Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Analysis of Fluid Flows in Bounded Domain with Particular Shape of a Cavity using Lattice Boltzmann Method

Author(s): Vikas Vasanth Shetty, Kesana Balashanker, Arumuga Perumal Dharmaraj* and Vedant Umang Patel

Volume 16, Issue 5, 2023

Published on: 17 October, 2023

Page: [359 - 372] Pages: 14

DOI: 10.2174/2212797616666230803115517

Price: $65

Abstract

Background: The present work numerically models the incompressible, continuous phase, viscous flow of Newtonian fluid flow in a bounded domain of two-dimensional cavity that is driven by walls and contains grooves in the shape of squares on the lower wall. With the help of the mesoscopic lattice Boltzmann method (LBM) and D2Q9 square lattice model, simulation results are found stable and reliable. The flow physics of the problem by varying Reynolds number, the height and quantity of lower wall grooves, and other fluid flow characteristics within the bounded domain are studied in detail. It is seen that the effects of the groove heights and wavelengths on the fluid flow are structured within the bounded domain. The study is performed from low Re = 100 to high Re = 3200, with minimum two and maximum four-wavelength grooves evaluated on the bottom surface, each having a height of low 0.25 and high 0.75. Additionally, a thorough discussion of complicated vortex dynamics is provided regarding the input parameters and geometry.

Objective: The current study aims to use mesoscopic LBM to analyze incompressible viscous fluid flows on complex geometries other than rectangular shapes.

Methods: Mesoscopic approach of kinetic theory-based Lattice Boltzmann method (LBM) is implemented in the current work. The popular Single Relaxation Time Lattice Boltzmann method with D2Q9 square lattice model and second-order accurate boundary condition is adopted for the current study.

Results: The numerical approach of LBM is used to simulate fluid flows in a 2D bounded domain with grooved bottom surfaces. The influence of different factors, such as the height of bottom-wall surface grooves, flow Reynolds number, and wavelength of these grooves on flow patterns, is then investigated.

Conclusion: The numerical study of the bounded domain is considered, and the Reynolds number is varied from 100 to 3200, with two and four-wavelength grooves evaluated on the bottom surface, each having a height of 0.25 and 0.75. The impacts on the flow pattern both within and slightly above the grooves of the computational findings for different Reynolds numbers, groove heights, and groove wavelengths are evaluated. As the Reynolds number rises, the mixing phenomenon of fluid is shown to flow more quickly in the wall-driven enclosures.

[1]
Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annu Rev Fluid Mech 2000; 32(1): 93-136.
[http://dx.doi.org/10.1146/annurev.fluid.32.1.93]
[2]
Bruneau CH, Saad M. The 2D lid-driven cavity problem revisited. Comput Fluids 2006; 35(3): 326-48.
[http://dx.doi.org/10.1016/j.compfluid.2004.12.004]
[3]
Erturk E, Corke TC, Gökçöl C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int J Numer Methods Fluids 2005; 48(7): 747-74.
[http://dx.doi.org/10.1002/fld.953]
[4]
Wahba EM. Multiplicity of states for two-sided and four-sided lid driven cavity flows. Comput Fluids 2009; 38(2): 247-53.
[http://dx.doi.org/10.1016/j.compfluid.2008.02.001]
[5]
Cortes AB, Miller JD. Numerical experiments with the lid driven cavity flow problem. Comput Fluids 1994; 23(8): 1005-27.
[http://dx.doi.org/10.1016/0045-7930(94)90002-7]
[6]
Aidun CK, Triantafillopoulos NG, Benson JD. Global stability of a lid‐driven cavity with throughflow: Flow visualization studies. Phys Fluids A Fluid Dyn 1991; 3(9): 2081-91.
[http://dx.doi.org/10.1063/1.857891]
[7]
Koseff JR, Street RL. On the end-wall effects in a lid driven cavity flow. J Fluids Eng 1984; 106(4): 390-8.
[http://dx.doi.org/10.1115/1.3243136]
[8]
Burggraf OR. Analytical and numerical studies of the structure of steady separated flows. J Fluid Mech 1966; 24(1): 113-51.
[http://dx.doi.org/10.1017/S0022112066000545]
[9]
Pan F, Acrivos A. Steady flows in rectangular cavities. J Fluid Mech 1967; 28(4): 643-55.
[http://dx.doi.org/10.1017/S002211206700237X]
[10]
Bogatyrev VYA, Gorin AV. End effects in rectangular cavities, Fluid Mechanics. Soviet Res 1978; 7: 101-6.
[11]
Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 1982; 48(3): 387-411.
[http://dx.doi.org/10.1016/0021-9991(82)90058-4]
[12]
Gogoi BB. Global 2D stability analysis of the cross lid-driven cavity flow with a streamfunction-vorticity approach. Int J Comput Methods Eng Sci Mech 2016; 17(4): 253-73.
[http://dx.doi.org/10.1080/15502287.2016.1195459]
[13]
Cadou JM, Guevel Y, Girault G. Numerical tools for the stability analysis of 2D flows: Application to the two- and four-sided lid-driven cavity. Fluid Dyn Res 2012; 44(3): 031403.
[http://dx.doi.org/10.1088/0169-5983/44/3/031403]
[14]
Xu GX, Li E, Tan V, Liu GR. Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM). Comput Struc 2012; 90-91: 131-44.
[http://dx.doi.org/10.1016/j.compstruc.2011.10.001]
[15]
Jiang Y, Mei L, Wei H. A finite element variational multiscale method for incompressible flow. Appl Math Comput 2015; 266: 374-84.
[http://dx.doi.org/10.1016/j.amc.2015.05.055]
[16]
Xie B, Xiao F. A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows. J Comput Phys 2016; 327: 747-78.
[http://dx.doi.org/10.1016/j.jcp.2016.09.054]
[17]
Zamzamian K, Hashemi MY. A novel meshless method for incompressible flow calculations. Eng Anal Bound Elem 2015; 56: 106-18.
[http://dx.doi.org/10.1016/j.enganabound.2015.02.009]
[18]
Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 1995; 118(2): 329-47.
[http://dx.doi.org/10.1006/jcph.1995.1103]
[19]
Ahmed M, Kuhlmann HC. Flow instability in triangular lid-driven cavities with wall motion away from a rectangular corner. Fluid Dyn Res 2012; 44(2): 025501.
[http://dx.doi.org/10.1088/0169-5983/44/2/025501]
[20]
Albensoeder S, Kuhlmann HC. Linear stability of rectangular cavity flows driven by anti-parallel motion of two facing walls. J Fluid Mech 2002; 458: 153-80.
[http://dx.doi.org/10.1017/S0022112002007917]
[21]
Albensoeder S, Kuhlmann HC. Three-dimensional instability of two counter-rotating vortices in a rectangular cavity driven by parallel wall motion. Eur J Mech BFluids 2002; 21(3): 307-16.
[http://dx.doi.org/10.1016/S0997-7546(02)01188-3]
[22]
Albensoeder S, Kuhlmann HC. Stability balloon for the double-lid-driven cavity flow. Phys Fluids 2003; 15(8): 2453-6.
[http://dx.doi.org/10.1063/1.1586270]
[23]
Albensoeder S, Kuhlmann HC. Accurate three-dimensional lid-driven cavity flow. J Comput Phys 2005; 206(2): 536-58.
[http://dx.doi.org/10.1016/j.jcp.2004.12.024]
[24]
Albensoeder S, Kuhlmann HC. Nonlinear three-dimensional flow in the lid-driven square cavity. J Fluid Mech 2006; 569: 465-80.
[http://dx.doi.org/10.1017/S0022112006002758]
[25]
Albensoeder S, Kuhlmann HC, Rath HJ. Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys Fluids 2001; 13(1): 121-35.
[http://dx.doi.org/10.1063/1.1329908]
[26]
Albensoeder S, Kuhlmann HC, Rath HJ. Multiplicity of steady two dimensional flows in two-sided lid-driven cavities. Theor Comput Fluid Dyn 2001; 14(4): 223-41.
[http://dx.doi.org/10.1007/s001620050138]
[27]
Blohm CH, Kuhlmann HC. The two-sided lid-driven cavity: Experiments on stationary and time-dependent flows. J Fluid Mech 2002; 450: 67-95.
[http://dx.doi.org/10.1017/S0022112001006267]
[28]
Blohm C, Albensoeder S, Kuhlmann HC, Broda M, Rath HJ. The two sided lid-driven cavity: Aspect-ratio dependence of the flow stability. Z Angew Math Mech 2001; 81(S3) (Suppl. 3): 781-2.
[http://dx.doi.org/10.1002/zamm.200108115163]
[29]
Kuhlmann HC, Albensoeder S. Stability of the steady three-dimensional lid driven flow in a cube and the supercritical flow dynamics. Phys Fluids 2014; 26(2): 024104.
[http://dx.doi.org/10.1063/1.4864264]
[30]
Kuhlmann HC, Wanschura M, Rath HJ. Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures. J Fluid Mech 1997; 336: 267-99.
[http://dx.doi.org/10.1017/S0022112096004727]
[31]
Siegmann-Hegerfeld T, Albensoeder S, Kuhlmann HC. Two- and three-dimensional flows in nearly rectangular cavities driven by collinear motion of two facing walls. Exp Fluids 2008; 45(5): 781-96.
[http://dx.doi.org/10.1007/s00348-008-0498-0]
[32]
Arumuga Perumal D, Dass AK. Simulation of flow in two-sided lid-driven square cavities by the lattice Boltzmann method. WIT Transactions on Engineering Sciences 2008; 59: 45-54.
[http://dx.doi.org/10.2495/AFM080051]
[33]
Joe ES, Perumal DA. Computational analysis of harmonically oscillating lid-driven incompressible fluid in L-shaped cavity using lattice Boltzmann methodLecture Notes in Mechanical Engineering. Springer 2023.
[34]
Perumal DA, Dass AK. Simulation of incompressible flows in two-sided lid-driven square cavities. Part II-LBM. CFD Letters 2010; 2(1): 25-38.
[35]
Arumuga Perumal D, Dass AK. Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by Lattice Boltzmann Method. Comput Math Appl 2011; 61(12): 3711-21.
[http://dx.doi.org/10.1016/j.camwa.2010.03.053]
[36]
Perumal DA. Lattice boltzmann simulation of laminar flow in a three-dimensional two-sided lid-driven cavity. World Journal of Modelling and Simulation 2013; 9(4): 277-88.
[37]
Perumal DA, Dass AK. Application of lattice Boltzmann method for incompressible viscous flows. Appl Math Model 2013; 37(6): 4075-92.
[http://dx.doi.org/10.1016/j.apm.2012.09.028]
[38]
Perumal DA, Dass AK. Lattice boltzmann computation of flows in three-dimensional lid-driven cavities with two types of wall motion. International Journal of Mechanical and Materials Engineering 2013; 8(2): 105-15.
[39]
Perumal DA, Dass AK. Computation of lattice kinetic scheme for double-sided parallel and antiparallel wall motion. Appl Mech Mater 2014; 592-594: 1967-71.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.592-594.1967]
[40]
Arumuga Perumal D, Dass AK. A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer. Alex Eng J 2015; 54(4): 955-71.
[http://dx.doi.org/10.1016/j.aej.2015.07.015]
[41]
Perumal DA. Lattice Boltzmann computation of multiple solutions in a double-sided square and rectangular cavity flows. Therm Sci Eng Prog 2018; 6: 48-56.
[http://dx.doi.org/10.1016/j.tsep.2017.10.009]
[42]
R SB. Perumal DA, Yadav AK. Computation of fluid flow in double sided cross-shaped lid-driven cavities using Lattice Boltzmann method. Eur J Mech BFluids 2018; 70: 46-72.
[http://dx.doi.org/10.1016/j.euromechflu.2018.01.006]
[43]
Balashanker K, Vikas V. Lattice Boltzmann Simulation of Double-Sided Deep Cavities at low Reynolds number. Lecture Notes in Mechanical Engineering 2019; 2: 373-9.
[44]
Perumal DA, Kumar GVS, Dass AK. Application of Lattice Boltzmann method to fluid flows in Microgeometries. CFD Letters 2010; 2(2): 75-84.
[45]
Bhopalam SR, Perumal DA. Numerical analysis of fluid flows in L-Shaped cavities using Lattice Boltzmann method. Applications in Engineering Science 2020; 3(100016): 100016.
[http://dx.doi.org/10.1016/j.apples.2020.100016]
[46]
Bhatt T, Arumuga Perumal D. Application of Lattice Boltzmann Method for fluid flow modelling of FSLDR domain. Mater Today Proc 2020; 22(Part 4): 2066-73.
[http://dx.doi.org/10.1016/j.matpr.2020.03.221]
[47]
Rajan I, Perumal DA. Flow Dynamics of Lid-Driven Cavities with obstacles of various shapes and configurations using the Lattice Boltzmann Method. Journal of Thermal Engineering 2021; 7(2): 83-102.
[http://dx.doi.org/10.18186/thermal.869135]
[48]
Joe ES, Arumuga Perumal D. Computational analysis of nonhomogeneous fluid flow in a two-cylinder-driven rectangular cavity. Applications in Engineering Science 2021; 7(100064): 100064.
[http://dx.doi.org/10.1016/j.apples.2021.100064]
[49]
Fatima N, Rajan I, Arumuga Perumal D, et al. Simulation of fluid flow in a lid-driven cavity with different wave lengths corrugated walls using Lattice Boltzmann method. J Taiwan Inst Chem Eng 2023; 144(104748): 104748.
[http://dx.doi.org/10.1016/j.jtice.2023.104748]
[50]
Bhopalam S, Perumal RDA, Yadav AK. Computational appraisal of fluid flow behavior in two-sided oscillating lid-driven cavities. Int J Mech Sci 2021; 196: 106303.
[51]
Succi S. The Lattice Boltzmann Method for Fluid Dynamics and Beyond. Oxford University Press 2001.
[52]
Bisht M, Haeri S, Patil DV. Fluid flow in wall-driven enclosures with corrugated bottom. Comput Fluids 2017; 152: 1-13.
[http://dx.doi.org/10.1016/j.compfluid.2017.04.008]
[53]
Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 1998; 30(1): 329-64.
[http://dx.doi.org/10.1146/annurev.fluid.30.1.329]
[54]
Miller W. Flow in the driven cavity calculated by the lattice Boltzmann method. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1995; 51(4): 3659-69.
[http://dx.doi.org/10.1103/PhysRevE.51.3659] [PMID: 9963047]
[55]
Patil DV, Lakshmisha KN, Rogg B. Lattice Boltzmann simulation of lid-driven flow in deep cavities. Comput Fluids 2006; 35(10): 1116-25.
[http://dx.doi.org/10.1016/j.compfluid.2005.06.006]
[56]
Amiri Delouei A, Karimnejad S, He F. Direct Numerical Simulation of pulsating flow effect on the distribution of non-circular particles with increased levels of complexity: IB-LBM. Comput Math Appl 2022; 121: 115-30.
[http://dx.doi.org/10.1016/j.camwa.2022.07.005]
[57]
Afra B, Karimnejad S, Amiri Delouei A, Tarokh A. Flow control of two tandem cylinders by a highly flexible filament: Lattice spring IB-LBM. Ocean Eng 2022; 250(111025): 111025.
[http://dx.doi.org/10.1016/j.oceaneng.2022.111025]
[58]
Abaszadeh M, Safavinejad A, Amiri Delouei A, Amiri H. Analysis of radiative heat transfer in two-dimensional irregular geometries by developed immersed boundary–lattice Boltzmann method. J Quant Spectrosc Radiat Transf 2022; 280(108086): 108086.
[http://dx.doi.org/10.1016/j.jqsrt.2022.108086]
[59]
Abaszadeh M, Safavinejad A, Amiri H, Amiri Delouei A. A direct-forcing IB-LBM implementation for thermal radiation in irregular geometries. J Therm Anal Calorim 2022; 147(20): 11169-81.
[http://dx.doi.org/10.1007/s10973-022-11328-1]
[60]
Karimnejad S, Amiri Delouei A, He F. Coupling immersed boundary and lattice Boltzmann method for modeling multi‐body interactions subjected to pulsatile flow. Math Methods Appl Sci 2023; 46(6): 6767-86.
[http://dx.doi.org/10.1002/mma.8939]
[61]
Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature utilizing nanofluid. Int J Heat Mass Transf 2018; 126(Part A): 489-503.
[62]
De S, Nagendra K, Lakshmisha KN. Simulation of laminar flow in a three‐dimensional lid‐driven cavity by lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 2009; 19(6): 790-815.
[http://dx.doi.org/10.1108/09615530910973011]
[63]
Shu C, Niu XD, Chew YT. Taylor series expansion and least squares-based lattice Boltzmann method: Two-dimensional formulation and its applications. Phys Rev E 2002; 65: 036708.
[64]
Wolf-Gladrow DA. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer-Verlag Berlin-Heidelberg 2000.
[http://dx.doi.org/10.1007/b72010]
[65]
Yeomans JM. Mesoscale simulations: Lattice Boltzmann and particle algorithms. Physica A 2006; 369(1): 159-84.
[http://dx.doi.org/10.1016/j.physa.2006.04.011]
[66]
He X, Luo LS. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1997; 56(6): 6811-7.
[http://dx.doi.org/10.1103/PhysRevE.56.6811]
[67]
Noble DR, Chen S, Georgiadis JG, Buckius RO. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys Fluids 1995; 7(1): 203-9.
[http://dx.doi.org/10.1063/1.868767]
[68]
Inamuro T, Yoshino M, Ogino F. A non‐slip boundary condition for lattice Boltzmann simulations. Phys Fluids 1995; 7(12): 2928-30.
[http://dx.doi.org/10.1063/1.868766]
[69]
Maier RS, Bernard RS, Grunau DW. Boundary conditions for the lattice Boltzmann method. Phys Fluids 1996; 8(7): 1788-801.
[http://dx.doi.org/10.1063/1.868961]
[70]
Mei R, Luo LS, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys 1999; 155(2): 307-30.
[http://dx.doi.org/10.1006/jcph.1999.6334]
[71]
Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 1997; 9(6): 1591-8.
[http://dx.doi.org/10.1063/1.869307]
[72]
Yu D, Mei R, Luo LS, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 2003; 39(5): 329-67.
[http://dx.doi.org/10.1016/S0376-0421(03)00003-4]
[73]
Mei R, Shyy W, Yu D, Luo LS. Lattice Boltzmann method for 3-D Flows with curved boundary. J Comput Phys 2000; 161(2): 680-99.
[http://dx.doi.org/10.1006/jcph.2000.6522]
[74]
Browning MH. Device and Method for measuring, recording, and reporting fluid flow. US9785602-B1, 2017.
[75]
Glezer A, Simpson M. Power generation using buoyancy-induced vortices. US9863313, 2018.
[76]
Glezer A, Yoganathan AP, Dasi LP. Flow manipulation in biological flows using vortex generators. US8834911, 2014.
[77]
Gupta MM, Kalita JC. A new paradigm for solving Navier–Stokes equations: Streamfunction–velocity formulation. J Comput Phys 2005; 207(1): 52-68.
[http://dx.doi.org/10.1016/j.jcp.2005.01.002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy