Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Advances in Microneedle-Based Approaches for Skin Diseases: A Comprehensive Review of Therapeutic Applications and Future Perspectives

Author(s): Suraj Kumar, Pramod Kumar Sharma, Rishabha Malviya*, Aftab Alam and Sakshi Sagar

Volume 22, Issue 1, 2024

Published on: 10 October, 2023

Article ID: e110923220924 Pages: 19

DOI: 10.2174/2211352521666230911155555

Price: $65

Abstract

Background: Psoriasis is a persistent skin condition for which only symptom management is currently available. Topical and systemic medicines, physical therapy, and other methods are all part of the standard treatment strategy. New medication delivery methods for psoriasis are urgently needed because of the present methods' shortcomings.

Objective: The objective of this article is to provide a comprehensive description of microneedles as well as their development in the treatment of psoriasis and the clinical challenges associated with them.

Discussion: The microneedle (MNs) technology is better than other transdermal delivery methods because it has so many benefits, including low invasiveness, painlessness, simplicity, and enhanced patient compliance. Coated microneedles, hollow microneedles, dissolving microneedles, and solid microneedles are the four basic categories into which researchers have so far sorted the fast-expanding area of microneedles. Each of these kinds of microneedles offers its own unique advantages due to their unique properties and layout.

Conclusion: MNs may significantly improve transdermal medication penetration by mechanically opening skin micropores. Meanwhile, this method demonstrates distinct benefits over injection and oral delivery, such as painless application, the least amount of intrusion, the simplicity of self-administration, and avoiding the first-pass impact.

Graphical Abstract

[1]
Rauma, M.; Boman, A.; Johanson, G. Predicting the absorption of chemical vapours. Adv. Drug Deliv. Rev., 2013, 65(2), 306-314.
[http://dx.doi.org/10.1016/j.addr.2012.03.012]
[2]
Dąbrowska, A.K.; Spano, F.; Derler, S.; Adlhart, C.; Spencer, N.D.; Rossi, R.M. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res. Technol., 2018, 24(2), 165-174.
[http://dx.doi.org/10.1111/srt.12424] [PMID: 29057509]
[3]
Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.C.; Wong, J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol., 2016, 25(2), 92-98.
[http://dx.doi.org/10.1111/exd.12832] [PMID: 26284579]
[4]
Gravitz, L. Skin. Nature, 2018, 563(7732), S83.
[http://dx.doi.org/10.1038/d41586-018-07428-4] [PMID: 30464282]
[5]
Menter, A.; Gottlieb, A.; Feldman, S.R.; Van Voorhees, A.S.; Leonardi, C.L.; Gordon, K.B.; Lebwohl, M.; Koo, J.Y.M.; Elmets, C.A.; Korman, N.J.; Beutner, K.R.; Bhushan, R. Guidelines of care for the management of psoriasis and psoriatic arthritis. J. Am. Acad. Dermatol., 2008, 58(5), 826-850.
[http://dx.doi.org/10.1016/j.jaad.2008.02.039] [PMID: 18423260]
[6]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[7]
Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[8]
Greb, J.E.; Goldminz, A.M.; Elder, J.T.; Lebwohl, M.G.; Gladman, D.D.; Wu, J.J.; Mehta, N.N.; Finlay, A.Y.; Gottlieb, A.B. Psoriasis. Nat. Rev. Dis. Primers, 2016, 2(1), 16082.
[http://dx.doi.org/10.1038/nrdp.2016.82] [PMID: 27883001]
[9]
Perera, G.K.; Di Meglio, P.; Nestle, F.O. Psoriasis. Annu. Rev. Pathol., 2012, 7(1), 385-422.
[http://dx.doi.org/10.1146/annurev-pathol-011811-132448] [PMID: 22054142]
[10]
Georgescu, S.R.; Tampa, M.; Caruntu, C.; Sarbu, M.I.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Constantin, C.; Neagu, M. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci., 2019, 20(3), 739.
[http://dx.doi.org/10.3390/ijms20030739] [PMID: 30744173]
[11]
Elder, J.T.; Nair, R.P.; Guo, S.W.; Henseler, T.; Christophers, E.; Voorhees, J.J. The genetics of psoriasis. Arch. Dermatol., 1994, 130(2), 216-224.
[http://dx.doi.org/10.1001/archderm.1994.01690020082014] [PMID: 8304761]
[12]
Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature, 2007, 445(7130), 866-873.
[http://dx.doi.org/10.1038/nature05663] [PMID: 17314973]
[13]
Eder, L.; Law, T.; Chandran, V.; Shanmugarajah, S.; Shen, H.; Rosen, C.F.; Cook, R.J.; Gladman, D.D. Association between environmental factors and onset of psoriatic arthritis in patients with psoriasis. Arthritis Care Res., 2011, 63(8), 1091-1097.
[http://dx.doi.org/10.1002/acr.20496] [PMID: 21560259]
[14]
Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv., 2010, 17(4), 187-207.
[http://dx.doi.org/10.3109/10717541003667798] [PMID: 20297904]
[15]
Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 1998, 87(8), 922-925.
[http://dx.doi.org/10.1021/js980042+] [PMID: 9687334]
[16]
Matriano, J.A.; Cormier, M.; Johnson, J.; Young, W.A.; Buttery, M.; Nyam, K.; Daddona, P.E. Macroflux microprojection array patch technology: A new and efficient approach for intracutaneous immunization. Pharm. Res., 2002, 19(1), 63-70.
[http://dx.doi.org/10.1023/A:1013607400040] [PMID: 11837701]
[17]
Park, Y.H.; Ha, S.K.; Choi, I.; Kim, K.S.; Park, J.; Choi, N.; Kim, B.; Sung, J.H. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol. Bioprocess Eng.; BBE, 2016, 21(1), 110-118.
[http://dx.doi.org/10.1007/s12257-015-0634-7]
[18]
Chen, Y.; Tian, Z.; Zhang, H. Laser-induced porous microneedles for transdermal drug delivery. Microfluid. Nanofluidics, 2014, 16(1-2), 139-146.
[19]
Park, J.H.; Allen, M.G.; Prausnitz, M.R. Polymer microneedles for controlled-release drug delivery. Pharm. Res., 2006, 23(5), 1008-1019.
[http://dx.doi.org/10.1007/s11095-006-0028-9] [PMID: 16715391]
[20]
Donnelly, R.F.; McCrudden, M.T. Zaid,Alkilani, A.; Larrañeta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M.C; Singh, TR.; McCarthy, HO.; Kett, VL.; Caffarel-Salvador, E. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilized wafers for transdermal drug delivery. PLoS One, 2014, 9(10), 111-547.
[21]
Sabri, A.H.; Kim, Y.; Marlow, M.; Scurr, D.J.; Segal, J.; Banga, A.K.; Kagan, L.; Lee, J.B. Intradermal and transdermal drug delivery using microneedles: Fabrication, performance evaluation and application to lymphatic delivery. Adv. Drug Deliv. Rev., 2020, 153, 195-215.
[http://dx.doi.org/10.1016/j.addr.2019.10.004] [PMID: 31634516]
[22]
Ma, G.; Wu, C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release, 2017, 251, 11-23.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.011] [PMID: 28215667]
[23]
Mikszta, J.A.; Alarcon, J.B.; Brittingham, J.M.; Sutter, D.E.; Pettis, R.J.; Harvey, N.G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med., 2002, 8(4), 415-419.
[http://dx.doi.org/10.1038/nm0402-415]
[24]
Arya, J.; Prausnitz, M.R. Microneedle patches for vaccination in developing countries. J. Control. Release, 2016, 240, 135-141.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.019] [PMID: 26603347]
[25]
Martanto, W.; Davis, S.P.; Holiday, N.R.; Wang, J.; Gill, H.S.; Prausnitz, M.R. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res., 2004, 21(6), 947-952.
[http://dx.doi.org/10.1023/B:PHAM.0000029282.44140.2e] [PMID: 15212158]
[26]
Zhao, Z.; Chen, Y.; Shi, Y. Microneedles: A potential strategy in transdermal delivery and application in the management of psoriasis. RSC Advances, 2020, 10(24), 14040-14049.
[http://dx.doi.org/10.1039/D0RA00735H] [PMID: 35498446]
[27]
Niu, L.; Chu, L.Y.; Burton, S.A.; Hansen, K.J.; Panyam, J. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J. Control. Release, 2019, 294, 268-278.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.026] [PMID: 30572036]
[28]
Resnik, D.; Možek, M. Pečar, B.; Janež, A.; Urbančič V.; Iliescu, C.; Vrtačnik, D. in vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array. Micromachines, 2018, 9(1), 40.
[http://dx.doi.org/10.3390/mi9010040] [PMID: 30393315]
[29]
Miller, P.R.; Taylor, R.M.; Tran, B.Q.; Boyd, G.; Glaros, T.; Chavez, V.H.; Krishnakumar, R.; Sinha, A.; Poorey, K.; Williams, K.P.; Branda, S.S.; Baca, J.T.; Polsky, R. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol., 2018, 1(1), 173.
[http://dx.doi.org/10.1038/s42003-018-0170-z] [PMID: 30374463]
[30]
Lee, H.S.; Ryu, H.R.; Roh, J.Y.; Park, J.H. Bleomycin-coated microneedles for treatment of warts. Pharm. Res., 2017, 34(1), 101-112.
[http://dx.doi.org/10.1007/s11095-016-2042-x] [PMID: 27858218]
[31]
Shakya, A.K.; Ingrole, R.S.J.; Joshi, G.; Uddin, M.J.; Anvari, S.; Davis, C.M.; Gill, H.S. Microneedles coated with peanut allergen enable desensitization of peanut sensitized mice. J. Control. Release, 2019, 314, 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.022] [PMID: 31626861]
[32]
Gupta, P.; Yadav, K.S. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci., 2019, 237, 116907.
[http://dx.doi.org/10.1016/j.lfs.2019.116907] [PMID: 31606378]
[33]
Dillon, C.; Hughes, H.; O’Reilly, N.J.; McLoughlin, P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int. J. Pharm., 2017, 526(1-2), 125-136.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.066] [PMID: 28461268]
[34]
Dillon, C.; Hughes, H.; O’Reilly, N.J.; Allender, C.J.; Barrow, D.A.; McLoughlin, P. Dissolving microneedle based transdermal delivery of therapeutic peptide analogues. Int. J. Pharm., 2019, 565, 9-19.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.075] [PMID: 31047995]
[35]
Chen, J.; Yu, Q.; Cui, X.; Dong, M.; Zhang, J.; Wang, C.; Fan, J.; Zhu, Y.; Guo, Z. An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(38), 11710-11730.
[http://dx.doi.org/10.1039/C9TC03655E]
[36]
Buganza Tepole, A.; Kuhl, E. Systems-based approaches toward wound healing. Pediatr. Res., 2013, 73(2-4), 553-563.
[http://dx.doi.org/10.1038/pr.2013.3] [PMID: 23314298]
[37]
France, C.R.; France, J.L. Fear of blood draw is associated with inflated expectations of faint and prefaint reactions to blood donation. Transfusion, 2018, 58(10), 2360-2364.
[http://dx.doi.org/10.1111/trf.14934] [PMID: 30222871]
[38]
Williams, A.C.; Barry, B.W. Drug delivery routes in skin: A novel approach. Adv. Drug Deliv. Rev., 2004, 56, 603-618.
[http://dx.doi.org/10.1016/j.addr.2003.10.025] [PMID: 15019749]
[39]
Cook, L.S. Needle phobia. J. Infus. Nurs., 2016, 39(5), 273-279.
[http://dx.doi.org/10.1097/NAN.0000000000000184] [PMID: 27598066]
[40]
Brambilla, D.; Proulx, S.T.; Marschalkova, P.; Detmar, M.; Leroux, J.C. Microneedles for the noninvasive structural and functional assessment of dermal lymphatic vessels. Small, 2016, 12(8), 1053-1061.
[http://dx.doi.org/10.1002/smll.201503093] [PMID: 26727610]
[41]
Sabri, A.H.; Ogilvie, J.; Abdulhamid, K.; Shpadaruk, V.; McKenna, J.; Segal, J.; Scurr, D.J.; Marlow, M. Expanding the applications of microneedles in dermatology. Eur. J. Pharm. Biopharm., 2019, 140, 121-140.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.001] [PMID: 31059780]
[42]
Song, Y.; Xiao, C.; Mendelsohn, R.; Zheng, T.; Strekowski, L.; Michniak, B. Investigation of iminosulfuranes as novel transdermal penetration enhancers: enhancement activity and cytotoxicity. Pharm. Res., 2005, 22(11), 1918-1925.
[http://dx.doi.org/10.1007/s11095-005-7416-4] [PMID: 16132348]
[43]
Tfayli, A.; Piot, O.; Pitre, F.; Manfait, M. Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. Eur. Biophys. J., 2007, 36(8), 1049-1058.
[http://dx.doi.org/10.1007/s00249-007-0191-x] [PMID: 17565493]
[44]
Richards, H.L.; Fortune, D.G.; O’Sullivan, T.M.; Main, C.J.; Griffiths, C.E. Patients with psoriasis and their compliance with medication. J. Am. Acad. Dermatol., 1999, 41(4), 581-583.
[PMID: 10495380]
[45]
Murphy, J.; Coster, G. Issues in patient compliance. Drugs, 1997, 54(6), 797-800.
[http://dx.doi.org/10.2165/00003495-199754060-00002] [PMID: 9421690]
[46]
Thomas, B.J.; Finnin, B.C. The transdermal revolution. Drug Discov. Today, 2004, 9(16), 697-703.
[http://dx.doi.org/10.1016/S1359-6446(04)03180-0] [PMID: 15341783]
[47]
Mönkäre, J.; Reza Nejadnik, M.; Baccouche, K.; Romeijn, S.; Jiskoot, W.; Bouwstra, J.A. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J. Control. Release, 2015, 218, 53-62.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.002] [PMID: 26437262]
[48]
Lee, J.W.; Choi, S.O.; Felner, E.I.; Prausnitz, M.R. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small, 2011, 7(4), 531-539.
[http://dx.doi.org/10.1002/smll.201001091] [PMID: 21360810]
[49]
Peters, E.E.; Ameri, M.; Wang, X.; Maa, Y.F.; Daddona, P.E. Erythropoietin-coated ZP-microneedle transdermal system: preclinical formulation, stability, and delivery. Pharm. Res., 2012, 29(6), 1618-1626.
[http://dx.doi.org/10.1007/s11095-012-0674-z] [PMID: 22258935]
[50]
Zhang, P.; Jullien, G.A. Microneedle arrays for drug delivery and fluid extraction. In2005 International Conference on MEMS, NANO and Smart Systems, 2005. 24-27 July 2005, Banff, AB, Canada, vol.24, pp.392-395.
[http://dx.doi.org/10.1109/ICMENS.2005.71]
[51]
Mooney, K.; McElnay, J.C.; Donnelly, R.F. Children&s views on microneedle use as an alternative to blood sampling for patient monitoring. Int. J. Pharm. Pract., 2014, 22(5), 335-344.
[http://dx.doi.org/10.1111/ijpp.12081] [PMID: 24308565]
[52]
Samant, P.P.; Prausnitz, M.R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl. Acad. Sci., 2018, 115(18), 4583-4588.
[http://dx.doi.org/10.1073/pnas.1716772115] [PMID: 29666252]
[53]
de la Cueva Dobao, P.; Notario, J.; Ferrándiz, C.; López Estebaranz, J.L.; Alarcón, I.; Sulleiro, S.; Borrás, J.; Daudén, E.; Carrascosa, J.M.; Sánchez Carazo, J.L.; Monte Boquet, E.; Puig, L. Expert consensus on the persistence of biological treatments in moderate‐to‐severe psoriasis. J. Eur. Acad. Dermatol. Venereol., 2019, 33(7), 1214-1223.
[http://dx.doi.org/10.1111/jdv.15600] [PMID: 31037770]
[54]
Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv., 2016, 23(2), 564-578.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[55]
Ferris, L.K. The value of behavioral counseling for skin cancer prevention: Actions we can take now and guidance for the future. JAMA Oncol., 2018, 4(5), 630-632.
[http://dx.doi.org/10.1001/jamaoncol.2018.0469] [PMID: 29558534]
[56]
Tang, L.; Park, S.E. Sun exposure, tanning beds, and herbs that cure: An examination of skin cancer on Pinterest. Health Commun., 2017, 32(10), 1192-1200.
[http://dx.doi.org/10.1080/10410236.2016.1214223] [PMID: 27588747]
[57]
Pavri, S.N.; Clune, J.; Ariyan, S.; Narayan, D. Malignant melanoma: Beyond the basics. Plast. Reconstr. Surg., 2016, 138(2), 330e-340e.
[http://dx.doi.org/10.1097/PRS.0000000000002367] [PMID: 27465194]
[58]
Carvajal, R.D.; Schwartz, G.K.; Tezel, T.; Marr, B.; Francis, J.H.; Nathan, P.D. Metastatic disease from uveal melanoma: Treatment options and future prospects. Br. J. Ophthalmol., 2017, 101(1), 38-44.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309034] [PMID: 27574175]
[59]
Ascierto, P.A.; Flaherty, K.; Goff, S. Emerging strategies in systemic therapy for the treatment of melanoma. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 751-758.
[http://dx.doi.org/10.1200/EDBK_199047] [PMID: 30231371]
[60]
Namazi, H.; Kulish, V.V.; Wong, A. Mathematical modelling and prediction of the effect of chemotherapy on cancer cells. Sci. Rep., 2015, 5(1), 13583.
[http://dx.doi.org/10.1038/srep13583] [PMID: 26316014]
[61]
Hellmann, M.D.; Li, B.T.; Chaft, J.E.; Kris, M.G. Chemotherapy remains an essential element of personalized care for persons with lung cancers. Ann. Oncol., 2016, 27(10), 1829-1835.
[http://dx.doi.org/10.1093/annonc/mdw271] [PMID: 27456296]
[62]
Talukdar, S.; Emdad, L.; Das, S.K.; Sarkar, D.; Fisher, P.B. Evolving strategies for therapeutically targeting cancer stem cells. Adv. Cancer Res., 2016, 131, 159-191.
[http://dx.doi.org/10.1016/bs.acr.2016.04.003] [PMID: 27451127]
[63]
Ozols, R.F. Challenges for chemotherapy in ovarian cancer. Ann. Oncol., 2006, 17(Suppl. 5), v181-v187.
[http://dx.doi.org/10.1093/annonc/mdj978] [PMID: 16807453]
[64]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[65]
Lan, X.; She, J.; Lin, D.; Xu, Y.; Li, X.; Yang, W.; Lui, V.W.Y.; Jin, L.; Xie, X.; Su, Y. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(39), 33060-33069.
[http://dx.doi.org/10.1021/acsami.8b12926] [PMID: 30204401]
[66]
Qin, W.; Quan, G.; Sun, Y.; Chen, M.; Yang, P.; Feng, D.; Wen, T.; Hu, X.; Pan, X.; Wu, C. Dissolving microneedles with spatiotemporally controlled pulsatile release nano system for synergistic chemo-photothermal therapy of melanoma. Theranostics, 2020, 10(18), 8179-8196.
[http://dx.doi.org/10.7150/thno.44194] [PMID: 32724465]
[67]
Li, X.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative strategies for hypoxic‐tumor photodynamic therapy. Angew. Chem. Int. Ed., 2018, 57(36), 11522-11531.
[http://dx.doi.org/10.1002/anie.201805138] [PMID: 29808948]
[68]
Gong, H.; Chao, Y.; Xiang, J.; Han, X.; Song, G.; Feng, L.; Liu, J.; Yang, G.; Chen, Q.; Liu, Z. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett., 2016, 16(4), 2512-2521.
[http://dx.doi.org/10.1021/acs.nanolett.6b00068] [PMID: 27022664]
[69]
Kleinovink, J.W.; van Driel, P.B.; Snoeks, T.J.; Prokopi, N.; Fransen, M.F.; Cruz, L.J.; Mezzanotte, L.; Chan, A.; Löwik, C.W.; Ossendorp, F. Combination of photodynamic therapy and specific immunotherapy efficiently eradicates established tumors. Clin. Cancer Res., 2016, 22(6), 1459-1468.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0515] [PMID: 26546617]
[70]
Liu, H.; He, Z.; Simon, H.U. Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin. Cancer Biol., 2013, 23(5), 352-360.
[http://dx.doi.org/10.1016/j.semcancer.2013.06.008] [PMID: 23831275]
[71]
Blau, R.; Epshtein, Y.; Pisarevsky, E.; Tiram, G.; Dangoor, S.I.; Yeini, E.; Krivitsky, A.; Eldar-Boock, A.; Ben-Shushan, D.; Gibori, H.; Scomparin, A.; Green, O.; Ben-Nun, Y.; Merquiol, E.; Doron, H.; Blum, G.; Erez, N.; Grossman, R.; Ram, Z.; Shabat, D.; Satchi-Fainaro, R. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics, 2018, 8(13), 3437-3460.
[http://dx.doi.org/10.7150/thno.23853] [PMID: 30026858]
[72]
Donnelly, R.F.; Morrow, D.I.J.; McCarron, P.A.; Woolfson, A.D.; Morrissey, A.; Juzenas, P.; Juzeniene, A.; Iani, V.; McCarthy, H.O.; Moan, J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J. Control. Release, 2008, 129(3), 154-162.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.002] [PMID: 18556084]
[73]
Zhu, J.; Dong, L.; Du, H.; Mao, J.; Xie, Y.; Wang, H.; Lan, J.; Lou, Y.; Fu, Y.; Wen, J.; Jiang, B.; Li, Y.; Zhu, J.; Tao, J. 5‐Aminolevulinic acid‐loaded hyaluronic acid dissolving microneedles for effective photodynamic therapy of superficial tumors with enhanced long‐term stability. Adv. Healthc. Mater., 2019, 8(22), 1900896.
[http://dx.doi.org/10.1002/adhm.201900896] [PMID: 31638739]
[74]
Zhao, X.; Li, X.; Zhang, P.; Du, J.; Wang, Y. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J. Control. Release, 2018, 286, 201-209.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.038] [PMID: 30056119]
[75]
Chen, D.S.; Mellman, I. Oncology meets immunology: The cancerimmunity cycle. immunity, 2013, 39(1), 1-0.
[76]
Wong, K.K.; Li, W.A.; Mooney, D.J.; Dranoff, G. Advances in therapeutic cancer vaccines. Adv. Immunol., 2016, 130, 191-249.
[http://dx.doi.org/10.1016/bs.ai.2015.12.001] [PMID: 26923002]
[77]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[78]
Zhao, Z.; Ukidve, A.; Dasgupta, A.; Mitragotri, S. Transdermal immunomodulation: Principles, advances and perspectives. Adv. Drug Deliv. Rev., 2018, 127, 3-19.
[http://dx.doi.org/10.1016/j.addr.2018.03.010] [PMID: 29604373]
[79]
Kashem, S.W.; Haniffa, M.; Kaplan, D.H. Antigen-presenting cells in the skin. Annu. Rev. Immunol., 2017, 35(1), 469-499.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052215] [PMID: 28226228]
[80]
Zaric, M.; Lyubomska, O.; Touzelet, O.; Poux, C.; Al-Zahrani, S.; Fay, F.; Wallace, L.; Terhorst, D.; Malissen, B.; Henri, S.; Power, U.F.; Scott, C.J.; Donnelly, R.F.; Kissenpfennig, A. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano, 2013, 7(3), 2042-2055.
[http://dx.doi.org/10.1021/nn304235j] [PMID: 23373658]
[81]
Duong, H.T.T.; Yin, Y.; Thambi, T.; Nguyen, T.L.; Giang Phan, V.H.; Lee, M.S.; Lee, J.E.; Kim, J.; Jeong, J.H.; Lee, D.S. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 2018, 185, 13-24.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.008] [PMID: 30216806]
[82]
Cole, G.; Ali, A.A.; McErlean, E.; Mulholland, E.J.; Short, A.; McCrudden, C.M.; McCaffrey, J.; Robson, T.; Kett, V.L.; Coulter, J.A.; Dunne, N.J.; Donnelly, R.F.; McCarthy, H.O. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomater., 2019, 96, 480-490.
[http://dx.doi.org/10.1016/j.actbio.2019.07.003] [PMID: 31299353]
[83]
Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; Dotti, G.; Gu, Z. A melanin-mediated cancer immunotherapy patch. Sci. Immunol., 2017, 2(17), eaan5692.
[http://dx.doi.org/10.1126/sciimmunol.aan5692] [PMID: 29127106]
[84]
Duan, X.; Chan, C.; Lin, W. Nanoparticle‐mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed., 2019, 58(3), 670-680.
[http://dx.doi.org/10.1002/anie.201804882] [PMID: 30016571]
[85]
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol., 2017, 17(2), 97-111.
[http://dx.doi.org/10.1038/nri.2016.107] [PMID: 27748397]
[86]
Chen, M.; Quan, G.; Wen, T.; Yang, P.; Qin, W.; Mai, H.; Sun, Y.; Lu, C.; Pan, X.; Wu, C. Cold to hot: Binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl. Mater. Interfaces, 2020, 12(29), 32259-32269.
[http://dx.doi.org/10.1021/acsami.0c05090] [PMID: 32406239]
[87]
Sanmamed, M.F.; Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 175(2), 313-326.
[http://dx.doi.org/10.1016/j.cell.2018.09.035] [PMID: 30290139]
[88]
Kim, T.K.; Herbst, R.S.; Chen, L. Defining and understanding adaptive resistance in cancer immunotherapy. Trends Immunol., 2018, 39(8), 624-631.
[http://dx.doi.org/10.1016/j.it.2018.05.001] [PMID: 29802087]
[89]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328), 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[90]
Wang, C.; Ye, Y.; Hochu, G.M.; Sadeghifar, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett., 2016, 16(4), 2334-2340.
[http://dx.doi.org/10.1021/acs.nanolett.5b05030] [PMID: 26999507]
[91]
Ye, Y.; Wang, J.; Hu, Q.; Hochu, G.M.; Xin, H.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano, 2016, 10(9), 8956-8963.
[http://dx.doi.org/10.1021/acsnano.6b04989] [PMID: 27599066]
[92]
Tham, H.P.; Xu, K.; Lim, W.Q.; Chen, H.; Zheng, M.; Thng, T.G.S.; Venkatraman, S.S.; Xu, C.; Zhao, Y. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano, 2018, 12(12), 11936-11948.
[http://dx.doi.org/10.1021/acsnano.8b03007] [PMID: 30444343]
[93]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[http://dx.doi.org/10.1021/cr400532z] [PMID: 25260098]
[94]
de Me lo-Diogo, D.; Paris-Silva, D.R.; Dias, A.F.; Moreira, I.J. Correia, Strategies to improve cancer photo thermal therapy mediated by nano materials. Adv. Healthc. Mater., 2017, 6(10), 208-220.
[95]
Liu, Y.; Crawford, B.M.; Vo-Dinh, T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy, 2018, 10(13), 1175-1188.
[http://dx.doi.org/10.2217/imt-2018-0029] [PMID: 30236026]
[96]
Riley, R.S.; Day, E.S. Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(4), 1449.
[http://dx.doi.org/10.1002/wnan.1449] [PMID: 28160445]
[97]
Yang, D.; Chen, M.; Sun, Y.; Jin, Y.; Lu, C.; Pan, X.; Quan, G.; Wu, C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta biomaterial, 2021, 121, 119-133.
[http://dx.doi.org/10.1016/j.actbio.2020.12.004]
[98]
Chen, M.C.; Lin, Z.W.; Ling, M.H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano, 2016, 10(1), 93-101.
[http://dx.doi.org/10.1021/acsnano.5b05043] [PMID: 26592739]
[99]
Smith, D.M.; Simon, J.K.; Baker, J.R., Jr Applications of nanotechnology for immunology. Nat. Rev. Immunol., 2013, 13(8), 592-605.
[http://dx.doi.org/10.1038/nri3488] [PMID: 23883969]
[100]
Wang, C.; Ye, Y.; Hu, Q.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Adv. Mater., 2017, 29(29), 1606036.
[http://dx.doi.org/10.1002/adma.201606036] [PMID: 28556553]
[101]
Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res., 2019, 52(6), 1543-1554.
[http://dx.doi.org/10.1021/acs.accounts.9b00148] [PMID: 31120725]
[102]
Schuster, M.; Nechansky, A.; Kircheis, R. Cancer immunotherapy. Biotechnol. J., 2006, 1(2), 138-147.
[http://dx.doi.org/10.1002/biot.200500044] [PMID: 16892244]
[103]
Yang, P.; Lu, C.; Qin, W.; Chen, M.; Quan, G.; Liu, H.; Wang, L.; Bai, X.; Pan, X.; Wu, C. Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater., 2020, 104, 147-157.
[http://dx.doi.org/10.1016/j.actbio.2019.12.037] [PMID: 31904558]
[104]
Monavarian, M.; Kader, S.; Moeinzadeh, S.; Jabbari, E. Regenerative scar-free skin wound healing. Tissue Eng. Part B Rev., 2019, 25(4), 294-311.
[http://dx.doi.org/10.1089/ten.teb.2018.0350] [PMID: 30938269]
[105]
Li, Q.; Zhang, C.; Fu, X. Will stem cells bring hope to pathological skin scar treatment? Cytotherapy, 2016, 18(8), 943-956.
[http://dx.doi.org/10.1016/j.jcyt.2016.05.008] [PMID: 27293205]
[106]
Sanna-Maria, K.; Ritva, H.; Gullberg, D.; Kaisa, T.; Taina, P. Toward understanding scarless skin wound healing and pathological scarring. F1000 Res., 2019, 8(2), 320-328.
[107]
Shpichka, A.; Butnaru, D.; Bezrukov, E.A.; Sukhanov, R.B.; Atala, A.; Burdukovskii, V.; Zhang, Y.; Timashev, P. Skin tissue regeneration for burn injury. Stem Cell Res. Ther., 2019, 10(1), 94.
[http://dx.doi.org/10.1186/s13287-019-1203-3] [PMID: 30876456]
[108]
Connolly, D.; Vu, H.L.; Mariwalla, K.; Saedi, N. Acne scarring—pathogenesis, evaluation, and treatment options. J. Clin. Aesthet. Dermatol., 2017, 10(9), 12-23.
[PMID: 29344322]
[109]
Sharad, J. Combination of microneedling and glycolic acid peels for the treatment of acne scars in dark skin. J. Cosmet. Dermatol., 2011, 10(4), 317-323.
[http://dx.doi.org/10.1111/j.1473-2165.2011.00583.x] [PMID: 22151943]
[110]
Tan, C.W.X.; Tan, W.D.; Srivastava, R.; Yow, A.P.; Wong, D.W.K.; Tey, H.L. Dissolving triamcinolone-embedded microneedles for the treatment of keloids: A single-blinded intra-individual controlled clinical trial. Dermatol. Ther., 2019, 9(3), 601-611.
[http://dx.doi.org/10.1007/s13555-019-00316-3] [PMID: 31376063]
[111]
Xie, Y.; Wang, H.; Mao, J.; Li, Y.; Hussain, M.; Zhu, J.; Li, Y.; Zhang, L.; Tao, J.; Zhu, J. Enhanced in vitro efficacy for inhibiting hypertrophic scar by bleomycin-loaded dissolving hyaluronic acid microneedles. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(42), 6604-6611.
[http://dx.doi.org/10.1039/C9TB01449G] [PMID: 31589215]
[112]
Schön, M.P. Advances in psoriasis treatment. Lancet, 2005, 366(9494), 1333-1335.
[http://dx.doi.org/10.1016/S0140-6736(05)67542-3] [PMID: 16226595]
[113]
Schleicher, S.M. Psoriasis. Clin. Podiatr. Med. Surg., 2016, 33(3), 355-366.
[http://dx.doi.org/10.1016/j.cpm.2016.02.004] [PMID: 27215156]
[114]
Furue, M.; Kadono, T. Psoriasis: Behind the scenes. J. Dermatol., 2016, 43(1), 4-8.
[http://dx.doi.org/10.1111/1346-8138.13186] [PMID: 26782000]
[115]
Du, H.; Liu, P.; Zhu, J.; Lan, J.; Li, Y.; Zhang, L.; Zhu, J.; Tao, J. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl. Mater. Interfaces, 2019, 11(46), 43588-43598.
[http://dx.doi.org/10.1021/acsami.9b15668] [PMID: 31651148]
[116]
Korkmaz, E.; Friedrich, E.E.; Ramadan, M.H.; Erdos, G.; Mathers, A.R.; Burak Ozdoganlar, O.; Washburn, N.R.; Falo, L.D., Jr Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater., 2015, 24, 96-105.
[http://dx.doi.org/10.1016/j.actbio.2015.05.036] [PMID: 26093066]
[117]
James, S.H.; Kimberlin, D.W. Neonatal herpes simplex virus infection: Epidemiology and treatment. Clin. Perinatol., 2015, 42(1), 47-59. viii.
[http://dx.doi.org/10.1016/j.clp.2014.10.005] [PMID: 25677996]
[118]
El Hayderi, L.; Rübben, A.; Nikkels, A.F. The alpha-herpesviridae in dermatology. Hautarzt, 2017, 68(3), 181-186.
[http://dx.doi.org/10.1007/s00105-016-3929-5] [PMID: 28197699]
[119]
Widener, R.W.; Whitley, R.J. Herpes simplex virus. Handb. Clin. Neurol., 2014, 123, 251-263.
[http://dx.doi.org/10.1016/B978-0-444-53488-0.00011-0] [PMID: 25015489]
[120]
Watanabe, D. Medical application of herpes simplex virus. J. Dermatol. Sci., 2010, 57(2), 75-82.
[http://dx.doi.org/10.1016/j.jdermsci.2009.10.014] [PMID: 19939634]
[121]
Yan, G.; Warner, K.S.; Zhang, J.; Sharma, S.; Gale, B.K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm., 2010, 391(1-2), 7-12.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.007] [PMID: 20188808]
[122]
Moradi Tuchayi, S.; Alexander, T.; Nadkarni, A.; Feldman, S.R. Interventions to increase adherence to acne treatment. Patient Prefer. Adherence, 2016, 10, 2091-2096.
[http://dx.doi.org/10.2147/PPA.S117437] [PMID: 27784999]
[123]
Gollnick, H.P.M.; Finlay, A.Y.; Shear, N. Global alliance to improve outcomes in acne. Can we define acne as a chronic disease? If so, how and when? Am. J. Clin. Dermatol., 2008, 9(5), 279-284.
[http://dx.doi.org/10.2165/00128071-200809050-00001] [PMID: 18717602]
[124]
Dreno, B.; Poli, F. Epidemiology of acne. Dermatology, 2003, 206(1), 7-10.
[http://dx.doi.org/10.1159/000067817] [PMID: 12566799]
[125]
Zahra Ghodsi, S.; Orawa, H.; Zouboulis, C.C. Prevalence, severity, and severity risk factors of acne in high school pupils: A community-based study. J. Invest. Dermatol., 2009, 129(9), 2136-2141.
[http://dx.doi.org/10.1038/jid.2009.47] [PMID: 19282841]
[126]
Youn, S-W.; Park, E-S.; Lee, D-H.; Huh, C-H.; Park, K-C. Does facial sebum excretion really affect the development of acne? Br. J. Dermatol., 2005, 153(5), 919-924.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06794.x] [PMID: 16225600]
[127]
Choi, C.W.; Choi, J.W.; Park, K.C.; Youn, S.W. Facial sebum affects the development of acne, especially the distribution of inflammatory acne. J. Eur. Acad. Dermatol. Venereol., 2013, 27(3), 301-306.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04384.x] [PMID: 22176122]
[128]
Kobayashi, T.; Tamada, S. Selective electrothermolysis of the sebaceous glands: Treatment of facial seborrhea. Dermatol. Surg., 2007, 33(2), 169-177.
[http://dx.doi.org/10.1097/00042728-200702000-00006] [PMID: 17300602]
[129]
Seo, K.Y.; Yoon, M.S.; Kim, D.H.; Lee, H.J. Skin rejuvenation by microneedle fractional radiofrequency treatment in Asian skin; Clinical and histological analysis. Lasers Surg. Med., 2012, 44(8), 631-636.
[http://dx.doi.org/10.1002/lsm.22071] [PMID: 22936274]
[130]
Cho, S.I.; Chung, B.Y.; Choi, M.G.; Baek, J.H.; Cho, H.J.; Park, C.W.; Lee, C.H.; Kim, H.O. Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatment in acne scars and large facial pores. Dermatol. Surg., 2012, 38(7), 1017-1024.
[http://dx.doi.org/10.1111/j.1524-4725.2012.02402.x] [PMID: 22487513]
[131]
Hantash, B.M.; Ubeid, A.A.; Chang, H.; Kafi, R.; Renton, B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg. Med., 2009, 41(1), 1-9.
[http://dx.doi.org/10.1002/lsm.20731] [PMID: 19143021]
[132]
Zhang, Y.; Feng, P.; Yu, J.; Yang, J.; Zhao, J.; Wang, J.; Shen, Q.; Gu, Z. ROS‐responsive microneedle patch for acne vulgaris treatment. Adv. Ther., 2018, 1(3), 1800035.
[http://dx.doi.org/10.1002/adtp.201800035]
[133]
Zhang, T.; Sun, B.; Guo, J.; Wang, M.; Cui, H.; Mao, H.; Wang, B.; Yan, F. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater., 2020, 115, 136-147.
[http://dx.doi.org/10.1016/j.actbio.2020.08.023] [PMID: 32853804]
[134]
Almohanna, H.M.; Perper, M.; Tosti, A. Safety concerns when using novel medications to treat alopecia. Expert Opin. Drug Saf., 2018, 17(11), 1115-1128.
[http://dx.doi.org/10.1080/14740338.2018.1533549] [PMID: 30318935]
[135]
Iorizzo, M.; Tosti, A. Treatments options for alopecia. Expert Opin. Pharmacother., 2015, 16(15), 2343-2354.
[http://dx.doi.org/10.1517/14656566.2015.1084501] [PMID: 26331694]
[136]
Ocampo-Garza, J.; Griggs, J.; Tosti, A. New drugs under investigation for the treatment of alopecias. Expert Opin. Investig. Drugs, 2019, 28(3), 275-284.
[http://dx.doi.org/10.1080/13543784.2019.1568989] [PMID: 30642204]
[137]
Kim, Y.S.; Jeong, K.H.; Kim, J.E.; Woo, Y.J.; Kim, B.J.; Kang, H. Repeated microneedle stimulation induces enhanced hair growth in a murine model. Ann. Dermatol., 2016, 28(5), 586-592.
[http://dx.doi.org/10.5021/ad.2016.28.5.586] [PMID: 27746638]
[138]
Bao, L.; Zong, H.; Fang, S.; Zheng, L.; Li, Y. Randomized trial of electrodynamic microneedling combined with 5% minoxidil topical solution for treating androgenetic alopecia in Chinese males and molecular mechanistic study of the involvement of the Wnt/β-catenin signaling pathway. J. Dermatolog. Treat., 2022, 33(1), 483-493.
[http://dx.doi.org/10.1080/09546634.2020.1770162] [PMID: 32412314]
[139]
Machado, Á.; Torres, T. Guselkumab for the treatment of psoriasis. BioDrugs, 2018, 32(2), 119-128.
[http://dx.doi.org/10.1007/s40259-018-0265-6] [PMID: 29470778]
[140]
Campanati, A.; Benfaremo, D.; Luchetti, M.M.; Ganzetti, G.; Gabrielli, A.; Offidani, A. Certolizumab pegol for the treatment of psoriasis. Expert Opin. Biol. Ther., 2017, 17(3), 387-394.
[http://dx.doi.org/10.1080/14712598.2017.1283401] [PMID: 28165828]
[141]
Keating, G.M. Apremilast: a review in psoriasis and psoriatic arthritis. Drugs, 2017, 77(4), 459-472.
[http://dx.doi.org/10.1007/s40265-017-0709-1] [PMID: 28213862]
[142]
Nogueira, S.; Rodrigues, M.A.; Vender, R.; Torres, T. Tapinarof for the treatment of psoriasis. Dermatol. Ther., 2022, 35(12), e15931.
[http://dx.doi.org/10.1111/dth.15931] [PMID: 36226669]
[143]
Data obtained from, Available From: http://www.clinicaltrials.gov
[144]
Luzuriaga, M.A.; Berry, D.R.; Reagan, J.C.; Smaldone, R.A.; Gassensmith, J.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip, 2018, 18(8), 1223-1230.
[http://dx.doi.org/10.1039/C8LC00098K] [PMID: 29536070]
[145]
Economidou, S.N.; Pere, C.P.P.; Reid, A.; Uddin, M.J.; Windmill, J.F.C.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater. Sci. Eng. C, 2019, 102, 743-755.
[http://dx.doi.org/10.1016/j.msec.2019.04.063] [PMID: 31147046]
[146]
Krieger, K.J.; Bertollo, N.; Dangol, M.; Sheridan, J.T.; Lowery, M.M.; O’Cearbhaill, E.D. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng., 2019, 5(1), 42.
[http://dx.doi.org/10.1038/s41378-019-0088-8] [PMID: 31645996]
[147]
Pere, C.P.P.; Economidou, S.N.; Lall, G.; Ziraud, C.; Boateng, J.S.; Alexander, B.D.; Lamprou, D.A.; Douroumis, D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm., 2018, 544(2), 425-432.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.031] [PMID: 29555437]
[148]
Larrañeta, E.; Stewart, S.; Fallows, S.J.; Birkhäuer, L.L.; McCrudden, M.T.C.; Woolfson, A.D.; Donnelly, R.F. A facile system to evaluate in vitro drug release from dissolving microneedle arrays. Int. J. Pharm., 2016, 497(1-2), 62-69.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.038] [PMID: 26621687]
[149]
Serhan, H.; Slivka, M.; Albert, T.; Kwak, S.D. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?*1. Spine J., 2004, 4(4), 379-387.
[http://dx.doi.org/10.1016/j.spinee.2003.12.004] [PMID: 15246296]
[150]
Zvezdin, V.; Peno-Mazzarino, L.; Radionov, N.; Kasatkina, T.; Kasatkin, I. Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality - Part 1: Ex vivo safety evaluation. Int. J. Cosmet. Sci., 2020, 42(4), 369-376.
[http://dx.doi.org/10.1111/ics.12627] [PMID: 32412648]
[151]
Hoesly, F.J.; Borovicka, J.; Gordon, J.; Nardone, B.; Holbrook, J.S.; Pace, N.; Ibrahim, O.; Bolotin, D.; Warycha, M.; Kwasny, M.; West, D.; Alam, M. Safety of a novel microneedle device applied to facial skin: A subject- and rater-blinded, sham-controlled, randomized trial. Arch. Dermatol., 2012, 148(6), 711-717.
[http://dx.doi.org/10.1001/archdermatol.2012.280] [PMID: 22431712]
[152]
Kim, M.; Shin, J.Y.; Lee, J.; Kim, J.Y.; Oh, S.H. Efficacy of fractional microneedle radiofrequency device in the treatment of primary axillary hyperhidrosis: A pilot study. Dermatology, 2013, 227(3), 243-249.
[http://dx.doi.org/10.1159/000354602] [PMID: 24107595]
[153]
Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J.; Kabbani, S.; Lai, L.; Vassilieva, E.V.; Skountzou, I.; Compans, R.W.; Mulligan, M.J.; Prausnitz, M.R.; Beck, A.; Edupuganti, S.; Heeke, S.; Kelley, C.; Nesheim, W. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet, 2017, 390(10095), 649-658.
[http://dx.doi.org/10.1016/S0140-6736(17)30575-5] [PMID: 28666680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy