Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Burdening Perspectives and Treatment Modalities of Monkeypox: A Central Dogma

Author(s): Shivang Dhoundiyal, Md. Aftab Alam*, Awaneet Kaur and Sandesh Varshney

Volume 24, Issue 1, 2024

Published on: 13 September, 2023

Article ID: e250823220402 Pages: 13

DOI: 10.2174/1871526523666230825164222

Price: $65

Abstract

The monkeypox virus (MPXV), belonging to the genus Orthopoxvirus, is responsible for causing the zoonotic illness known as Monkeypox. The virus was initially identified during an outbreak at a Danish Zoo in 1958 and has since been found to infect various mammal species worldwide. While African squirrels and other rodents are believed to be the primary hosts, determining the natural host has proven challenging. While MPXV can be studied using different animal models in laboratory settings, understanding its natural transmission routes remains complex and species-dependent. Recent developments have elevated the global health concern surrounding Monkeypox, leading to its designation as a Global Health Emergency of International Concern on 23 July 2022. Enhancing surveillance and case detection is crucial in navigating the unpredictable epidemiology of this re-emerging disease. Human infections with the monkeypox virus are becoming less frequent due to population growth and economic improvements. Monkeypox, similar to smallpox, can potentially be controlled and eradicated in the future through vaccines, appropriate treatment, and personal protective equipment.

Graphical Abstract

[1]
Barrett J, McFadden G. Origin and Evolution of Poxviruses. Sciencedirect 2008; pp. 431-46.
[http://dx.doi.org/10.1016/B978-0-12-374153-0.00019-9]
[2]
Diven DG. An overview of poxviruses. J Am Acad Dermatol 2001; 44(1): 1-16.
[http://dx.doi.org/10.1067/mjd.2001.109302] [PMID: 11148468]
[3]
Odom MR, Curtis Hendrickson R, Lefkowitz EJ. Poxvirus protein evolution: Family wide assessment of possible horizontal gene transfer events. Virus Res 2009; 144(1-2): 233-49.
[http://dx.doi.org/10.1016/j.virusres.2009.05.006] [PMID: 19464330]
[4]
Lefkowitz EJ, Wang C, Upton C. Poxviruses: Past, present and future. Virus Res 2006; 117(1): 105-18.
[http://dx.doi.org/10.1016/j.virusres.2006.01.016] [PMID: 16503070]
[5]
Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand 1959; 46(2): 156-76.
[http://dx.doi.org/10.1111/j.1699-0463.1959.tb00328.x]
[6]
Arita I, Henderson DA. Smallpox and monkeypox in non-human primates Available from: https://apps.who.int/iris/bitstream/handle/10665/266595/PMC2554549.pdf?sequence=1 (Accessed on: Sep 8, 2022).
[7]
Khodakevich L, Ježek Z, Messinger D. Monkeypox virus: Ecology and public health significance. Bull World Health Organ 1988; 66(6): 747-52.
[8]
Moore M, Zahra F. Monkeypox. In: Stat Pearls. Treasure Island, FL: Stat Pearls Publishing 2022.
[9]
Georges AJ, Matton T, Courbot-Georges MC. Monkey-pox, an emerging then re-emerging disease paradigm. Med Mal Infect 2004; 34(1): 12-9.
[http://dx.doi.org/10.1016/j.medmal.2003.09.008] [PMID: 15617321]
[10]
Eradication W, Organization W. The global eradication of smallpox: final report of the Global Commission for the Certification of Smallpox Eradication. Geneva: World Health Organization 1979.
[11]
Smallpox.. Available from: https://www.who.int/health-topics/smallpox#tab=tab_1 (Accessed on: Sep 7, 2022).
[12]
Wenner HA, Kamitsuka P, Macasaet F, Kidd P. Pathogenesis of monkey pox. Antimicrob Agents Chemother 1967; 7: 40-4.
[PMID: 4299355]
[13]
Wenner HA, Macasaet FD, Kamitsuka PS, Kidd P. Monkey pox. I. Clinical, virologic and immunologic studies. Am J Epidemiol 1968; 87(3): 551-66.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a120846] [PMID: 4297615]
[14]
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020; 12(11): 1257.
[http://dx.doi.org/10.3390/v12111257] [PMID: 33167496]
[15]
Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 1972; 46(5): 593-7.
[PMID: 4340218]
[16]
Gispen R, Brand-Saathof BB, Hekker AC. Monkeypox-specific antibodies in human and simian sera from the Ivory Coast and Nigeria. Bull World Health Organ 1976; 53(4): 355-60.
[PMID: 186210]
[17]
Yinka-Ogunleye A, Aruna O, Dalhat M, et al. Outbreak of human monkeypox in Nigeria in 2017–18: A clinical and epidemiological report. Lancet Infect Dis 2019; 19(8): 872-9.
[http://dx.doi.org/10.1016/S1473-3099(19)30294-4] [PMID: 31285143]
[18]
Pastula DM, Tyler KL. An overview of monkeypox virus and its neuroinvasive potential. Ann Neurol 2022; 92(4): 527-31.
[http://dx.doi.org/10.1002/ana.26473] [PMID: 35932225]
[19]
Saadh MJ, Ghadimkhani T, Soltani N, et al. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180: 106156.
[http://dx.doi.org/10.1016/j.micpath.2023.106156] [PMID: 37201635]
[20]
Angelo KM, Petersen BW, Hamer DH, Schwartz E, Brunette G. Monkeypox transmission among international travellers—serious monkey business? J Travel Med 2019; 26(5): taz002.
[http://dx.doi.org/10.1093/jtm/taz002] [PMID: 30657959]
[21]
Weinstein RA, Nalca A, Rimoin AW, Bavari S, Whitehouse CA. Reemergence of monkeypox: Prevalence, diagnostics, and countermeasures. Clin Infect Dis 2005; 41(12): 1765-71.
[http://dx.doi.org/10.1086/498155] [PMID: 16288402]
[22]
Reynolds MG, Yorita KL, Kuehnert MJ, et al. Clinical manifestations of human monkeypox influenced by route of infection. J Infect Dis 2006; 194(6): 773-80.
[http://dx.doi.org/10.1086/505880] [PMID: 16941343]
[23]
Sejvar JJ, Chowdary Y, Schomogyi M, et al. Human monkeypox infection: A family cluster in the midwestern United States. J Infect Dis 2004; 190(10): 1833-40.
[http://dx.doi.org/10.1086/425039] [PMID: 15499541]
[24]
Fleischauer AT, Kile JC, Davidson M, et al. Evaluation of human-to-human transmission of monkeypox from infected patients to health care workers. Clin Infect Dis 2005; 40(5): 689-94.
[http://dx.doi.org/10.1086/427805] [PMID: 15714414]
[25]
Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med 2004; 350(4): 342-50.
[http://dx.doi.org/10.1056/NEJMoa032299] [PMID: 14736926]
[26]
Thornhill JP, Barkati S, Walmsley S, et al. Monkeypox virus infection in humans across 16 countries — april–June 2022. N Engl J Med 2022; 387(8): 679-91.
[http://dx.doi.org/10.1056/NEJMoa2207323] [PMID: 35866746]
[27]
O’Toole A, Rambaut A. Initial observations about putative APOBEC3 deaminase editing driving short-term evolution of MPXV since 2017. Virol J 2022; 30.
[28]
Jezek Z, Marennikova SS, Mutumbo M, Nakano JH, Paluku KM, Szczeniowski M. Human monkeypox: A study of 2,510 contacts of 214 patients. J Infect Dis 1986; 154(4): 551-5.
[http://dx.doi.org/10.1093/infdis/154.4.551] [PMID: 3018091]
[29]
Formenty P, Muntasir MO, Damon I, et al. Human monkeypox outbreak caused by novel virus belonging to Congo Basin clade, Sudan, 2005. Emerg Infect Dis 2010; 16(10): 1539-45.
[http://dx.doi.org/10.3201/eid1610.100713] [PMID: 20875278]
[30]
Faye O, Pratt CB, Faye M, et al. Genomic characterisation of human monkeypox virus in Nigeria. Lancet Infect Dis 2018; 18(3): 246.
[http://dx.doi.org/10.1016/S1473-3099(18)30043-4] [PMID: 29361427]
[31]
Baker RO, Bray M, Huggins JW. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antiviral Res 2003; 57(1-2): 13-23.
[http://dx.doi.org/10.1016/S0166-3542(02)00196-1] [PMID: 12615299]
[32]
Mukinda VBK, Mwema G, Kilundu M, Heymann DL, Khan AS, Esposito JJ. Re-emergence of human monkeypox in Zaire in 1996. Lancet 1997; 349(9063): 1449-50.
[http://dx.doi.org/10.1016/S0140-6736(05)63725-7] [PMID: 9164323]
[33]
Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis 2019; 13(10): e0007791.
[http://dx.doi.org/10.1371/journal.pntd.0007791] [PMID: 31618206]
[34]
Yadav PD, Reghukumar A, Sahay RR, et al. First two cases of Monkeypox virus infection in travellers returned from UAE to India, July 2022. J Infect 2022; 85(5): e145-8.
[http://dx.doi.org/10.1016/j.jinf.2022.08.007] [PMID: 35963550]
[35]
Chen N, Li G, Liszewski MK, et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 2005; 340(1): 46-63.
[http://dx.doi.org/10.1016/j.virol.2005.05.030] [PMID: 16023693]
[36]
Wang L, Shang J, Weng S, et al. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J Med Virol 2023; 95(1): e28036.
[http://dx.doi.org/10.1002/jmv.28036] [PMID: 35906185]
[37]
Likos AM, Sammons SA, Olson VA, et al. A tale of two clades: Monkeypox viruses. J Gen Virol 2005; 86(10): 2661-72.
[http://dx.doi.org/10.1099/vir.0.81215-0] [PMID: 16186219]
[38]
Parker S, Chen NG, Foster S, et al. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox – An animal model of smallpox. Antiviral Res 2012; 94(1): 44-53.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.005] [PMID: 22381921]
[39]
Americo JL, Moss B, Earl PL. Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J Virol 2010; 84(16): 8172-80.
[http://dx.doi.org/10.1128/JVI.00621-10] [PMID: 20519404]
[40]
Esposito J, Fenner F. Poxvirus. In: Fields Virology. LWW 2001; pp. 2885-921.
[41]
Sadeuh-Mba SA, Bessaud M, Massenet D, et al. High frequency and diversity of species C enteroviruses in Cameroon and neighboring countries. J Clin Microbiol 2013; 51(3): 759-70.
[http://dx.doi.org/10.1128/JCM.02119-12] [PMID: 23254123]
[42]
Lum FM, Torres-Ruesta A, Tay MZ, et al. Monkeypox: Disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol 2022; 22(10): 597-613.
[http://dx.doi.org/10.1038/s41577-022-00775-4] [PMID: 36064780]
[43]
Gomez-Lucia E. Monkeypox: Some keys to understand this emerging disease. Animals 2022; 12(17): 2190.
[http://dx.doi.org/10.3390/ani12172190] [PMID: 36077910]
[44]
Cho CT, Wenner HA. Monkeypox virus. Bacteriol Rev 1973; 37(1): 1-18.
[http://dx.doi.org/10.1128/br.37.1.1-18.1973] [PMID: 4349404]
[45]
Andiman WA. Animals Viruses and Humans, a Narrow Divide: How Lethal Zoonotic Viruses Spill Over and Threaten us. Paul Dry Books 2018.
[46]
World Health Assembly Proclaims Global Smallpox Eradication. Environ 1980; 7(3): 173-4.
[47]
Arita I, Jezek Z, Ruti K, Khodakevich L. Human monkeypox: A newly emerged orthopoxvirus zoonosis in the tropical rain forests of Africa. Am J Trop Med Hyg 1985; 34(4): 781-9.
[http://dx.doi.org/10.4269/ajtmh.1985.34.781] [PMID: 2992305]
[48]
Grant R, Nguyen LBL, Breban R. Modelling human-to-human transmission of monkeypox. Bull World Health Organ 2020; 98(9): 638-40.
[http://dx.doi.org/10.2471/BLT.19.242347] [PMID: 33012864]
[49]
Monkeypox.. Available from: https://www.who.int/news-room/fact-sheets/detail/monkeypox (Accessed on: Sep 7, 2022]).
[50]
Dubey A, Singh R, Kumar A, et al. A critical review on changing epidemiology of human monkeypox-a current threat with multi-country outbreak. J Pharm Negat Results 2022; 13(S01): 660-71.
[http://dx.doi.org/10.47750/pnr.2022.13.S01.82]
[51]
Jordens Q, De Maeseneer H, De Crem C, Fölster-Holst R, Van Gysel D. Acral manifestations associated with infection. Pediatr Dermatol 2021; 38(6): 1475-87.
[http://dx.doi.org/10.1111/pde.14831] [PMID: 34713504]
[52]
Sookaromdee P, Wiwanitkit V. Mouth sores and monkeypox: A consideration. J Stomatol Oral Maxillofac Surg 2022; 123(6): 593-4.
[http://dx.doi.org/10.1016/j.jormas.2022.06.020] [PMID: 35760308]
[53]
Roy R, Nirala S, Pandey S, Singh CM. A review of india in the midst of another epidemic with monkeypox. Asian J Res Infect Dis 2022; 10(4): 15-21.
[http://dx.doi.org/10.9734/ajrid/2022/v10i430296]
[54]
Ahmed SK, El-Kader RGA, Abdulqadir SO, et al. Monkeypox clinical symptoms, pathology, and advances in management and treatment options: An update. Int J Surg 2023; 10-97.
[http://dx.doi.org/10.1097/JS9.0000000000000091] [PMID: 36906774]
[55]
Tiecco G, Degli Antoni M, Storti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Monkeypox, a literature review: What is new and where does this concerning virus come from? Viruses 2022; 14(9): 1894.
[http://dx.doi.org/10.3390/v14091894] [PMID: 36146705]
[56]
Hutson CL, Kondas AV, Mauldin MR, et al. Pharmacokinetics and efficacy of a potential smallpox therapeutic, brincidofovir, in a lethal monkeypox virus animal model. MSphere 2021; 6(1): e00927-20.
[http://dx.doi.org/10.1128/mSphere.00927-20] [PMID: 33536322]
[57]
Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Correction to: Prevention and treatment of monkeypox. Drugs 2022; 82(12): 1343.
[http://dx.doi.org/10.1007/s40265-022-01767-3] [PMID: 35994201]
[58]
Antinori A, Mazzotta V, Vita S, et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Euro Surveill 2022; 27(22): 2200421.
[http://dx.doi.org/10.2807/1560-7917.ES.2022.27.22.2200421] [PMID: 35656836]
[59]
Infection prevention and control during health care when coronavirus disease (COVID-19) is suspected or confirmed: Interim guidance, 12 July 2021. World Health Organization. 2021.
[60]
Ogoina D, Izibewule JH, Ogunleye A, et al. The 2017 human monkeypox outbreak in Nigeria-Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoS One 2019; 14(4): e0214229.
[http://dx.doi.org/10.1371/journal.pone.0214229] [PMID: 30995249]
[61]
Yuan P, Tan Y, Yang L, et al. Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area. J Med Virol 2023; 95(1): e28137.
[http://dx.doi.org/10.1002/jmv.28137] [PMID: 36089815]
[62]
Hasan S, Saeed S. Monkeypox disease: An emerging public health concern in the shadow of COVID-19 pandemic: An update. Trop Med Infect Dis 2022; 7(10): 283.
[http://dx.doi.org/10.3390/tropicalmed7100283] [PMID: 36288024]
[63]
Strathdee SA, Crago AL, Shannon K. Harm reduction and rights-based approaches to reduce monkeypox transmission among sex workers. Lancet Infect Dis 2023; 23(1): e43-6.
[http://dx.doi.org/10.1016/S1473-3099(22)00661-2] [PMID: 36243028]
[64]
Daskalakis D, McClung RP, Mena L, et al. Monkeypox: Avoiding the mistakes of past infectious disease epidemics. Ann Intern Med 2022; 175(8): 1177-8.
[http://dx.doi.org/10.7326/M22-1748] [PMID: 35709341]
[65]
Islam MM, Dutta P, Rashid R, et al. Pathogenicity and virulence of monkeypox at the human-animal-ecology interface. Virulence 2023; 14(1): 2186357.
[http://dx.doi.org/10.1080/21505594.2023.2186357] [PMID: 36864002]
[66]
Jiang RM, Zheng YJ, Zhou L, et al. Diagnosis, treatment, and prevention of monkeypox in children: An experts’ consensus statement. World J Pediatr 2023; 19(3): 231-42.
[http://dx.doi.org/10.1007/s12519-022-00624-3] [PMID: 36409451]
[67]
Bergman A, McGee K, Farley J, Kwong J, McNabb K, Voss J. Combating stigma in the era of monkeypox—is history repeating itself? J Assoc Nurses AIDS Care 2022; 33(6): 668-75.
[http://dx.doi.org/10.1097/JNC.0000000000000367] [PMID: 36198116]
[68]
Bauer DJ, Vincent LS, Kempe CH, Downie AW. PRophylactic treatment of smallpox contacts with n-methylisatin β-thiosemicarbazone (compound 33T57, MARBORAN). Lancet 1963; 282(7306): 494-6.
[http://dx.doi.org/10.1016/S0140-6736(63)90230-7] [PMID: 14065422]
[69]
Cho CT, Bolano CR, Kamitsuka PS, Wenner HA. Methisazone and monkey pox virus: Studies in cell cultures, chick embryos, mice and monkeys. Am J Epidemiol 1970; 92(2): 137-44.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a121186] [PMID: 4317162]
[70]
Di Gennaro F, Veronese N, Marotta C, et al. Human monkeypox: A comprehensive narrative review and analysis of the public health implications. Microorganisms 2022; 10(8): 1633.
[http://dx.doi.org/10.3390/microorganisms10081633] [PMID: 36014051]
[71]
Chakraborty S, Chandran D, Mohapatra RK, et al. Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects. Int J Surg 2022; 105: 106847.
[http://dx.doi.org/10.1016/j.ijsu.2022.106847] [PMID: 35995352]
[72]
Joklik WK. The poxviruses. Bacteriol Rev 1966; 30(1): 33-66.
[http://dx.doi.org/10.1128/br.30.1.33-66.1966] [PMID: 5324648]
[73]
Pirrung MC, Pansare SV, Sarma KD, Keith KA, Kern ER. Combinatorial optimization of isatin-β-thiosemicarbazones as anti-poxvirus agents. J Med Chem 2005; 48(8): 3045-50.
[http://dx.doi.org/10.1021/jm049147h] [PMID: 15828843]
[74]
Wang J, Shahed-AI-Mahmud M, Chen A, Li K, Tan H, Joyce R. An overview of antivirals against monkeypox virus and other orthopoxviruses. J Med Chem 2023; 66(7): 4468-90.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00069] [PMID: 36961984]
[75]
Almehmadi M, Allahyani M, Alsaiari AA, et al. A glance at the development and patent literature of tecovirimat: The first-in-class therapy for emerging monkeypox outbreak. Viruses 2022; 14(9): 1870.
[http://dx.doi.org/10.3390/v14091870] [PMID: 36146675]
[76]
Siegrist E, Sassine J. Antivirals with activity against monkeypox: A clinically oriented review. Clin Infect Dis 2022; 76(1): 155-64.
[http://dx.doi.org/10.1093/cid/ciac622] [PMID: 35904001]
[77]
Chan-Tack K, Harrington P, Bensman T, et al. Benefit-risk assessment for brincidofovir for the treatment of smallpox: U.S. Food and Drug Administration’s Evaluation. Antiviral Res 2021; 195: 105182.
[http://dx.doi.org/10.1016/j.antiviral.2021.105182] [PMID: 34582915]
[78]
Ajmal A, Mahmood A, Hayat C, et al. Computer-assisted drug repurposing for thymidylate kinase drug target in monkeypox virus. Front Cell Infect Microbiol 2023; 13: 1159389.
[http://dx.doi.org/10.3389/fcimb.2023.1159389] [PMID: 37313340]
[79]
Hu X, An S, Chu J, et al. Potential inhibitors of monkeypox virus revealed by molecular modeling approach to viral DNA topoisomerase I. Molecules 2023; 28(3): 1444.
[http://dx.doi.org/10.3390/molecules28031444] [PMID: 36771105]
[80]
Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253(5016): 164-70.
[http://dx.doi.org/10.1126/science.1853201] [PMID: 1853201]
[81]
Sk MF, Roy R, Jonniya NA, Poddar S, Kar P. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 2021; 39(10): 3649-61.
[http://dx.doi.org/10.1080/07391102.2020.1768149] [PMID: 32396767]
[82]
Sahoo AK, Augusthian PD, Muralitharan I, et al. In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol Divers 2022; 1-16.
[http://dx.doi.org/10.1007/s11030-022-10550-1] [PMID: 36331784]
[83]
Li D, Liu Y, Li K, Zhang L. Targeting F13 from monkeypox virus and variola virus by tecovirimat: Molecular simulation analysis. J Infect 2022; 85(4): e99-e101.
[http://dx.doi.org/10.1016/j.jinf.2022.07.001] [PMID: 35810941]
[84]
Patel M, Bazaid AS, Azhar EI, et al. Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation. J Biomol Struct Dyn 2023; 1-17.
[http://dx.doi.org/10.1080/07391102.2023.2179547] [PMID: 36852556]
[85]
Amir M, Mohammad T, Prasad K, et al. Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). J Biomol Struct Dyn 2020; 38(15): 4625-34.
[http://dx.doi.org/10.1080/07391102.2019.1682052] [PMID: 31625455]
[86]
Bekker H, Berendsen HJ, Dijkstra EJ, et al. Gromacs-a parallel computer for molecular-dynamics simulations. In4th international conference on computational physics (PC 92). 252-6.
[87]
Kelvin AA, Halperin S. COVID-19 in children: The link in the transmission chain. Lancet Infect Dis 2020; 20(6): 633-4.
[http://dx.doi.org/10.1016/S1473-3099(20)30236-X] [PMID: 32220651]
[88]
Shiryaev VA, Skomorohov MY, Leonova MV, et al. Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity. Eur J Med Chem 2021; 221: 113485.
[http://dx.doi.org/10.1016/j.ejmech.2021.113485] [PMID: 33965861]
[89]
Yang G, Pevear DC, Davies MH, et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. J Virol 2005; 79(20): 13139-49.
[http://dx.doi.org/10.1128/JVI.79.20.13139-13149.2005] [PMID: 16189015]
[90]
Bryk P, Brewer MG, Ward BM. Vaccinia virus phospholipase protein F13 promotes rapid entry of extracellular virions into cells. J Virol 2018; 92(11): e02154-17.
[http://dx.doi.org/10.1128/JVI.02154-17] [PMID: 29540596]
[91]
Rabaan AA, Abas AH, Tallei TE, et al. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J Med Virol 2023; 95(1): e28306.
[http://dx.doi.org/10.1002/jmv.28306] [PMID: 36372558]
[92]
Ali Y, Imtiaz H, Tahir MM, et al. Fragment-based approaches identified tecovirimat-competitive novel drug candidate for targeting the F13 protein of the monkeypox virus. Viruses 2023; 15(2): 570.
[http://dx.doi.org/10.3390/v15020570] [PMID: 36851785]
[93]
Brown K, Leggat P. Human Monkeypox: Current state of knowledge and implications for the future. Trop Med Infect Dis 2016; 1(1): 8.
[http://dx.doi.org/10.3390/tropicalmed1010008] [PMID: 30270859]
[94]
Petersen E, Abubakar I, Ihekweazu C, et al. Monkeypox — Enhancing public health preparedness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. Int J Infect Dis 2019; 78: 78-84.
[http://dx.doi.org/10.1016/j.ijid.2018.11.008] [PMID: 30453097]
[95]
Hutson CL, Carroll DS, Gallardo-Romero N, et al. Comparison of monkeypox virus clade kinetics and pathology within the prairie dog animal model using a serial sacrifice study design. BioMed Res Int 2015; 2015: 1-19.
[http://dx.doi.org/10.1155/2015/965710] [PMID: 26380309]
[96]
Mucker EM, Chapman J, Huzella LM, et al. Susceptibility of marmosets (callithrix jacchus) to monkeypox virus: A low dose prospective model for monkeypox and smallpox disease. PLoS One 2015; 10(7): e0131742.
[http://dx.doi.org/10.1371/journal.pone.0131742] [PMID: 26147658]
[97]
Rimoin AW, Graham BS. Whither monkeypox vaccination. Vaccine 2011; 29(S4): D60-4.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.004] [PMID: 22188935]
[98]
Belongia E, Naleway A. Smallpox vaccine: The good, the bad, and the ugly. Clin Med Res 2003; 1(1): 87-92.
[http://dx.doi.org/10.3121/cmr.1.2.87]
[99]
Heraud JM, Edghill-Smith Y, Ayala V, et al. Subunit recombinant vaccine protects against monkeypox. J Immunol 2006; 177(4): 2552-64.
[http://dx.doi.org/10.4049/jimmunol.177.4.2552] [PMID: 16888017]
[100]
Petersen B, Damon I, Pertowski C, Delman-Meaney D, Guarnizo J. Clinical guidance for smallpox vaccine use in a postevent vaccination program.In: Morbidity and Mortality Weekly Report: Recommendations and Reports. 2015; 64: pp. (2)1-26.
[101]
Kenner J, Cameron F, Empig C, Jobes DV, Gurwith M. LC16m8: An attenuated smallpox vaccine. Vaccine 2006; 24(47-48): 7009-22.
[http://dx.doi.org/10.1016/j.vaccine.2006.03.087] [PMID: 17052815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy