Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance

Author(s): Archna Panghal and Gopabandhu Jena*

Volume 20, Issue 4, 2024

Published on: 06 October, 2023

Article ID: e220823220204 Pages: 13

DOI: 10.2174/1573399820666230822151740

Price: $65

Abstract

Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.

[1]
Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem 2018; 62: 2-10.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.03.012] [PMID: 29555319]
[2]
Dissanayake DMIH, Keerthirathna WLR, Peiris LDC. Male infertility problem: A contemporary review on present status and future per-spective. Gend Genome 2019; 3.
[http://dx.doi.org/10.1177/2470289719868240]
[3]
Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes 2015; 6(4): 598-612.
[http://dx.doi.org/10.4239/wjd.v6.i4.598] [PMID: 25987957]
[4]
Atlas D. International diabetes federation IDF Diabetes Atlas. (7th ed.), Brussels, Belgium: International Diabetes Federation 2015.
[5]
Kushwaha S, Jena GB. Effects of nicotine on the testicular toxicity of streptozotocin-induced diabetic rat. Hum Exp Toxicol 2014; 33(6): 609-22.
[http://dx.doi.org/10.1177/0960327113491509] [PMID: 24044905]
[6]
Jiang YP, Ye RJ, Yang JM, et al. Protective effects of Salidroside on spermatogenesis in streptozotocin induced type-1 diabetic male mice by inhibiting oxidative stress mediated blood-testis barrier damage. Chem Biol Interact 2020; 315108869.
[http://dx.doi.org/10.1016/j.cbi.2019.108869] [PMID: 31682803]
[7]
Soliman GA, Abdel-Rahman RF, Ogaly HA, et al. Momordica charantia extract protects against diabetes-related spermatogenic dysfunction in male rats: Molecular and biochemical study. Molecules 2020; 25(22): 5255.
[http://dx.doi.org/10.3390/molecules25225255] [PMID: 33187275]
[8]
Alves MG, Martins AD, Rato L, Moreira PI, Socorro S, Oliveira PF. Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta Mol Basis Dis 2013; 1832(5): 626-35.
[http://dx.doi.org/10.1016/j.bbadis.2013.01.011] [PMID: 23348098]
[9]
Jangir R, Jain G. Diabetes mellitus induced impairment of male reproductive functions: A review. Curr Diabetes Rev 2014; 10(3): 147-57.
[http://dx.doi.org/10.2174/1573399810666140606111745] [PMID: 24919656]
[10]
Alves MG, Martins AD, Cavaco JE, Socorro S, Oliveira PF. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function. Tissue Barriers 2013; 1(2): e23992.
[http://dx.doi.org/10.4161/tisb.23992] [PMID: 24665384]
[11]
Zhu X, Guo F, Tang H, et al. Islet transplantation attenuating testicular injury in type 1 diabetic rats is associated with suppression of oxi-dative stress and inflammation via Nrf-2/HO-1 and NF- κ B pathways. J Diabetes Res 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/8712492] [PMID: 31583254]
[12]
Abdel-Aziz AM, Abozaid SMM, Yousef RKM, Mohammed MM, Khalaf HM. Fenofibrate ameliorates testicular damage in rats with strep-tozotocin-induced type 1 diabetes: Role of HO-1 and p38 MAPK. Pharmacol Rep 2020; 72(6): 1645-56.
[http://dx.doi.org/10.1007/s43440-020-00096-0] [PMID: 32515004]
[13]
Panghal A, Sahu C, Singla S, Jena G. Juvenile exposure and adult risk assessment with single versus repeated exposure of melphalan in the germ cells of male SD rat: Deciphering the molecular mechanisms. Reprod Toxicol 2022; 113: 71-84.
[http://dx.doi.org/10.1016/j.reprotox.2022.08.006] [PMID: 35961530]
[14]
Guo Y, Sun J, Li T, et al. Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/HO-1 signaling pathway. Sci Rep 2017; 7(1): 9599.
[http://dx.doi.org/10.1038/s41598-017-09943-2] [PMID: 28851995]
[15]
Wang M, Wang X, Li Y, et al. Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway. Cell Death Dis 2020; 11(1): 46.
[http://dx.doi.org/10.1038/s41419-020-2246-1] [PMID: 31969557]
[16]
Nna VU, Abu Bakar AB, Ahmad A, Eleazu CO, Mohamed M. Oxidative stress, NF-κB-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants 2019; 8(10): 465.
[http://dx.doi.org/10.3390/antiox8100465] [PMID: 31600920]
[17]
BaSalamah MA. Abdelghany AH, El-Boshy M, Ahmad J, Idris S, Refaat B. Vitamin D alleviates lead induced renal and testicular injuries by immunomodulatory and antioxidant mechanisms in rats. Sci Rep 2018; 8(1): 4853.
[http://dx.doi.org/10.1038/s41598-018-23258-w] [PMID: 29556070]
[18]
Kho ZY, Lal SK. The Human Gut Microbiome - A potential controller of wellness and disease. Front Microbiol 2018; 9: 1835.
[http://dx.doi.org/10.3389/fmicb.2018.01835] [PMID: 30154767]
[19]
Cani PD. Crosstalk between the gut microbiota and the endocannabinoid system: Impact on the gut barrier function and the adipose tissue. Clin Microbiol Infect 2012; 18 (Suppl. 4): 50-3.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03866.x] [PMID: 22647050]
[20]
Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019; 565(7741): 600-5.
[http://dx.doi.org/10.1038/s41586-019-0878-z] [PMID: 30675064]
[21]
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500(7461): 232-6.
[http://dx.doi.org/10.1038/nature12331] [PMID: 23842501]
[22]
Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[23]
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[24]
Hudry B, de Goeij E, Mineo A, et al. Sex differences in intestinal carbohydrate metabolism promote food intake and sperm maturation. Cell 2019; 178(4): 901-918.e16.
[http://dx.doi.org/10.1016/j.cell.2019.07.029] [PMID: 31398343]
[25]
Fenner A. Gut–gonad communication masculinizes metabolism. Nat Rev Urol 2019; 16(10): 567-7.
[http://dx.doi.org/10.1038/s41585-019-0231-1] [PMID: 31467439]
[26]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[27]
Lew KN, Starkweather A. Cong X, Judge M. A mechanistic model of gut–brain axis perturbation and high-fat diet pathways to gut microbiome homeostatic disruption, systemic inflammation, and type 2 diabetes. Biol Res Nurs 2019; 21(4): 384-99.
[http://dx.doi.org/10.1177/1099800419849109] [PMID: 31113222]
[28]
Tremellen K. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING) - a novel theory for the development of late onset hypogonadism in obese men. Basic Clin Androl 2016; 26(1): 7.
[http://dx.doi.org/10.1186/s12610-016-0034-7] [PMID: 27340554]
[29]
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl 2011; 32(6): 625-40.
[http://dx.doi.org/10.2164/jandrol.111.012989] [PMID: 21764900]
[30]
Shin T, Iwahata T, Suzuki K, Kobori Y, Okada H. Inflammatory bowel disease and male infertility: A retrospective single-center study in Japan. Fertil Steril 2014; 102(3): e190-1.
[http://dx.doi.org/10.1016/j.fertnstert.2014.07.642]
[31]
Piton N, Roquet ML, Sibert L, Sabourin JC. Focal non granulomatous orchitis in a patient with Crohn’s disease. Diagn Pathol 2015; 10(1): 39.
[http://dx.doi.org/10.1186/s13000-015-0273-5] [PMID: 25927973]
[32]
Liu CY, Chou YC, Chao JCJ, Hsu CY, Cha TL, Tsao CW. The association between dietary patterns and semen quality in a general asian population of 7282 males. PLoS One 2015; 10(7): e0134224.
[http://dx.doi.org/10.1371/journal.pone.0134224] [PMID: 26218796]
[33]
Al-Asmakh M, Stukenborg JB, Reda A, et al. The gut microbiota and developmental programming of the testis in mice. PLoS One 2014; 9(8): e103809.
[http://dx.doi.org/10.1371/journal.pone.0103809] [PMID: 25118984]
[34]
Bi Y, Li T, Pan H, et al. Elemental sulfur upregulated testicular testosterone biosynthesis by associating with altered gut microbiota in mice. Biocell 2020; 44(3): 301-13.
[http://dx.doi.org/10.32604/biocell.2020.011208]
[35]
Ding N, Zhang X, Zhang XD, et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut mi-crobes. Gut 2020; 69(9): 1608-19.
[http://dx.doi.org/10.1136/gutjnl-2019-319127] [PMID: 31900292]
[36]
Tian X, Yu Z, Feng P, et al. Lactobacillus plantarum TW1-1 Alleviates diethylhexylphthalate-induced testicular damage in mice by modu-lating gut microbiota and decreasing inflammation. Front Cell Infect Microbiol 2019; 9: 221.
[http://dx.doi.org/10.3389/fcimb.2019.00221] [PMID: 31297340]
[37]
Zhao TX, Wei YX, Wang JK, et al. The gut-microbiota-testis axis mediated by the activation of the Nrf2 antioxidant pathway is related to prepuberal steroidogenesis disorders induced by di-(2-ethylhexyl) phthalate. Environ Sci Pollut Res Int 2020; 27(28): 35261-71.
[http://dx.doi.org/10.1007/s11356-020-09854-2] [PMID: 32588312]
[38]
Poutahidis T, Springer A, Levkovich T, et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One 2014; 9(1): e84877.
[http://dx.doi.org/10.1371/journal.pone.0084877] [PMID: 24392159]
[39]
Hrudka F, Singh A. Sperm nucleomalacia in men with inflammatory bowel disease. Arch Androl 1984; 13(1): 37-57.
[http://dx.doi.org/10.3109/01485018408987499] [PMID: 6534279]
[40]
Wdowiak A, Gujski M, Bojar I, et al. Chronic inflammation impairs male fertility-a case-control study in ulcerative colitis patients. J Clin Med 2021; 10(7): 1460.
[http://dx.doi.org/10.3390/jcm10071460] [PMID: 33918143]
[41]
Dimitrova D, Kalaydjiev S, Mendizova A, Piryova E, Nakov L. Circulating antibodies to human spermatozoa in patients with ulcerative colitis. Fertil Steril 2005; 84(5): 1533-5.
[http://dx.doi.org/10.1016/j.fertnstert.2005.05.041] [PMID: 16275264]
[42]
Rastelli D, Robinson A, Lagomarsino VN, et al. Diminished androgen levels are linked to irritable bowel syndrome and cause bowel dys-function in mice. J Clin Invest 2022; 132(2): e150789.
[http://dx.doi.org/10.1172/JCI150789] [PMID: 34847080]
[43]
Hou X, Zhu L, Zhang X, et al. Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline. Chemosphere 2019; 222: 722-31.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.101] [PMID: 30738315]
[44]
Zhang T, Sun P, Geng Q, et al. Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin A metabolism in the gut–testis axis. Gut 2022; 71(1): 78-87.
[http://dx.doi.org/10.1136/gutjnl-2020-323347] [PMID: 33504491]
[45]
Qu W, Yuan X, Zhao J, et al. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res 2017; 61(10): 1700118.
[http://dx.doi.org/10.1002/mnfr.201700118] [PMID: 28621836]
[46]
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible patho-genic mechanisms. Front Endocrinol 2020; 11: 125.
[http://dx.doi.org/10.3389/fendo.2020.00125] [PMID: 32265832]
[47]
Sapone A, de Magistris L, Pietzak M, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 dia-betes and their relatives. Diabetes 2006; 55(5): 1443-9.
[http://dx.doi.org/10.2337/db05-1593] [PMID: 16644703]
[48]
Secondulfo M, Iafusco D, Carratù R, et al. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 2004; 36(1): 35-45.
[http://dx.doi.org/10.1016/j.dld.2003.09.016] [PMID: 14971814]
[49]
Pellegrini S, Sordi V, Bolla AM, et al. Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and mi-crobiota. J Clin Endocrinol Metab 2017; 102(5): 1468-77.
[http://dx.doi.org/10.1210/jc.2016-3222] [PMID: 28324102]
[50]
Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 2018; 359(6382): 1376-83.
[http://dx.doi.org/10.1126/science.aar3318] [PMID: 29519916]
[51]
Jamshidi P, Hasanzadeh S, Tahvildari A, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog 2019; 11(1): 49.
[http://dx.doi.org/10.1186/s13099-019-0332-7] [PMID: 31636716]
[52]
Leeds JS, Hopper AD, Hadjivassiliou M, Tesfaye S, Sanders DS. Inflammatory bowel disease is more common in type 1 diabetes melli-tus. Gut 2011; 60 (Suppl. 1): A208-8.
[http://dx.doi.org/10.1136/gut.2011.239301.438]
[53]
Al Theyab A, Almutairi T, Al-Suwaidi AM, Bendriss G, McVeigh C, Chaari A. Epigenetic effects of gut metabolites: Exploring the path of dietary prevention of type 1 diabetes. Front Nutr 2020; 7563605.
[http://dx.doi.org/10.3389/fnut.2020.563605] [PMID: 33072796]
[54]
Davis-Richardson AG, Triplett EW. A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia 2015; 58(7): 1386-93.
[http://dx.doi.org/10.1007/s00125-015-3614-8] [PMID: 25957231]
[55]
Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011; 5(1): 82-91.
[http://dx.doi.org/10.1038/ismej.2010.92] [PMID: 20613793]
[56]
Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef Microbes 2014; 5(1): 33-43.
[http://dx.doi.org/10.3920/BM2013.006] [PMID: 24533976]
[57]
Barsiah S, Behnam-Rassouli M, Shahabipour F, et al. Evaluation of testis hormonal and histopathological alterations in type I and type II diabetic rats. J Cell Biochem 2019; 120(10): 16775-85.
[http://dx.doi.org/10.1002/jcb.28936] [PMID: 31087717]
[58]
Skurikhin EG, Pakhomova AV, Pershina OV, et al. Role of sertoli and leydig cells in the regulation of spermatogonial stem cell and devel-opment of reproductive disorders in male C57Bl/6 mice with type 1 diabetes mellitus. Bull Exp Biol Med 2017; 164(2): 127-31.
[http://dx.doi.org/10.1007/s10517-017-3940-6] [PMID: 29181661]
[59]
Alves MG, Martins AD, Moreira PI, et al. Metabolic fingerprints in testicular biopsies from type 1 diabetic patients. Cell Tissue Res 2015; 362(2): 431-40.
[http://dx.doi.org/10.1007/s00441-015-2217-5] [PMID: 26051285]
[60]
Laleethambika N, Anila V, Manojkumar C, et al. Diabetes and sperm DNA damage: Efficacy of antioxidants. SN Compr Clin Med 2019; 1(1): 49-59.
[http://dx.doi.org/10.1007/s42399-018-0012-9]
[61]
Reddy N, Kasukurthi KB, Mahla RS, Pawar RM, Goel S. Expression of vascular endothelial growth factor (VEGF) transcript and protein in the testis of several vertebrates, including endangered species. Theriogenology 2012; 77(3): 608-14.
[http://dx.doi.org/10.1016/j.theriogenology.2011.08.037] [PMID: 22056013]
[62]
Ekerbicer N, Gurpinar T, Sisman AR, Guvendi G, Camsari UM, Uysal N. Statins reduce testicular and ocular VEGF: A potential compro-mise to microcirculation. Microvasc Res 2018; 119: 60-3.
[http://dx.doi.org/10.1016/j.mvr.2018.04.006] [PMID: 29678729]
[63]
El Atat R, Derouiche A, Kourda N, et al. Segmental infarction of the testis: An exceptional complication of diabetes microangiopathy. Int J Impot Res 2007; 19(6): 615-6.
[http://dx.doi.org/10.1038/sj.ijir.3901608] [PMID: 17851583]
[64]
Zhu Y, Du Q, Jiao N, et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sci 2021; 267118881.
[http://dx.doi.org/10.1016/j.lfs.2020.118881] [PMID: 33310037]
[65]
Hao Y, Feng Y, Yan X, et al. Gut microbiota-testis axis: FMT improves systemic and testicular micro-environment to increase semen quality in type 1 diabetes. Mol Med 2022; 28(1): 45.
[http://dx.doi.org/10.1186/s10020-022-00473-w] [PMID: 35468731]
[66]
Caltabiano R, Condorelli D, Panza S, et al. Glucagon‐like peptide‐1 receptor is expressed in human and rodent testis. Andrology 2020; 8(6): 1935-45.
[http://dx.doi.org/10.1111/andr.12871] [PMID: 33460247]
[67]
Ibrahim Abdalla MM. Ghrelin – Physiological Functions and Regulation. Eur Endocrinol 2015; 11(2): 90-5.
[http://dx.doi.org/10.17925/EE.2015.11.02.90] [PMID: 29632576]
[68]
Lorenzi T, Meli R, Marzioni D, et al. Ghrelin: A metabolic signal affecting the reproductive system. Cytokine Growth Factor Rev 2009; 20(2): 137-52.
[http://dx.doi.org/10.1016/j.cytogfr.2009.02.003] [PMID: 19297235]
[69]
Dupont J, Maillard V, Coyral-Castel S, Ramé C, Froment P. Ghrelin in female and male reproduction. Int J Pept 2010; 2010: 1-8.
[http://dx.doi.org/10.1155/2010/158102] [PMID: 20700403]
[70]
Sönmez MF, Karabulut D, Kilic E, et al. The effects of streptozotocin-induced diabetes on ghrelin expression in rat testis: Biochemical and immunohistochemical study. Folia Histochem Cytobiol 2015; 53(1): 26-34.
[http://dx.doi.org/10.5603/FHC.a2015.0006] [PMID: 25765092]
[71]
Zhan M, Usman IM, Sun L, Kanwar YS. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol 2015; 26(6): 1304-21.
[http://dx.doi.org/10.1681/ASN.2014050457] [PMID: 25270067]
[72]
Fu J, Liu C, Zhang Z, Xing M, Xu S. Influence of inflammatory pathway markers on oxidative stress induced by cold stress in intestine of quails. Res Vet Sci 2013; 95(2): 495-501.
[http://dx.doi.org/10.1016/j.rvsc.2013.05.006] [PMID: 23764563]
[73]
Zhao Y, Guo Q, Zhu Q, et al. Flavonoid VI-16 protects against DSS-induced colitis by inhibiting Txnip-dependent NLRP3 inflammasome activation in macrophages via reducing oxidative stress. Mucosal Immunol 2019; 12(5): 1150-63.
[http://dx.doi.org/10.1038/s41385-019-0177-x] [PMID: 31152156]
[74]
Sun X, Pang H, Li J, et al. The NLRP3 inflammasome and its role in T1DM. Front Immunol 2020; 11: 1595.
[http://dx.doi.org/10.3389/fimmu.2020.01595] [PMID: 32973739]
[75]
Zegeye MM, Lindkvist M, Fälker K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal 2018; 16(1): 55.
[http://dx.doi.org/10.1186/s12964-018-0268-4] [PMID: 30185178]
[76]
Yao Y, Chang X, Wang D, et al. Roles of ERK1/2 and PI3K/AKT signaling pathways in mitochondria-mediated apoptosis in testes of hy-pothyroid rats. Toxicol Res 2018; 7(6): 1214-24.
[http://dx.doi.org/10.1039/C8TX00122G] [PMID: 30542605]
[77]
Hebert SL, Nair KS. Protein and energy metabolism in type 1 diabetes. Clin Nutr 2010; 29(1): 13-7.
[http://dx.doi.org/10.1016/j.clnu.2009.09.001] [PMID: 19788950]
[78]
Karakelides H, Asmann YW, Bigelow ML, et al. Effect of insulin deprivation on muscle mitochondrial ATP production and gene tran-script levels in type 1 diabetic subjects. Diabetes 2007; 56(11): 2683-9.
[http://dx.doi.org/10.2337/db07-0378] [PMID: 17660267]
[79]
Heiss CN, Olofsson LE. Gut Microbiota-Dependent Modulation of Energy Metabolism. J Innate Immun 2018; 10(3): 163-71.
[http://dx.doi.org/10.1159/000481519] [PMID: 29131106]
[80]
Colldén H, Landin A, Wallenius V, et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am J Physiol Endocrinol Metab 2019; 317(6): E1182-92.
[http://dx.doi.org/10.1152/ajpendo.00338.2019] [PMID: 31689143]
[81]
Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med 2014; 20(4): 214-23.
[http://dx.doi.org/10.1016/j.molmed.2013.08.004] [PMID: 24055446]
[82]
Rokade S, Upadhya M, Bhat DS, et al. Transient systemic inflammation in adult male mice results in underweight progeny. Am J Reprod Immunol 2021; 86(1): e13401.
[http://dx.doi.org/10.1111/aji.13401] [PMID: 33576153]
[83]
Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol 2019; 82(5): e13178.
[http://dx.doi.org/10.1111/aji.13178] [PMID: 31373727]
[84]
Tremellen K, McPhee N, Pearce K, Benson S, Schedlowski M, Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. Am J Physiol Endocrinol Metab 2018; 314(3): E206-13.
[http://dx.doi.org/10.1152/ajpendo.00279.2017] [PMID: 29183872]
[85]
Sengupta P, Durairajanayagam D, Agarwal A. Fuel/energy sources of spermatozoa Male Infertility. Springer 2020; pp. 323-35.
[http://dx.doi.org/10.1007/978-3-030-32300-4_26]
[86]
La Vignera S, Condorelli RA, Di Mauro M, et al. Reproductive function in male patients with type 1 diabetes mellitus. Andrology 2015; 3(6): 1082-7.
[http://dx.doi.org/10.1111/andr.12097] [PMID: 26446574]
[87]
Saberzadeh-Ardestani B, Karamzadeh R, Basiri M, et al. Type 1 diabetes mellitus: Cellular and molecular pathophysiology at a glance. Cell J 2018; 20(3): 294-301.
[http://dx.doi.org/10.22074/cellj.2018.5513] [PMID: 29845781]
[88]
Liu H, Xu R, Kong Q, Liu J, Yu Z, Zhao C. Downregulated NLRP3 and NLRP1 inflammasomes signaling pathways in the development and progression of type 1 diabetes mellitus. Biomed Pharmacother 2017; 94: 619-26.
[http://dx.doi.org/10.1016/j.biopha.2017.07.102] [PMID: 28783585]
[89]
Indira M, Abhilash P. Role of NF-Kappa B (NF-κB) in diabetes. Onco Therapeutics 2013; 4(2)
[90]
Cannarella R, Condorelli RA, Mongioì LM, La Vignera S, Calogero AE. Molecular biology of spermatogenesis: Novel targets of apparently idiopathic male infertility. Int J Mol Sci 2020; 21(5): 1728.
[http://dx.doi.org/10.3390/ijms21051728] [PMID: 32138324]
[91]
Griswold MD. Spermatogenesis: The commitment to meiosis. Physiol Rev 2016; 96(1): 1-17.
[http://dx.doi.org/10.1152/physrev.00013.2015] [PMID: 26537427]
[92]
Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular mechanisms and signaling pathways involved in sertoli cell proliferation. Front Endocrinol 2019; 10: 224.
[http://dx.doi.org/10.3389/fendo.2019.00224] [PMID: 31040821]
[93]
Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146112563.
[http://dx.doi.org/10.1016/j.biopha.2021.112563] [PMID: 35062059]
[94]
Condorelli RA, Cannarella R, Calogero AE, La Vignera S. Evaluation of testicular function in prepubertal children. Endocrine 2018; 62(2): 274-80.
[http://dx.doi.org/10.1007/s12020-018-1670-9] [PMID: 29982874]
[95]
Sahu C, Dwivedi DK, Jena GB. Zinc and selenium combination treatment protected diabetes-induced testicular and epididymal damage in rat. Hum Exp Toxicol 2020; 39(9): 1235-56.
[http://dx.doi.org/10.1177/0960327120914963] [PMID: 32233808]
[96]
Herman S, Lipiński P, Ogórek M, et al. Molecular regulation of copper homeostasis in the male gonad during the process of spermatogenesis. Int J Mol Sci 2020; 21(23): 9053.
[http://dx.doi.org/10.3390/ijms21239053] [PMID: 33260507]
[97]
Maremanda KP, Khan S, Jena GB. Role of Zinc supplementation in testicular and epididymal damages in diabetic rat: Involvement of Nrf2, SOD1, and GPX5. Biol Trace Elem Res 2016; 173(2): 452-64.
[http://dx.doi.org/10.1007/s12011-016-0674-7] [PMID: 27025721]
[98]
Razavi S, Khadivi F, Hashemi F, Bakhtiari A. Effect of zinc on spermatogenesis and sperm chromatin condensation in bleomycin, etopo-side, cisplatin treated rats. Cell J 2019; 20(4): 521-6.
[http://dx.doi.org/10.22074/cellj.2019.5522] [PMID: 30123998]
[99]
Liu XX, Zhang H, Shen XF, Liu FJ, Liu J, Wang WJ. Characteristics of testis-specific phosphoglycerate kinase 2 and its association with human sperm quality. Hum Reprod 2015; 31(2): dev301.
[http://dx.doi.org/10.1093/humrep/dev301] [PMID: 26677959]
[100]
Nna VU, Bakar ABA, Ahmad A, Mohamed M. Down‐regulation of steroidogenesis‐related genes and its accompanying fertility decline in streptozotocin‐induced diabetic male rats: Ameliorative effect of metformin. Andrology 2019; 7(1): 110-23.
[http://dx.doi.org/10.1111/andr.12567] [PMID: 30515996]
[101]
Jing J, Ding N, Wang D, et al. Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis 2020; 11(8): 626.
[http://dx.doi.org/10.1038/s41419-020-02751-z] [PMID: 32796811]
[102]
Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021; 42101887.
[http://dx.doi.org/10.1016/j.redox.2021.101887] [PMID: 33579666]
[103]
Blount JD, Vitikainen EIK, Stott I, Cant MA. Oxidative shielding and the cost of reproduction. Biol Rev Camb Philos Soc 2016; 91(2): 483-97.
[http://dx.doi.org/10.1111/brv.12179] [PMID: 25765468]
[104]
Lustig L, Guazzone VA, Theas MS, et al. Pathomechanisms of autoimmune based testicular inflammation. Front Immunol 2020; 11583135.
[http://dx.doi.org/10.3389/fimmu.2020.583135] [PMID: 33101310]
[105]
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108: 656-62.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]
[106]
Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S. PGC-1 α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid Med Cell Longev 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/1452696] [PMID: 32215168]
[107]
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21(3): 396-413.
[http://dx.doi.org/10.1089/ars.2014.5851] [PMID: 24702237]
[108]
Schneider JE. Energy balance and reproduction. Physiol Behav 2004; 81(2): 289-317.
[http://dx.doi.org/10.1016/j.physbeh.2004.02.007] [PMID: 15159173]
[109]
Malik A, Morya RK, Bhadada SK, Rana S. Type 1 diabetes mellitus: Complex interplay of oxidative stress, cytokines, gastrointestinal motility and small intestinal bacterial overgrowth. Eur J Clin Invest 2018; 48(11): e13021.
[http://dx.doi.org/10.1111/eci.13021] [PMID: 30155878]
[110]
Vaarala O. The gut as a regulator of early inflammation in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2011; 18(4): 241-7.
[http://dx.doi.org/10.1097/MED.0b013e3283488218] [PMID: 21681088]
[111]
Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G. Metabolic and energy imbalance in dysglycemia-based chronic disease. Diabetes Metab Syndr Obes 2021; 14: 165-84.
[http://dx.doi.org/10.2147/DMSO.S286888] [PMID: 33488105]
[112]
Danilova T, Galli E, Pakarinen E, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is highly expressed in mouse tis-sues with metabolic function. Front Endocrinol 2019; 10: 765.
[http://dx.doi.org/10.3389/fendo.2019.00765] [PMID: 31781038]
[113]
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[114]
Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet ADMH. Diabetic kidney disease: Past and present. Adv Anat Pathol 2020; 27(2): 87-97.
[http://dx.doi.org/10.1097/PAP.0000000000000257] [PMID: 31876542]
[115]
Suteau V, Saulnier PJ, Wargny M, et al. Association between sleep disturbances, fear of hypoglycemia and psychological well-being in adults with type 1 diabetes mellitus, data from cross-sectional VARDIA study. Diabetes Res Clin Pract 2020; 160107988.
[http://dx.doi.org/10.1016/j.diabres.2019.107988] [PMID: 31866527]
[116]
Adepoju OE, Bolin JN, Booth EA, et al. Is diabetes color-blind? Growth of prevalence of diagnosed diabetes in children through 2030. Popul Health Manag 2015; 18(3): 172-8.
[http://dx.doi.org/10.1089/pop.2014.0084] [PMID: 25290852]
[117]
Silva-Zolezzi I, Samuel TM, Spieldenner J. Maternal nutrition: Opportunities in the prevention of gestational diabetes. Nutr Rev 2017; 75 (Suppl. 1): 32-50.
[http://dx.doi.org/10.1093/nutrit/nuw033] [PMID: 28049748]
[118]
Barrett HL, Callaway LK, Nitert MD. Probiotics: A potential role in the prevention of gestational diabetes? Acta Diabetol 2012; 49(S1) (Suppl. 1): 1-13.
[http://dx.doi.org/10.1007/s00592-012-0444-8] [PMID: 23180045]
[119]
Rak K, Bronkowska M. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of Type 1 Diabetes mellitus—a narrative review. Molecules 2018; 24(1): 53.
[http://dx.doi.org/10.3390/molecules24010053] [PMID: 30586887]
[120]
Infante M, Ricordi C, Sanchez J, et al. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes. Nutrients 2019; 11(9): 2185.
[http://dx.doi.org/10.3390/nu11092185] [PMID: 31514368]
[121]
de Angelis C, Galdiero M, Pivonello C, et al. The role of vitamin D in male fertility: A focus on the testis. Rev Endocr Metab Disord 2017; 18(3): 285-305.
[http://dx.doi.org/10.1007/s11154-017-9425-0] [PMID: 28667465]
[122]
Boisen IM, Bøllehuus Hansen L, Mortensen LJ, Lanske B, Juul A, Blomberg Jensen M. Possible influence of vitamin D on male reproduction. J Steroid Biochem Mol Biol 2017; 173: 215-22.
[http://dx.doi.org/10.1016/j.jsbmb.2016.09.023] [PMID: 27693423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy