Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Antioxidant Activity of Medicinal Plants and Herbs of North Aegean, Greece: Current Clinical Evidence and Future Perspectives

Author(s): Efthymios Poulios*, Georgios K. Vasios, Evmorfia Psara, Georgios Antasouras, Maria Gialeli, Eleni Pavlidou, Anna Tsantili-Kakoulidou, Andreas Y. Troumbis and Constantinos Giaginis*

Volume 14, Issue 3, 2024

Published on: 12 September, 2023

Article ID: e230823220232 Pages: 14

DOI: 10.2174/2210315514666230823094450

Price: $65

Abstract

Background: Medicinal plants and herbs constitute rich sources of flavoring, and aromatic compounds, namely phytochemicals, which have many positive impacts on human health, such as antioxidant, anticancer, antimicrobial, anti-inflammatory, cardioprotective, and neuroprotective properties. Such bioactive compounds may be considered lead compounds that can be introduced in the drug design process to obtain novel drug candidates with better bioavailability and therapeutic efficiency. The Islands of the North Aegean have rich biodiversity and many medicinal plants and herbs with multiple health benefits.

Objective: This study aims to summarize and scrutinize the antioxidant activity of medicinal plants and herbs of the North Aegean islands.

Methods: A thorough search of the existing literature was performed in the most accurate scientific databases, using a set of effective and relative keywords and including only clinical human studies written in English.

Results: Several clinical studies have highlighted the potential antioxidant activity of phytochemicals from plants such as St. John's wort, chamomile, rosemary, spearmint, mastiha, mountain tea, oregano, sage, and thyme, as measured in the blood and saliva of human individuals, after administration of extracts and solutions of these plants. Decreased levels of oxidized lipoproteins, increased activity of antioxidant enzymes, and an enhanced total antioxidant capacity were observed.

Conclusions: Current clinical trials remain still limited, and an enhanced series is needed with a better methodology design, larger sample size, longer intervention periods, using controlled groups and randomization to unravel the antioxidant activity of these North Aegean endemic plants in human individuals.

Graphical Abstract

[1]
Gupta, J.; Sharma, S.; Sharma, N.R.; Kabra, D. Phytochemicals enriched in spices: A source of natural epigenetic therapy. Arch. Pharm. Res., 2020, 43(2), 171-186.
[http://dx.doi.org/10.1007/s12272-019-01203-3] [PMID: 31838653]
[2]
Vázquez-Fresno, R.; Rosana, A.R.R.; Sajed, T.; Onookome-Okome, T.; Wishart, N.A.; Wishart, D.S. Herbs and spices- biomarkers of intake based on human intervention studies – a systematic review. Genes Nutr., 2019, 14(1), 18.
[http://dx.doi.org/10.1186/s12263-019-0636-8] [PMID: 31143299]
[3]
Leja, K.B.; Czaczyk, K. The industrial potential of herbs and spices – a mini review. Acta Sci. Pol. Technol. Aliment., 2016, 15(4), 353-368.
[http://dx.doi.org/10.17306/J.AFS.2016.4.34] [PMID: 28071013]
[4]
El-Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon, 2019, 5(6), e01989.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01989] [PMID: 31338458]
[5]
Wang, Y.F.; Shen, Z.C.; Li, J.; Liang, T.; Lin, X.F.; Li, Y.P.; Zeng, W.; Zou, Q.; Shen, J.L.; Wang, X.Y. Phytochemicals, biological activity, and industrial application of lotus seedpod (Receptaculum Nelumbinis): A review. Front. Nutr., 2022, 9, 1022794.
[http://dx.doi.org/10.3389/fnut.2022.1022794] [PMID: 36267901]
[6]
Santhiravel, S.; Bekhit, A.E.D.A.; Mendis, E.; Jacobs, J.L.; Dunshea, F.R.; Rajapakse, N.; Ponnampalam, E.N. The impact of plant phytochemicals on the gut microbiota of humans for a balanced life. Int. J. Mol. Sci., 2022, 23(15), 8124.
[http://dx.doi.org/10.3390/ijms23158124] [PMID: 35897699]
[7]
Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; Bahattab, O.; Thiruvengadam, M.; Suleria, H.A.R. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce—a comprehensive review. Antioxidants, 2022, 11(6), 1158.
[http://dx.doi.org/10.3390/antiox11061158] [PMID: 35740055]
[8]
Gosavi, S.; Subramanian, M.; Reddy, R.; Shet, B.L. A study of prescription pattern of neutraceuticals, knowledge of the patients and cost in a tertiary care hospital. J. Clin. Diagn. Res., 2016, 10(4), FC01-FC04.
[http://dx.doi.org/10.7860/JCDR/2016/18424.7620] [PMID: 27190824]
[9]
Monjotin, N.; Amiot, M.J.; Fleurentin, J.; Morel, J.M.; Raynal, S. Clinical evidence of the benefits of phytonutrients in human healthcare. Nutrients., 2022, 14(9), 1712.
[http://dx.doi.org/10.3390/nu14091712] [PMID: 35565680]
[10]
Kiokias, S.; Oreopoulou, V. A review of the health protective effects of phenolic acids against a range of severe pathologic conditions (Including Coronavirus-Based Infections). Molecules., 2021, 26(17), 5405.
[http://dx.doi.org/10.3390/molecules26175405] [PMID: 34500838]
[11]
Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.; Apone, F.; Abdel-Salam, E.; Qahtan, A.; Alatar, A.; Cantini, C.; Cai, G.; Hausman, J.F.; Siddiqui, K.; Hernández-Sotomayor, S.; Faisal, M. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes., 2018, 9(6), 309.
[http://dx.doi.org/10.3390/genes9060309] [PMID: 29925808]
[12]
Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T.; Zhang, M. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry. Foods., 2022, 11(8), 1170.
[http://dx.doi.org/10.3390/foods11081170] [PMID: 35454757]
[13]
Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal., 2019, 175, 112774.
[http://dx.doi.org/10.1016/j.jpba.2019.07.022] [PMID: 31336288]
[14]
Poulios, E.; Giaginis, C.; Vasios, G.K. Current advances on the extraction and identification of bioactive components of sage (Salvia spp.). Curr. Pharm. Biotechnol., 2019, 20(10), 845-857.
[http://dx.doi.org/10.2174/1389201020666190722130440] [PMID: 31333123]
[15]
Aba, P.E.; Ihedioha, J.I.; Asuzu, I.U. A review of the mechanisms of anti-cancer activities of some medicinal plants–biochemical perspectives. J. Basic Clin. Physiol. Pharmacol., 2021, 0(0)
[http://dx.doi.org/10.1515/jbcpp-2021-0257] [PMID: 34936737]
[16]
Guo, M.; Jin, J.; Zhao, D.; Rong, Z.; Cao, L.Q.; Li, A.H.; Sun, X.Y.; Jia, L.Y.; Wang, Y.D.; Huang, L.; Li, Y.H.; He, Z.J.; Li, L.; Ma, R.K.; Lv, Y.F.; Shao, K.K.; Cao, H.L. Research advances on anti-cancer natural products. Front. Oncol., 2022, 12, 866154.
[http://dx.doi.org/10.3389/fonc.2022.866154] [PMID: 35646647]
[17]
Marouf, R.; Mbarga, J.M.; Ermolaev, A.; Podoprigora, I.; Smirnova, I.; Yashina, N.; Zhigunova, A.; Martynenkova, A. Antibacterial activity of medicinal plants against uropathogenic Escherichia coli. J. Pharm. Bioallied Sci., 2022, 14(1), 1-12.
[http://dx.doi.org/10.4103/jpbs.jpbs_124_21] [PMID: 35784103]
[18]
Poulios, E.; Vasios, G.K.; Psara, E.; Giaginis, C. Medicinal plants consumption against urinary tract infections: A narrative review of the current evidence. Expert Rev. Anti Infect. Ther., 2021, 19(4), 519-528.
[http://dx.doi.org/10.1080/14787210.2021.1828061] [PMID: 33016791]
[19]
Lim, X.Y.; Teh, B.P.; Tan, T.Y.C. Medicinal plants in COVID-19: Potential and limitations. Front. Pharmacol., 2021, 12, 611408.
[http://dx.doi.org/10.3389/fphar.2021.611408] [PMID: 33841143]
[20]
Chavda, V.P.; Patel, A.B.; Vihol, D.; Vaghasiya, D.D.; Ahmed, K.M.S.B.; Trivedi, K.U.; Dave, D.J. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: An update. CCMP, 2022, 2(1), 100021.
[http://dx.doi.org/10.1016/j.ccmp.2022.100021] [PMID: 36620357]
[21]
Cote, B.; Elbarbry, F.; Bui, F.; Su, J.W.; Seo, K.; Nguyen, A.; Lee, M.; Rao, D.A. Mechanistic basis for the role of phytochemicals in inflammation-associated chronic diseases. Molecules., 2022, 27(3), 781.
[http://dx.doi.org/10.3390/molecules27030781] [PMID: 35164043]
[22]
Bashir, D.K.; Hussain, B.A.; Amin, S.; Masood, A.; Afzal, Z.M.; Ahmad Ganie, S. Inflammation: A multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr. Med. Chem., 2016, 23(33), 3775-3800.
[http://dx.doi.org/10.2174/0929867323666160817163531] [PMID: 27538691]
[23]
Zhao, X.; Kim, Y.R.; Min, Y.; Zhao, Y.; Do, K.; Son, Y.O. Natural plant extracts and compounds for rheumatoid arthritis therapy. Medicina., 2021, 57(3), 266.
[http://dx.doi.org/10.3390/medicina57030266] [PMID: 33803959]
[24]
Dudics, S.; Langan, D.; Meka, R.; Venkatesha, S.; Berman, B.; Che, C.T.; Moudgil, K. Natural products for the treatment of autoimmune arthritis: Their mechanisms of action, targeted delivery, and interplay with the host microbiome. Int. J. Mol. Sci., 2018, 19(9), 2508.
[http://dx.doi.org/10.3390/ijms19092508] [PMID: 30149545]
[25]
Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of alzheimer’s disease. Biomolecules., 2021, 11(4), 543.
[http://dx.doi.org/10.3390/biom11040543] [PMID: 33917843]
[26]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Disease-modifying treatment of Parkinson’s disease by phytochemicals: Targeting multiple pathogenic factors. J. Neural Transm., 2022, 129(5-6), 737-753.
[http://dx.doi.org/10.1007/s00702-021-02427-8] [PMID: 34654977]
[27]
Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev., 2021, 17(4), 437-456.
[http://dx.doi.org/10.2174/18756417MTExfMTQ1z] [PMID: 33143632]
[28]
Džamić, A.M.; Matejić, J.S. Plant products in the prevention of diabetes mellitus. Mini Rev. Med. Chem., 2022, 22(10), 1395-1419.
[http://dx.doi.org/10.2174/1389557521666211116122232] [PMID: 34784862]
[29]
Saqib, U.; Khan, M.A.; Alagumuthu, M.; Parihar, S.P.; Baig, M.S. Natural compounds as antiatherogenic agents. Cell. Mol. Biol., 2021, 67(1), 177-188.
[http://dx.doi.org/10.14715/cmb/2021.67.1.27] [PMID: 34817349]
[30]
Naveed, M.; Majeed, F.; Taleb, A.; Zubair, H.M.; Shumzaid, M.; Farooq, M.A.; Baig, M.M.F.A.; Abbas, M.; Saeed, M.; Changxing, L. A review of medicinal plants in cardiovascular disorders: Benefits and risks. Am. J. Chin. Med., 2020, 48(2), 259-286.
[http://dx.doi.org/10.1142/S0192415X20500147] [PMID: 32345058]
[31]
Kamyab, R.; Namdar, H.; Torbati, M.; Ghojazadeh, M.; Araj-Khodaei, M.; Fazljou, S.M.B. Medicinal plants in the treatment of hypertension: A review. Adv. Pharm. Bull., 2020, 11(4), 601-617.
[http://dx.doi.org/10.34172/apb.2021.090] [PMID: 34888207]
[32]
Chrysant, S.G.; Chrysant, G.S. Herbs used for the treatment of hypertension and their mechanism of action. Curr. Hypertens. Rep., 2017, 19(9), 77.
[http://dx.doi.org/10.1007/s11906-017-0775-5] [PMID: 28921053]
[33]
Alipour, R.; Marzabadi, L.R.; Arjmand, B.; Ayati, M.H.; Namazi, N. The effects of medicinal herbs on gut microbiota and metabolic factors in obesity models: A systematic review. Diabetes. Metab. Syndr., 2022, 16(9), 102586.
[http://dx.doi.org/10.1016/j.dsx.2022.102586] [PMID: 35961277]
[34]
Dincer, Y.; Yuksel, S. Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition., 2021, 84, 111119.
[http://dx.doi.org/10.1016/j.nut.2020.111119] [PMID: 33476999]
[35]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[36]
McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med., 2000, 108(8), 652-659.
[http://dx.doi.org/10.1016/S0002-9343(00)00412-5] [PMID: 10856414]
[37]
Azzi, A. Oxidative stress: What is it? can it be measured? where is it located? can it be good or bad? can it be prevented? can it be cured? Antioxidants., 2022, 11(8), 1431.
[http://dx.doi.org/10.3390/antiox11081431] [PMID: 35892633]
[38]
Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M.K. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal., 2007, 9(1), 49-89.
[http://dx.doi.org/10.1089/ars.2007.9.49] [PMID: 17115887]
[39]
Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 2010, 48(6), 749-762.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.022] [PMID: 20045723]
[40]
Poulios, E.; Giaginis, C.; Vasios, G.K. Current state of the art on the antioxidant activity of sage (Salvia spp.) and its bioactive components. Planta Med., 2020, 86(4), 224-238.
[http://dx.doi.org/10.1055/a-1087-8276] [PMID: 31975363]
[41]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines., 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[42]
Nakatani, N. Phenolic antioxidants from herbs and spices. Biofactors., 2000, 13(1-4), 141-146.
[http://dx.doi.org/10.1002/biof.5520130123] [PMID: 11237173]
[43]
Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 2022, 383, 132531.
[http://dx.doi.org/10.1016/j.foodchem.2022.132531] [PMID: 35413752]
[44]
Piccolella, S.; Crescente, G.; Volpe, M.G.; Paolucci, M.; Pacifico, S. UHPLC-HR-MS/MS-guided recovery of bioactive flavonol compounds from greco di tufo vine leaves. Molecules, 2019, 24(19), 3630.
[http://dx.doi.org/10.3390/molecules24193630] [PMID: 31597396]
[45]
Cordell, G.A. Biodiversity and drug discovery — a symbiotic relationship. Phytochemistry., 2000, 55(6), 463-480.
[http://dx.doi.org/10.1016/S0031-9422(00)00230-2] [PMID: 11130658]
[46]
Doytchinova, I. Drug design—past, present, future. Molecules., 2022, 27(5), 1496.
[http://dx.doi.org/10.3390/molecules27051496] [PMID: 35268598]
[47]
Lambrinidis, G.; Tsantili-Kakoulidou, A. Multi-objective optimization methods in novel drug design. Expert Opin. Drug Discov., 2021, 16(6), 647-658.
[http://dx.doi.org/10.1080/17460441.2021.1867095] [PMID: 33353441]
[48]
Singh, S.B.; Pelaez, F. Biodiversity, chemical diversity and drug discovery. Prog. Drug Res., 2008, 65, 141-174, 143-174.
[http://dx.doi.org/10.1007/978-3-7643-8117-2_4] [PMID: 18084915]
[49]
Concu, R.; Goyal, A.K.; Gupta, U. Recent advances in computer aided drug design. Curr. Top. Med. Chem., 2023, 23(1), 30.
[http://dx.doi.org/10.2174/156802662301230113160655] [PMID: 36891921]
[50]
Giaginis, C.; Tsopelas, F.; Tsantili-Kakoulidou, A. The impact of lipophilicity in drug discovery: Rapid measurements by means of reversed-phase HPLC. Methods Mol. Biol., 2018, 1824, 217-228.
[http://dx.doi.org/10.1007/978-1-4939-8630-9_12] [PMID: 30039409]
[51]
Diederich, M. Natural products target the hallmarks of chronic diseases. Biochem. Pharmacol., 2020, 173, 113828.
[http://dx.doi.org/10.1016/j.bcp.2020.113828] [PMID: 32001237]
[52]
Tang, S.W.; Tang, W.H. Opportunities in novel psychotropic drug design from natural compounds. Int. J. Neuropsychopharmacol., 2019, 22(9), 601-607.
[http://dx.doi.org/10.1093/ijnp/pyz042] [PMID: 31353393]
[53]
Giaginis, C.; Theocharis, S.; Tsantili-Kakoulidou, A. Structural basis for the design of PPAR-gamma ligands: a survey on quantitative structure- activity relationships. Mini Rev. Med. Chem., 2009, 9(9), 1075-1083.
[http://dx.doi.org/10.2174/138955709788922601] [PMID: 19689404]
[54]
Giaginis, C.; Theocharis, S.; Tsantili-Kakoulidou, A. Quantitative structure-activity relationships for PPAR-gamma binding and gene transactivation of tyrosine-based agonists using multivariate statistics. Chem. Biol. Drug Des., 2008, 72(4), 257-264.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00701.x] [PMID: 18793305]
[55]
Vallianatou, T.; Lambrinidis, G.; Giaginis, C.; Mikros, E.; Tsantili-Kakoulidou, A. Analysis of PPAR-α/γ Activity by Combining 2-D QSAR and Molecular Simulation. Mol. Inform., 2013, 32(5-6), 431-445.
[http://dx.doi.org/10.1002/minf.201200117] [PMID: 27481664]
[56]
Vasios, G.; Kosmidi, A.; Kalantzi, O.I.; Tsantili-Kakoulidou, A.; Kavantzas, N.; Theocharis, S.; Giaginis, C. Simple physicochemical properties related with lipophilicity, polarity, molecular size and ionization status exert significant impact on the transfer of drugs and chemicals into human breast milk. Expert Opin. Drug Metab. Toxicol., 2016, 12(11), 1273-1278.
[http://dx.doi.org/10.1080/17425255.2016.1230197] [PMID: 27573378]
[57]
Giaginis, C.; Theocharis, S.; Tsantili-Kakoulidou, A. Current toxicological aspects on drug and chemical transport and metabolism across the human placental barrier. Expert Opin. Drug Metab. Toxicol., 2012, 8(10), 1263-1275.
[http://dx.doi.org/10.1517/17425255.2012.699041] [PMID: 22780574]
[58]
Giaginis, C.; Zira, A.; Theocharis, S.; Tsantili-Kakoulidou, A. Application of quantitative structure–activity relationships for modeling drug and chemical transport across the human placenta barrier: A multivariate data analysis approach. J. Appl. Toxicol., 2009, 29(8), 724-733.
[http://dx.doi.org/10.1002/jat.1466] [PMID: 19728316]
[59]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[60]
Zhang, Y.; Luo, M.; Wu, P.; Wu, S.; Lee, T.Y.; Bai, C. Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci., 2022, 23(21), 13568.
[http://dx.doi.org/10.3390/ijms232113568] [PMID: 36362355]
[61]
Vallianatou, T.; Giaginis, C.; Tsantili-Kakoulidou, A. The impact of physicochemical and molecular properties in drug design: Navigation in the “drug-like” chemical space. Adv. Exp. Med. Biol., 2015, 822, 187-194.
[http://dx.doi.org/10.1007/978-3-319-08927-0_21] [PMID: 25416989]
[62]
Giaginis, C.; Tsantili-Kakoulidou, A. Quantitative structure-retention relationships as useful tool to characterize chromatographic systems and their potential to simulate biological processes. Chromatographia., 2013, 76(5-6), 211-226.
[http://dx.doi.org/10.1007/s10337-012-2374-6]
[63]
Giaginis, C.; Tsantili-Kakoulidou, A. Current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J. Liq. Chromatogr. Relat. Technol., 2007, 31(1), 79-96.
[http://dx.doi.org/10.1080/10826070701665626]
[64]
Tsopelas, F.; Giaginis, C.; Tsantili-Kakoulidou, A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin. Drug Discov., 2017, 12(9), 885-896.
[http://dx.doi.org/10.1080/17460441.2017.1344210] [PMID: 28644732]
[65]
Chrysanthakopoulos, M.; Vallianatou, T.; Giaginis, C.; Tsantili-Kakoulidou, A. Investigation of the retention behavior of structurally diverse drugs on alpha1 acid glycoprotein column: Insight on the molecular factors involved and correlation with protein binding data. Eur. J. Pharm. Sci., 2014, 60, 24-31.
[http://dx.doi.org/10.1016/j.ejps.2014.04.015] [PMID: 24800938]
[66]
Chrysanthakopoulos, M.; Giaginis, C.; Tsantili-Kakoulidou, A. Retention of structurally diverse drugs in human serum albumin chromatography and its potential to simulate plasma protein binding. J. Chromatogr. A, 2010, 1217(37), 5761-5768.
[http://dx.doi.org/10.1016/j.chroma.2010.07.023] [PMID: 20691448]
[67]
Kenny, P.W. Hydrogen-bond donors in drug design. J. Med. Chem., 2022, 65(21), 14261-14275.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01147] [PMID: 36282210]
[68]
Borges, N.M.; Kenny, P.W.; Montanari, C.A.; Prokopczyk, I.M.; Ribeiro, J.F.R.; Rocha, J.R.; Sartori, G.R. The influence of hydrogen bonding on partition coefficients. J. Comput. Aided Mol. Des., 2017, 31(2), 163-181.
[http://dx.doi.org/10.1007/s10822-016-0002-5] [PMID: 28054187]
[69]
Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm., 2019, 570, 118642.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118642] [PMID: 31446024]
[70]
Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr., 2022, 62(28), 7730-7742.
[http://dx.doi.org/10.1080/10408398.2021.1917508] [PMID: 34078189]
[71]
Tsopelas, F.; Tsagkrasouli, M.; Poursanidis, P.; Pitsaki, M.; Vasios, G.; Danias, P.; Panderi, I.; Tsantili-Kakoulidou, A.; Giaginis, C. Retention behavior of flavonoids on immobilized artificial membrane chromatography and correlation with cell-based permeability. Biomed. Chromatogr., 2018, 32(3), e4108.
[http://dx.doi.org/10.1002/bmc.4108] [PMID: 29044623]
[72]
Terao, J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem. Pharmacol., 2017, 139, 15-23.
[http://dx.doi.org/10.1016/j.bcp.2017.03.021] [PMID: 28377278]
[73]
Alizadeh, S.R.; Ebrahimzadeh, M.A. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur. J. Med. Chem., 2022, 229, 114068.
[http://dx.doi.org/10.1016/j.ejmech.2021.114068] [PMID: 34971873]
[74]
Kim, B.; Hong, J. An overview of naturally occurring histone deacetylase inhibitors. Curr. Top. Med. Chem., 2015, 14(24), 2759-2782.
[http://dx.doi.org/10.2174/1568026615666141208105614] [PMID: 25487010]
[75]
Singh, A.; Bishayee, A.; Pandey, A. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), 731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]
[76]
Qiu, X.; Zhu, L.; Wang, H.; Tan, Y.; Yang, Z.; Yang, L.; Wan, L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg. Med. Chem., 2021, 52, 116510.
[http://dx.doi.org/10.1016/j.bmc.2021.116510] [PMID: 34826681]
[77]
El-Saber Batiha, G.; Magdy Beshbishy, A.; G Wasef, L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 2020, 12(3), 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[78]
Ramirez, D.A.; Federici, M.F.; Altamirano, J.C.; Camargo, A.B.; Luco, J.M. Permeability data of organosulfur garlic compounds estimated by immobilized artificial membrane chromatography: Correlation across several biological barriers. Front Chem., 2021, 9, 690707.
[http://dx.doi.org/10.3389/fchem.2021.690707] [PMID: 34616711]
[79]
Gogou, A.; Triantaphyllou, M.; Xoplaki, E.; Izdebski, A.; Parinos, C.; Dimiza, M.; Bouloubassi, I.; Luterbacher, J.; Kouli, K.; Martrat, B.; Toreti, A.; Fleitmann, D.; Rousakis, G.; Kaberi, H.; Athanasiou, M.; Lykousis, V. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years. Quat. Sci. Rev., 2016, 136, 209-228.
[http://dx.doi.org/10.1016/j.quascirev.2016.01.009]
[80]
Kallimanis, A.S.; Panitsa, M.; Bergmeier, E.; Dimopoulos, P. Examining the relationship between total species richness and single island palaeo- and neo-endemics. Acta Oecol., 2011, 37(2), 65-70.
[http://dx.doi.org/10.1016/j.actao.2010.11.008]
[81]
Axiotis, E.; Halabalaki, M.; Skaltsounis, L.A. An ethnobotanical study of medicinal plants in the greek islands of north aegean region. Front. Pharmacol., 2018, 9, 409.
[http://dx.doi.org/10.3389/fphar.2018.00409] [PMID: 29875656]
[82]
Panitsa, M.; Trigas, P.; Iatrou, G.; Sfenthourakis, S. Factors affecting plant species richness and endemism on land-bridge islands – An example from the East Aegean archipelago. Acta Oecol., 2010, 36(4), 431-437.
[http://dx.doi.org/10.1016/j.actao.2010.04.004]
[83]
Di Giacomo, S.; Di Sotto, A.; Angelis, A.; Percaccio, E.; Vitalone, A.; Gullì, M.; Macone, A.; Axiotis, E.; Skaltsounis, A.L. Phytochemical composition and cytoprotective properties of the endemic sideritis sipylea boiss greek species: A valorization study. Pharmaceuticals., 2022, 15(8), 987.
[http://dx.doi.org/10.3390/ph15080987] [PMID: 36015136]
[84]
Axiotis, E.; Petrakis, E.A.; Halabalaki, M.; Mitakou, S. Phytochemical profile and biological activity of endemic sideritis sipylea boiss. in North Aegean Greek Islands. Molecules, 2020, 25(9), 2022.
[http://dx.doi.org/10.3390/molecules25092022] [PMID: 32357535]
[85]
Giaginis, C.; Tsantili-Kakoulidou, A. Alternative measures of lipophilicity: From octanol-water partitioning to IAM retention. J. Pharm. Sci., 2008, 97(8), 2984-3004.
[http://dx.doi.org/10.1002/jps.21244] [PMID: 18553641]
[86]
Nobakht, S.Z.; Akaberi, M.; Mohammadpour, A.H.; Tafazoli Moghadam, A.; Emami, S.A. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran. J. Basic Med. Sci., 2022, 25(9), 1045-1058.
[http://dx.doi.org/10.22038/IJBMS.2022.65112.14338] [PMID: 36246064]
[87]
Zirak, N.; Shafiee, M.; Soltani, G.; Mirzaei, M.; Sahebkar, A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J. Cell. Physiol., 2019, 234(6), 8496-8508.
[http://dx.doi.org/10.1002/jcp.27781] [PMID: 30461013]
[88]
Arndt, S.; Haag, S.F.; Kleemann, A.; Lademann, J.; Meinke, M.C. Radical protection in the visible and infrared by a hyperforin-rich cream - in vivo versus ex vivo methods. Exp. Dermatol., 2013, 22(5), 354-357.
[http://dx.doi.org/10.1111/exd.12124] [PMID: 23614743]
[89]
Haag, S.F.; Tscherch, K.; Arndt, S.; Kleemann, A.; Gersonde, I.; Lademann, J.; Rohn, S.; Meinke, M.C. Enhancement of skin radical scavenging activity and stratum corneum lipids after the application of a hyperforin-rich cream. Eur. J. Pharm. Biopharm., 2014, 86(2), 227-233.
[http://dx.doi.org/10.1016/j.ejpb.2013.06.016] [PMID: 23811220]
[90]
El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life., 2022, 12(4), 479.
[http://dx.doi.org/10.3390/life12040479] [PMID: 35454969]
[91]
Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition, 2016, 32(1), 66-72.
[http://dx.doi.org/10.1016/j.nut.2015.07.011] [PMID: 26437613]
[92]
Rafraf, M.; Zemestani, M.; Asghari-Jafarabadi, M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J. Endocrinol. Invest., 2015, 38(2), 163-170.
[http://dx.doi.org/10.1007/s40618-014-0170-x] [PMID: 25194428]
[93]
Kolodziejczyk-Czepas, J.; Bijak, M.; Saluk, J.; Ponczek, M.B.; Zbikowska, H.M.; Nowak, P.; Tsirigotis-Maniecka, M.; Pawlaczyk, I. Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic–polysaccharide conjugates. Int. J. Biol. Macromol., 2015, 72, 1152-1158.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.032] [PMID: 25285848]
[94]
Zhang, L.L.; Chen, Y.; Li, Z.J.; Li, X.; Fan, G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: a review. Food Funct., 2022, 13(6), 3110-3132.
[http://dx.doi.org/10.1039/D1FO04080D] [PMID: 35212344]
[95]
El Menyiy, N.; Mrabti, H.N.; El Omari, N.; Bakili, A.E.I.; Bakrim, S.; Mekkaoui, M.; Balahbib, A.; Amiri-Ardekani, E.; Ullah, R.; Alqahtani, A.S.; Shahat, A.A.; Bouyahya, A. Medicinal uses, phytochemistry, pharmacology, and toxicology of Mentha spicata. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-32.
[http://dx.doi.org/10.1155/2022/7990508] [PMID: 35463088]
[96]
Ainehchi, N.; Khaki, A.; Farshbaf-Khalili, A.; Hammadeh, M.; Ouladsahebmadarek, E. The effectiveness of herbal mixture supplements with and without clomiphene citrate in comparison to clomiphene citrate on serum antioxidants and glycemic biomarkers in women with polycystic ovary syndrome willing to be pregnant: A randomized clinical trial. Biomolecules., 2019, 9(6), 215.
[http://dx.doi.org/10.3390/biom9060215] [PMID: 31163689]
[97]
Fraga, B.M. Phytochemistry and chemotaxonomy of Sideritis species from the Mediterranean region. Phytochemistry., 2012, 76, 7-24.
[http://dx.doi.org/10.1016/j.phytochem.2012.01.018] [PMID: 22326508]
[98]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol., 2011, 135(2), 209-225.
[http://dx.doi.org/10.1016/j.jep.2011.03.014] [PMID: 21420484]
[99]
Skouroliakou, M.; Kastanidou, O.; Stathopoulou, M.; Vourli, G. Evaluation of the antioxidant effect of a new functional food enriched with Sideritis euboea in healthy subjects. J. Med. Food, 2009, 12(5), 1105-1110.
[http://dx.doi.org/10.1089/jmf.2008.0172] [PMID: 19857076]
[100]
Papagianni, O.; Argyri, K.; Loukas, T.; Magkoutis, A.; Biagki, T.; Skalkos, D.; Kafetzopoulos, D.; Dimou, C.; Karantonis, H.C.; Koutelidakis, A.E. Postprandial bioactivity of a spread cheese enriched with mountain tea and orange peel extract in plasma oxidative stress status, serum lipids and glucose levels: An interventional study in healthy adults. Biomolecules., 2021, 11(8), 1241.
[http://dx.doi.org/10.3390/biom11081241] [PMID: 34439907]
[101]
Tepe, B.; Cakir, A.; Sihoglu Tepe, A. Medicinal uses, phytochemistry, and pharmacology of origanum onites (L.): A review. Chem. Biodivers., 2016, 13(5), 504-520.
[http://dx.doi.org/10.1002/cbdv.201500069] [PMID: 27062715]
[102]
Özdemir, B.; Ekbul, A.; Topal, N.B.; Sarandöl, E.; Sağ, S.; Başer, K.H.C.; Cordan, J.; Güllülü, S.; Tuncel, E.; Baran, İ.; Aydinlar, A. Effects of Origanum onites on endothelial function and serum biochemical markers in hyperlipidaemic patients. J. Int. Med. Res., 2008, 36(6), 1326-1334.
[http://dx.doi.org/10.1177/147323000803600621] [PMID: 19094443]
[103]
Sehaki, C.; Jullian, N.; Ayati, F.; Fernane, F.; Gontier, E. A review of Pistacia lentiscus polyphenols: Chemical diversity and pharmacological activities. Plants., 2023, 12(2), 279.
[http://dx.doi.org/10.3390/plants12020279] [PMID: 36678991]
[104]
Papada, E.; Kaliora, A.C. Antioxidant and anti-inflammatory properties of mastiha: A review of preclinical and clinical studies. Antioxidants., 2019, 8(7), 208.
[http://dx.doi.org/10.3390/antiox8070208] [PMID: 31284520]
[105]
Papada, E.; Gioxari, A.; Brieudes, V.; Amerikanou, C.; Halabalaki, M.; Skaltsounis, A.L.; Smyrnioudis, I.; Kaliora, A.C. Bioavailability of terpenes and postprandial effect on human antioxidant potential. An open-label study in healthy subjects. Mol. Nutr. Food Res., 2018, 62(3), 1700751. a
[http://dx.doi.org/10.1002/mnfr.201700751] [PMID: 29171157]
[106]
Papada, E.; Forbes, A.; Amerikanou, C.; Torović, L.; Kalogeropoulos, N.; Tzavara, C.; Triantafillidis, J.; Kaliora, A. Antioxidative efficacy of a Pistacia lentiscus supplement and its effect on the plasma amino acid profile in inflammatory bowel disease: A randomised, double-blind, placebo-controlled trial. Nutrients., 2018, 10(11), 1779. b
[http://dx.doi.org/10.3390/nu10111779] [PMID: 30453494]
[107]
Kontogiannis, C.; Georgiopoulos, G.; Loukas, K.; Papanagnou, E.D.; Pachi, V.K.; Bakogianni, I.; Laina, A.; Kouzoupis, A.; Karatzi, K.; Trougakos, I.P.; Stamatelopoulos, K. Chios mastic improves blood pressure haemodynamics in patients with arterial hypertension: Implications for regulation of proteostatic pathways. Eur. J. Prev. Cardiol., 2019, 26(3), 328-331.
[http://dx.doi.org/10.1177/2047487318796985] [PMID: 30160513]
[108]
Kanoni, S.; Kumar, S.; Amerikanou, C.; Kurth, M.J.; Stathopoulou, M.G.; Bourgeois, S.; Masson, C.; Kannt, A.; Cesarini, L.; Kontoe, M.S.; Milanović, M.; Roig, F.J.; Beribaka, M.; Campolo, J.; Jiménez-Hernández, N.; Milošević, N.; Llorens, C.; Smyrnioudis, I.; Francino, M.P.; Milić, N.; Kaliora, A.C.; Trivella, M.G.; Ruddock, M.W.; Medić-Stojanoska, M.; Gastaldelli, A.; Lamont, J.; Deloukas, P.; Dedoussis, G.V.; Visvikis-Siest, S. Nutrigenetic interactions might modulate the antioxidant and anti-inflammatory status in mastiha-supplemented patients with NAFLD. Front. Immunol., 2021, 12, 683028.
[http://dx.doi.org/10.3389/fimmu.2021.683028]
[109]
de Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci., 2019, 26(1), 5.
[http://dx.doi.org/10.1186/s12929-019-0499-8] [PMID: 30621719]
[110]
Bermejo, L.M.; López-Plaza, B.; Weber, T.K.; Palma-Milla, S.; Iglesias, C.; Reglero, G.; Gómez-Candela, C. Impact of cooked functional meat enriched with omega-3 fatty acids and rosemary extract on inflammatory and oxidative status; a randomised, double-blind, crossover study. Nutr. Hosp., 2014, 30(5), 1084-1091.
[http://dx.doi.org/10.3305/nh.2014.30.5.8048] [PMID: 25365012]
[111]
Nobile, V.; Schiano, I.; Peral, A.; Giardina, S.; Spartà, E.; Caturla, N. Antioxidant and reduced skin-ageing effects of a polyphenol-enriched dietary supplement in response to air pollution: A randomized, double-blind, placebo-controlled study. Food Nutr. Res., 2021, 65.
[http://dx.doi.org/10.29219/fnr.v65.5619] [PMID: 33889065]
[112]
Sá, C.; Ramos, A.; Azevedo, M.; Lima, C.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Sage tea drinking improves lipid profile and antioxidant defences in humans. Int. J. Mol. Sci., 2009, 10(9), 3937-3950.
[http://dx.doi.org/10.3390/ijms10093937] [PMID: 19865527]
[113]
Kianbakht, S.; Nabati, F.; Abasi, B. Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: A randomized clinical trial. Int. J. Mol. Cell. Med., 2016, 5(3), 141-148.
[PMID: 27942500]
[114]
Li, Y.; Zhang, X.; Li, Y.; Yang, P.; Zhang, Z.; Wu, H.; Zhu, L.; Liu, Y. Preparation methods, structural characteristics, and biological activity of polysaccharides from Salvia miltiorrhiza: A review. J. Ethnopharmacol., 2023, 305, 116090.
[http://dx.doi.org/10.1016/j.jep.2022.116090] [PMID: 36587878]
[115]
Wei, Z.; Jinguo, D. Effectiveness of Radix astragali and Salvia miltiorrhiza injection in treatment of skeletal muscle injury of aerobics athletes. Pak. J. Pharm. Sci., 2018, 31(4(Special)), 1767-1771.
[PMID: 30203777]
[116]
Qian, Q.; Qian, S.; Fan, P.; Huo, D.; Wang, S. Effect of Salvia miltiorrhiza hydrophilic extract on antioxidant enzymes in diabetic patients with chronic heart disease: A randomized controlled trial. Phytother. Res., 2012, 26(1), 60-66. a
[http://dx.doi.org/10.1002/ptr.3513] [PMID: 21544882]
[117]
Qian, S.; Wang, S.; Fan, P.; Huo, D.; Dai, L.; Qian, Q. Effect of Salvia miltiorrhiza hydrophilic extract on the endothelial biomarkers in diabetic patients with chronic artery disease. Phytother. Res., 2012, 26(10), 1575-1578. b
[http://dx.doi.org/10.1002/ptr.4611] [PMID: 22318996]
[118]
Pu, C.; Yang, Y.B.; Sun, Q.L. [Effects of Salvia miltiorrhiza on oxidative stress and microinflammatory state in patients undergoing continuous hemodialysis]. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2006, 26(9), 791-794.
[PMID: 17058827]
[119]
Zarzuelo, A.; Crespo, E. The medicinal and non-medicinal uses of thyme. In: Thyme: The Genus Thymus; Stahl-Biskup, E.; Saez, F., Eds.; Medicinal and Aromatic Plants-Industrial Profiles, 2002.
[120]
Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants., 2020, 9(9), 814.
[http://dx.doi.org/10.3390/antiox9090814] [PMID: 32882987]
[121]
Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/657026] [PMID: 22919415]
[122]
Amiri, H. Essential oils composition and antioxidant properties of three thymus species. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/728065] [PMID: 21876714]
[123]
Farràs, M.; Fernández-Castillejo, S.; Rubió, L.; Arranz, S.; Catalán, Ú.; Subirana, I.; Romero, M.P.; Castañer, O.; Pedret, A.; Blanchart, G.; Muñoz-Aguayo, D.; Schröder, H.; Covas, M.I.; de la Torre, R.; Motilva, M.J.; Solà, R.; Fitó, M. Phenol-enriched olive oils improve HDL antioxidant content in hypercholesterolemic subjects. A randomized, double-blind, cross-over, controlled trial. J. Nutr. Biochem., 2018, 51, 99-104.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.010] [PMID: 29125992]
[124]
Martín-Peláez, S.; Mosele, J.I.; Pizarro, N.; Farràs, M.; de la Torre, R.; Subirana, I.; Pérez-Cano, F.J.; Castañer, O.; Solà, R.; Fernandez-Castillejo, S.; Heredia, S.; Farré, M.; Motilva, M.J.; Fitó, M. Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota. Eur. J. Nutr., 2017, 56(1), 119-131.
[http://dx.doi.org/10.1007/s00394-015-1063-2] [PMID: 26541328]
[125]
Farràs, M.; Arranz, S.; Carrión, S.; Subirana, I.; Muñoz-Aguayo, D.; Blanchart, G.; Kool, M.; Solà, R.; Motilva, M.J.; Escolà-Gil, J.C.; Rubió, L.; Fernández-Castillejo, S.; Pedret, A.; Estruch, R.; Covas, M.I.; Fitó, M.; Hernáez, Á.; Castañer, O. A functional virgin olive oil enriched with olive oil and thyme phenolic compounds improves the expression of cholesterol efflux-related genes: A randomized, crossover, controlled trial. Nutrients, 2019, 11(8), 1732.
[http://dx.doi.org/10.3390/nu11081732] [PMID: 31357534]
[126]
Pedret, A.; Fernández-Castillejo, S.; Valls, R.M.; Catalán, Ú.; Rubió, L.; Romeu, M.; Macià, A.; López de las Hazas, M.C.; Farràs, M.; Giralt, M.; Mosele, J.I.; Martín-Peláez, S.; Remaley, A.T.; Covas, M.I.; Fitó, M.; Motilva, M.J.; Solà, R. Cardiovascular benefits of phenol-enriched virgin olive oils: New insights from the virgin olive oil and HDL functionality (VOHF) study. Mol. Nutr. Food Res., 2018, 62(16), 1800456.
[http://dx.doi.org/10.1002/mnfr.201800456] [PMID: 29956886]
[127]
Fernández-Castillejo, S.; García-Heredia, A.I.; Solà, R.; Camps, J.; López de la Hazas, M.C.; Farràs, M.; Pedret, A.; Catalán, Ú.; Rubió, L.; Motilva, M.J.; Castañer, O.; Covas, M.I.; Valls, R.M. Phenol-enriched olive oils modify paraoxonase-related variables: A randomized, crossover, controlled trial. Mol. Nutr. Food Res., 2017, 61(10), 1600932.
[http://dx.doi.org/10.1002/mnfr.201600932] [PMID: 28544610]
[128]
Romeu, M.; Rubió, L.; Sánchez-Martos, V.; Castañer, O.; de la Torre, R.; Valls, R.M.; Ras, R.; Pedret, A.; Catalán, Ú.; López de las Hazas, M.C.; Motilva, M.J.; Fitó, M.; Solà, R.; Giralt, M. Virgin olive oil enriched with its own phenols or complemented with thyme phenols improves DNA protection against oxidation and antioxidant enzyme activity in hyperlipidemic subjects. J. Agric. Food Chem., 2016, 64(9), 1879-1888.
[http://dx.doi.org/10.1021/acs.jafc.5b04915] [PMID: 26889783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy