Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Task Offloading of Intelligent Building Based on Dependency-Aware in Edge Computing

Author(s): Yi Lingzhi, Huang Jianxiong*, Wang Yahui, Long Jiao, Luo Bote and Liu Jiangyong

Volume 16, Issue 5, 2023

Published on: 27 September, 2023

Page: [373 - 385] Pages: 13

DOI: 10.2174/2212797616666230831124454

Price: $65

Abstract

Background: With the rapid development of artificial intelligence, the traditional cloud computing model has serious bandwidth and energy consumption problems when storing and processing massive amounts of raw data. To address this problem, recent patents have investigated methods for intelligent task offloading and allocation in mobile edge computing.

Objective: A Directed Acyclic Graph (DAG) task unloading model is established to reduce the problem of task delay and energy consumption in edge networks. At the same time, Modified Tuna Swarm Optimization (MTSO) is used to improve execution efficiency.

Methods: Firstly, this paper integrates (i) inter-task dependencies; (ii) heterogeneity of computing resources in the edge network; and (iii) interference of wireless channels in the edge network. A DAG task offloading model is developed to reduce latency and energy consumption. The end users are guided to offload their tasks/sub-tasks to the most appropriate servers in the edge network, thus minimizing the end-to-end latency of all tasks in the edge network. Secondly, the MTSO algorithm is used to coordinate the dependencies and priorities of subtasks to improve execution efficiency.

Results: The experimental results show that when the number of users including subtasks is 10, the final edge server utilization rate is as high as 92%. A more fine-grained segmentation scheme can reduce the average delay of tasks and improve the utilization rate of edge servers.

Conclusion: The approach proposed in this paper reduces the end-to-end latency and improves resource utilization in complex applications under the premise of ensuring task dependency. It will relieve the pressure on the cloud and has certain engineering application value.

[1]
Yong C, Jian S. Miao Onion, Tang Jun. advances and trends in mobile cloud computing research. J Comput Sci 2017; 40(02): 273-95.
[2]
Balakrishna G, Moparthi NR. An optimal IoT device placement strategy for agro-IoT using edge computing. Recent Adv Comput Sci Commun 2021; 14(6): 1883-902.
[http://dx.doi.org/10.2174/2666255813666191216122801]
[3]
Mathur RP, Sharma M. Graph-based application partitioning approach for computational offloading in mobile cloud computing. Recent Adv Comput Sci Commun 2021; 14(1): 92-9.
[http://dx.doi.org/10.2174/2213275912666190716114033]
[4]
Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun Surv Tutor 2017; 19(3): 1628-56.
[http://dx.doi.org/10.1109/COMST.2017.2682318]
[5]
Dinh TQ, Tang J, La QD, et al. Offloading in mobile edge computing: Task allocation and computational frequency scaling. IEEE Trans Commun 2017; 65(8): 3571-84.
[6]
Wang S, Zhao Y, Xu J, Yuan J, Hsu C-H. Edge server placement in mobile edge computing. J Parallel Distrib Comput 2019; 127: 160-8.
[http://dx.doi.org/10.1016/j.jpdc.2018.06.008]
[7]
Islam A, Debnath A, Ghose M, Chakraborty S. A survey on task offloading in multi-access edge computing. J Systems Archit 2021; 118: 102225.
[http://dx.doi.org/10.1016/j.sysarc.2021.102225]
[8]
Wu G, Li Z. Task offloading strategy and simulation platform construction in multi-user edge computing scenario. Electronics (Basel) 2021; 10(23): 3038.
[http://dx.doi.org/10.3390/electronics10233038]
[9]
Li Q. An actor-critic reinforcement learning method for computation offloading with delay constraints in mobile edge computing. 2019. Available from: https://arxiv.org/pdf/1901.10646.pdf
[10]
Wu H, Sun Y, Wolter K. Energy-efficient decision making for mobile cloud offloading. IEEE Trans Cloud Comput 2020; 8(2): 570-84.
[http://dx.doi.org/10.1109/TCC.2018.2789446]
[11]
Sun Y, Zhou S, Xu J. EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE J Sel Areas Comm 2017; 35(11): 2637-46.
[http://dx.doi.org/10.1109/JSAC.2017.2760160]
[12]
Han Z, Tan H, Li X-Y. OnDisc: Online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM Trans Netw 2019; (99): 1-14.
[13]
Mao Y, Xu X, Liu P. Multi-user task offloading strategy based on stable allocation. Jisuanji Yingyong 2021; 41(3): 786.
[14]
Yan J, Bi S, Zhang YJ, Tao M. Optimal task offloading and resource allocation in mobile-edge computing with inter-user task dependency. IEEE Trans Wirel Commun 2020; 19(1): 235-50.
[http://dx.doi.org/10.1109/TWC.2019.2943563]
[15]
Yang L, Cao J, Wang Z, Wu W. Network aware mobile edge computation partitioning in multi-user environments. IEEE Trans Serv Comput 2021; 14(5): 1478-91.
[http://dx.doi.org/10.1109/TSC.2018.2876535]
[16]
Chen Z, Xu X, Wang H, Luo H, Chen X. Optimization strategy for unloading power tasks in residential areas based on alternate edge nodes. J Zhejiang Univ Eng Sci 2021; 55(05): 917-26.
[17]
Ning Z, Dong P, Kong X, Xia F. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet Things J 2016; 6(3): 4804-14.
[http://dx.doi.org/10.1109/JIOT.2018.2868616]
[18]
Liu Y, Wang S, Zhao Q, et al. Dependency-aware task scheduling in vehicular edge computing. IEEE Internet Things J 2020; 7(6): 4961-71.
[http://dx.doi.org/10.1109/JIOT.2020.2972041]
[19]
Zhao G, Xu H, Zhao Y, Qiao C, Huang L. Offloading tasks with dependency and service caching in mobile edge computing. IEEE Trans Parallel Distrib Syst 2021; 32(11): 2777-92.
[http://dx.doi.org/10.1109/TPDS.2021.3076687]
[20]
An X, Fan R, Hu H, Zhang N, Atapattu S, Tsiftsis TA. Joint task offloading and resource allocation for IoT edge computing with sequential task dependency. IEEE Internet Things J 2022; 9(17): 16546-61.
[http://dx.doi.org/10.1109/JIOT.2022.3150976]
[21]
Wunderlich S, Fitzek FHP, Reisslein M. Progressive multicore RLNC decoding with online DAG scheduling. IEEE Access 2019; 7: 161184-200.
[http://dx.doi.org/10.1109/ACCESS.2019.2951746]
[22]
Yi L, Gao X. Task offloading of intelligent building based on CO–HHO algorithm in edge computing. J Electr Eng Technol 2022; 17: 3525-39.
[23]
Zhao Z, Dong W, Bu J, Gu T, Min G. Accurate and generic sender selection for bulk data dissemination in low-power wireless networks. IEEE/ACM Trans Netw 2017; 25(2): 948-59.
[http://dx.doi.org/10.1109/TNET.2016.2614129]
[24]
Xie L, Han T, Zhou H, Zhang ZR, Han B, Tang A. Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization. Comput Intell Neurosci 2021; 2021: 1-22.
[http://dx.doi.org/10.1155/2021/9210050] [PMID: 34721567]
[25]
Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: Vision and challenges. IEEE Internet Things J 2016; 3(5): 637-46.
[http://dx.doi.org/10.1109/JIOT.2016.2579198]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy