/aenm.202101712]
[60]
Yu, Y.X. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? Phys. Chem. Chem. Phys., 2013, 15(39), 16819-16827.
[http://dx.doi.org/10.1039/c3cp51689j] [PMID: 24002442]
[61]
Liu, Y.; Yu, J.; Guo, D.; Li, Z.; Su, Y. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. J. Alloys Compd., 2020, 815, 152403.
[http://dx.doi.org/10.1016/j.jallcom.2019.152403]
[62]
Shi, H.; Zhang, C.J.; Lu, P.; Dong, Y.; Wen, P.; Wu, Z.S. Conducting and lithiophilic mxene/graphene framework for high-capacity, dendrite-free lithium–metal anodes. ACS Nano, 2019, 13(12), 14308-14318.
[http://dx.doi.org/10.1021/acsnano.9b07710] [PMID: 31751116]
[63]
Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10), 9507-9516.
[http://dx.doi.org/10.1021/acsnano.5b03591] [PMID: 26208121]
[64]
Liu, R.; Cao, W.; Han, D.; Mo, Y.; Zeng, H.; Yang, H.; Li, W. Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries. J. Alloys Compd., 2019, 793, 505-511.
[http://dx.doi.org/10.1016/j.jallcom.2019.03.209]
[65]
Zou, G.; Zhang, Z.; Guo, J.; Liu, B.; Zhang, Q.; Fernandez, C.; Peng, Q. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces, 2016, 8(34), 22280-22286.
[http://dx.doi.org/10.1021/acsami.6b08089] [PMID: 27517615]
[66]
Kim, S.J.; Ghidiu, M.; Zhao, M.Q.; Barsoum, M.W.; Nicolosi, C.; Gogotsi, Y. Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high-performance li-ion batteries. Adv. Funct. Mater., 2016, 26(23), 4143-4151.
[http://dx.doi.org/10.1002/adfm.201600682]
[67]
Wei, C.; Fei, H.; An, Y.; Zhang, Y.; Feng, J. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta, 2019, 309, 362-370.
[http://dx.doi.org/10.1016/j.electacta.2019.04.094]
[68]
Ahmed, B.; Anjum, D.H.; Gogotsi, Y.; Alshareef, H.N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34, 249-256.
[http://dx.doi.org/10.1016/j.nanoen.2017.02.043]
[69]
Liu, Y.T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q.Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-assembly of transition metal oxide nanostructures on mxene nanosheets for fast and stable lithium storage. Adv. Mater., 2018, 30(23), 1707334.
[http://dx.doi.org/10.1002/adma.201707334] [PMID: 29707827]
[70]
Chen, C.; Xie, X.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.; Urbankowski, P.; Miao, L.; Jiang, J.; Gogotsi, Y. MoS 2 -on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed., 2018, 57(7), 1846-1850.
[http://dx.doi.org/10.1002/anie.201710616] [PMID: 29292844]
[71]
Zhang, P.; Wang, D.; Zhu, Q.; Sun, N.; Fu, F.; Xu, B. Plate-to-Layer Bi2MoO6/MXene-Heterostructured Anode for Lithium-Ion Batteries. Nano-Micro Lett., 2019, 11(1), 81.
[http://dx.doi.org/10.1007/s40820-019-0312-y]
[72]
Wu, F.; Jiang, Y.; Ye, Z.; Huang, Y.; Wang, Z.; Li, S.; Mei, Y.; Xie, M.; Li, L.; Chen, R. A 3D flower-like VO 2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(3), 1315-1322.
[http://dx.doi.org/10.1039/C8TA11419F]
[73]
Xu, X.; Zhang, Y.; Sun, H.; Zhou, J.; Yang, F.; Li, H.; Chen, H.; Chen, Y.; Liu, Z.; Qiu, Z.; Wang, D.; Ma, L.; Wang, J.; Zeng, Q.; Peng, Z. Progress and Perspective: MXene and MXene‐based nanomaterials for high‐performance energy storage devices. Adv. Electron. Mater., 2021, 7(7), 2000967.
[http://dx.doi.org/10.1002/aelm.202000967]
[74]
Nashim, A.; Parida, K. A glimpse on the plethora of applications of prodigious material MXene. Sustainable Materials and Technologies, 2022, 32, e00439.
[http://dx.doi.org/10.1016/j.susmat.2022.e00439]
[75]
An, Y.; Tian, Y.; Feng, J.; Qian, Y. MXenes for advanced separator in rechargeable batteries. Mater. Today, 2022, 57, 146-179.
[http://dx.doi.org/10.1016/j.mattod.2022.06.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy