Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

A Review on Fluid Flow and Mixing in Microchannel and their Design and Manufacture for Microfluidic Applications

Author(s): Pranjal Sarma* and Promod Kumar Patowari

Volume 15, Issue 3, 2023

Published on: 19 September, 2023

Page: [167 - 184] Pages: 18

DOI: 10.2174/1876402915666230817164516

Price: $65

Abstract

The present time has witnessed a never-before-heard interest in and applications of microfluidic devices and systems. In microfluidic systems, fluid flows and is manipulated in microchannels. Mixing is one of the most important criteria for a majority of microfluidic systems, whose laminar nature hinders the efficiency of micromixing. The interface between the flowing fluid and the inner wall surface of the microchannel greatly influences the behaviour of fluidic flow in microfluidics. Many researchers have tried to pattern the surface, introduce obstacles to flow, and include micro- or nanoprotruded structures to enhance the mixing efficiency by manipulating the microchannel flow. New and rapid advances in MEMS and micro/nanofabrication technologies have enabled researchers to experiment with increasingly complex designs, enabling rapid transformation and dissemination of new knowledge in the field of microfluidics. Here, we report the fluid flow characteristics, mixing, and associated phenomena about microfluidic systems. Microfluidic systems and components such as microreactors, micromixers, and microchannels are reviewed in this work. We review active and passive micromixers, with a primary focus on widely used passive micromixers. Various microchannel geometries and their features, mixing efficiencies, numerical analysis, and fabrication methods are reviewed. Applications as well as possible future trends and advancements in this field, are included too. It is expected to make the reader curious and more familiar with the interesting field of microfluidics.

Graphical Abstract

[1]
Tabeling, P. Introduction to microfluidics; Oxford University Press: Oxford, 2005.
[2]
Weigl, B.H.; Hedine, K. Lab-on-a-chip-based separation and detection technology for life science applications. Am. Biotechnol. Lab., 2002, 20, 28-30.
[3]
Fainman, Y.; Psaltis, D.; Yang, C. Optofluidics: Fundamentals, devices, and applications; McGraw-Hill: New York, 2010.
[4]
Cimrák, I.; Gusenbauer, M.; Schrefl, T. Modelling and simulation of processes in microfluidic devices for biomedical applications. Comput. Math. Appl., 2012, 64(3), 278-288.
[http://dx.doi.org/10.1016/j.camwa.2012.01.062]
[5]
Bruus, H. Theoritical microfluidics; Oxford University Press: Oxford, 2008.
[6]
Shui, L.; Eijkel, J.; Vandenberg, A. Multiphase flow in micro- and nanochannels. Sens. Actuators B Chem., 2007, 121(1), 263-276.
[http://dx.doi.org/10.1016/j.snb.2006.09.040]
[7]
Geankoplis, C.J. Transport Processes and Separation Process Principles; Prentice Hall: New Jersey, 2003.
[8]
Weibel, D.B.; Kruithof, M.; Potenta, S.; Sia, S.K.; Lee, A.; Whitesides, G.M. Torque-actuated valves for microfluidics. Anal. Chem., 2005, 77(15), 4726-4733.
[http://dx.doi.org/10.1021/ac048303p] [PMID: 16053282]
[9]
Nguyen, N.T. Micromixers: Fundamentals, design and fabrication; William Andrew Inc: Norwich, 2008.
[10]
Moroney, R.M.; White, R.M.; Howe, R.T. Ultrasonically induced microtransport.IEEE Micro Electro Mechanical Systems; 30-02 JanNara, Japan, 1991, p. 277-282.
[http://dx.doi.org/10.1109/MEMSYS.1991.114810]
[11]
Yang, Z.; Matsumoto, S.; Goto, H.; Matsumoto, M. Ultrasonic micromixer for microfluidic systems.Sens. Actuator. A Phys., 2001, 93, 266-272.
[http://dx.doi.org/10.1016/S0924-4247(01)00654-9]
[12]
Liu, R.H.; Stremler, M.A.; Sharp, K.V.; Olsen, M.G.; Santiago, J.G.; Adrian, R.J.; Aref, H.; Beebe, D.J. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst., 2000, 9(2), 190-197.
[http://dx.doi.org/10.1109/84.846699]
[13]
Sudarsan, A.P.; Ugaz, V.M. Multivortex micromixing. Proc. Natl. Acad. Sci., 2006, 103(19), 7228-7233.
[http://dx.doi.org/10.1073/pnas.0507976103] [PMID: 16645036]
[14]
Hashim, U.; Diyana, P.N.A.; Adam, T. Numerical simulation of microfluidic devices.10th IEEE International Conference on Semiconductor Electronics (ICSE); 19-21 SepKuala Lumpur, Malaysia, 2012, p. 26-29.
[http://dx.doi.org/10.1109/SMElec.2012.6417083]
[15]
Paul, E.L.; Atiemo-Obeng, V.A.; Kresta, S.M. Handbook of industrial mixing science and practice; John Wiley & Sons Inc: New Jersey, 2004.
[16]
Hamidi, I.; Ouederni, A. Single phase flow characteristics in rectangular microchannel: Entrance length and friction factor. Int. J. Innov. Appl. Stud., 2014, 8, 819-826.
[17]
Hengzi, W.; Pio, I.; Erol, H.; Syed, M.; Rowan, D. Mixing of liquids using obstacles in microchannels. Proc. SPIE Int. Soc. Opt. Eng., 2001, 204-212.
[18]
Sarma, P.; Patowari, P.K. Design and analysis of passive Y-type micromixers for enhanced mixing performance for biomedical and microreactor application. J. Adv. Manuf. Syst., 2016, 15(3), 161-172.
[http://dx.doi.org/10.1142/S0219686716500128]
[19]
Sahu, P.K.; Golia, A.; Sen, A.K. Investigations into mixing of fluids in microchannels with lateral obstructions. Microsyst. Technol., 2013, 19(4), 493-501.
[http://dx.doi.org/10.1007/s00542-012-1617-7]
[20]
Naher, S.; Orpen, D.; Brabazon, D.; Poulsen, C.R.; Morshed, M.M. Effect of micro-channel geometry on fluid flow and mixing. Simul. Model. Pract. Theory, 2011, 19(4), 1088-1095.
[http://dx.doi.org/10.1016/j.simpat.2010.12.008]
[21]
Stremler, M.A.; Haselton, F.R.; Aref, H. Designing for chaos: Applications of chaotic advection at the microscale. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2004, 362(1818), 1019-1036.
[http://dx.doi.org/10.1098/rsta.2003.1360] [PMID: 15306482]
[22]
Lu, Z.; McMahon, J.; Mohamed, H.; Barnard, D.; Shaikh, T.R.; Mannella, C.A.; Wagenknecht, T.; Lu, T.M. Passive microfluidic device for submillisecond mixing. Sens. Actuators B Chem., 2010, 144(1), 301-309.
[http://dx.doi.org/10.1016/j.snb.2009.10.036] [PMID: 20161619]
[23]
Finlayson, B.A.; Aditya, A.; Brasher, V.; Dahl, L.; Dinh, H.Q.; Field, A. Mixing of liquids in microfluidic devices. , 2008. Available from: https://www.comsol.com/paper/mixing-of-liquids-in-microfluidic-devices-5016 (Technical Papers)
[24]
Liu, Y.Z.; Kim, B.J.; Sung, H.J. Two-fluid mixing in a microchannel. Int. J. Heat Fluid Flow, 2004, 25(6), 986-995.
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.03.006]
[25]
Xu, Z.; Li, C.; Vadillo, D.; Ruan, X.; Fu, X. Numerical simulation on fluid mixing by effects of geometry in staggered oriented ridges micromixers. Sens. Actuators B Chem., 2011, 153(1), 284-292.
[http://dx.doi.org/10.1016/j.snb.2010.10.031]
[26]
Itomlenskis, M.; Fodor, P.S.; Kaufman, M. Design of passive micromixers using the COMSOL multiphysics software package. Proceedings of the COMSOL Conference, Boston2008.
[27]
Zhang, Z.; Yim, C.; Lin, M.; Cao, X. Quantitative characterization of micromixing simulation. Biomicrofluidics, 2008, 2(3), 034104.
[http://dx.doi.org/10.1063/1.2966454] [PMID: 19693371]
[28]
Farahinia, A.; Zhang, W.J. Numerical analysis of a microfluidic mixer and the effects of different cross-sections and various input angles on its mixing performance. J. Braz. Soc. Mech. Sci. Eng., 2020, 42(4), 190.
[http://dx.doi.org/10.1007/s40430-020-02275-9]
[29]
Zhan, X.; Jing, D. The optimal aspect ratio of the T-shaped rectangular microchannel mixer to achieve excellent mixing and hydraulic comprehensive performance. J. Braz. Soc. Mech. Sci. Eng., 2021, 43(11), 501.
[http://dx.doi.org/10.1007/s40430-021-03225-9]
[30]
Quiroz, C.A.C.; Azarbadegan, A.; Moeendarbary, E. An efficient passive planar micromixer with fin shaped baffles in the tee channel for wide Reynolds number flow range. World Acad. Sci. Eng. Technol., 2010, 4, 127-132.
[31]
Cortes-Quiroz, C.A.; Azarbadegan, A.; Zangeneh, M. Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer. Sens. Actuators B Chem., 2014, 202, 1209-1219.
[http://dx.doi.org/10.1016/j.snb.2014.06.042]
[32]
Sarma, P.; Patowari, P.K. Study on design modification of serpentine micromixers for better throughput for microfluidic circuitry. Micro Nanosyst., 2017, 8(2), 119-125.
[http://dx.doi.org/10.2174/1876402909666170217151907]
[33]
Wu, Z.; Chen, X. A novel design for passive micromixer based on Cantor fractal structure. Microsyst. Technol., 2019, 25(3), 985-996.
[http://dx.doi.org/10.1007/s00542-018-4027-7]
[34]
Li, W.; Chu, W.; Yin, D.; Liang, Y.; Wang, P.; Qi, J.; Wang, Z.; Lin, J.; Wang, M.; Wang, Z.; Cheng, Y. A three-dimensional microfluidic mixer of a homogeneous mixing efficiency fabricated by ultrafast laser internal processing of glass. Appl. Phys., A Mater. Sci. Process., 2020, 126(10), 816.
[http://dx.doi.org/10.1007/s00339-020-04000-8]
[35]
Wu, J.W.; Xia, H.M.; Zhang, Y.Y.; Zhao, S.F.; Zhu, P.; Wang, Z.P. An efficient micromixer combining oscillatory flow and divergent circular chambers. Microsyst. Technol., 2019, 25(7), 2741-2750.
[http://dx.doi.org/10.1007/s00542-018-4193-7]
[36]
Zhang, S.; Chen, X. CO2 laser ablation of microchannel on PMMA substrate for Koch fractal micromixer. J. Braz. Soc. Mech. Sci. Eng., 2019, 41(1), 45.
[http://dx.doi.org/10.1007/s40430-018-1551-4]
[37]
Xiong, S.; Chen, X.; Ma, Y. Simulation analysis of micromixer with three-dimensional fractal structure with electric field effect. J. Braz. Soc. Mech. Sci. Eng., 2021, 43(7), 332.
[http://dx.doi.org/10.1007/s40430-021-03021-5]
[38]
Gidde, R.R. Concave wall-based mixing chambers and convex wall-based constriction channel micromixers. Int. J. Environ. Anal. Chem., 2021, 101(4), 561-583.
[http://dx.doi.org/10.1080/03067319.2019.1669585]
[39]
Bahrami, D.; Nadooshan, A.A.; Bayareh, M. Effect of non-uniform magnetic field on mixing index of a sinusoidal micromixer. Korean J. Chem. Eng., 2022, 39(2), 316-327.
[http://dx.doi.org/10.1007/s11814-021-0932-z]
[40]
Fallah, D.A.; Raad, M.; Rezazadeh, S.; Jalili, H. Increment of mixing quality of Newtonian and non-Newtonian fluids using T-shape passive micromixer: Numerical simulation. Microsyst. Technol., 2021, 27(1), 189-199.
[http://dx.doi.org/10.1007/s00542-020-04937-z]
[41]
Babaie, Z.; Bahrami, D.; Bayareh, M. Investigation of a novel serpentine micromixer based on Dean flow and separation vortices. Meccanica, 2022, 57(1), 73-86.
[http://dx.doi.org/10.1007/s11012-021-01465-6]
[42]
Karimi, R.; Rezazadeh, S.; Raad, M. Investigation of different geometrical configurations effect on mixing performance of passive split-and-recombine micromixer. Microfluid. Nanofluidics, 2021, 25(11), 90.
[http://dx.doi.org/10.1007/s10404-021-02491-2]
[43]
Ding, H.; Zhong, X.; Liu, B.; Shi, L.; Zhou, T.; Zhu, Y. Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field. Microfluid. Nanofluidics, 2021, 25(3), 26.
[http://dx.doi.org/10.1007/10404-021-02430-1]
[44]
Husain, A.; Khan, F.A.; Huda, N.; Ansari, M.A. Mixing performance of split-and-recombine micromixer with offset inlets. Microsyst. Technol., 2018, 24(3), 1511-1523.
[http://dx.doi.org/10.1007/s00542-017-3516-4]
[45]
Shi, X.; Huang, S.; Wang, L.; Li, F. Numerical analysis of passive micromixer with novel obstacle design. J. Dispers. Sci. Technol., 2021, 42(3), 440-456.
[http://dx.doi.org/10.1080/01932691.2019.1699428]
[46]
Wu, Z.; Chen, X. Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure. Microsyst. Technol., 2019, 25(8), 3157-3164.
[http://dx.doi.org/10.1007/s00542-019-04311-8]
[47]
Ghahfarokhi, N.J.; Bayareh, M. Numerical study of a novel spiral-type micromixer for low Reynolds number regime. Korea-Australia Rheol. J., 2021, 33(4), 333-342.
[http://dx.doi.org/10.1007/s13367-021-0026-9]
[48]
Razavi Bazaz, S.; Amiri, H.A.; Vasilescu, S.; Abouei Mehrizi, A.; Jin, D.; Miansari, M.; Ebrahimi, W.M. Obstacle-free planar hybrid micromixer with low pressure drop. Microfluid. Nanofluidics, 2020, 24(8), 61.
[http://dx.doi.org/10.1007/s10404-020-02367-x]
[49]
Xu, J.; Chen, X. Numerical study on mixing performance of 3D passive micromixer with scaling elements. J. Braz. Soc. Mech. Sci. Eng., 2019, 41(10), 453.
[http://dx.doi.org/10.1007/s40430-019-1959-5]
[50]
Lv, H.; Chen, X. New insights into the mixing behavior of Non-Newtonian fluid in electroosmotic micromixer. J. Braz. Soc. Mech. Sci. Eng., 2022, 44(5), 181.
[http://dx.doi.org/10.1007/s40430-022-03502-1]
[51]
Tan, S.J.; Yu, K.H.; Teo, C.J.; Khoo, B.C. Numerical assessment of mixing performance for a Cross-mixer. J. Braz. Soc. Mech. Sci. Eng., 2022, 44(8), 353.
[http://dx.doi.org/10.1007/s40430-022-03668-8]
[52]
Glatzel, T.; Litterst, C.; Cupelli, C.; Lindemann, T.; Moosmann, C.; Niekrawietz, R.; Streule, W.; Zengerle, R.; Koltay, P. Computational fluid dynamics (CFD) software tools for microfluidic applications - A case study. Comput. Fluids, 2008, 37(3), 218-235.
[http://dx.doi.org/10.1016/j.compfluid.2007.07.014]
[53]
Kim, J.; Massoudi, M.; Kim, C.N. Characteristics of optimization algorithms applied to the electrode design of a magnetohydrodynamic micromixer. J. Mech. Sci. Technol., 2018, 32(8), 3667-3675.
[http://dx.doi.org/10.1007/s12206-018-0719-2]
[54]
Mahmud, F.; Tamrin, K.F. Method for determining mixing index in microfluidics by RGB color model. Asia-Pac. J. Chem. Eng., 2020, 15(2), 15.
[http://dx.doi.org/10.1002/apj.2407]
[55]
Bothe, D.; Stemich, C.; Warnecke, H.J. Computation of scales and quality of mixing in a T-shaped microreactor. Comput. Chem. Eng., 2008, 32(1-2), 108-114.
[http://dx.doi.org/10.1016/j.compchemeng.2007.08.001]
[56]
Gleichmann, N.; Horbert, P.; Malsch, D.; Henkel, T. System simulation for microfluidic design automation of lab-on-a-chip devices.15th International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2-6 OctSeattle, Washington, USA, 2011, pp. 915-917.
[57]
Conlisk, K.; O’Connor, G.M. Analysis of passive microfluidic mixers incorporating 2D and 3D baffle geometries fabricated using an excimer laser. Microfluid. Nanofluidics, 2012, 12(6), 941-951.
[http://dx.doi.org/10.1007/s10404-011-0928-9]
[58]
Beebe, D.J.; Adrian, R.J.; Olsen, M.G.; Stremler, M.A.; Aref, H.; Jo, B.H. Passive mixing in microchannels: Fabrication and flow experiments. Mech. Ind., 2001, 2, 343-348.
[59]
Sahu, P.K.; Golia, A.; Sen, A.K. Analytical, numerical and experimental investigations of mixing fluids in microchannel. Microsyst. Technol., 2012, 18(6), 823-832.
[http://dx.doi.org/10.1007/s00542-012-1511-3]
[60]
Chung, C.K.; Shih, T.R. Effect of geometry on fluid mixing of the rhombic micromixers. Microfluid. Nanofluidics, 2008, 4(5), 419-425.
[http://dx.doi.org/10.1007/s10404-007-0197-9]
[61]
Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezić, I.; Stone, H.A.; Whitesides, G.M. Chaotic mixer for microchannels. Science, 2002, 295(5555), 647-651.
[http://dx.doi.org/10.1126/science.1066238] [PMID: 11809963]
[62]
Hama, B.; Mahajan, G.; Fodor, P.S.; Kaufman, M.; Kothapalli, C.R. Evolution of mixing in a microfluidic reverse-staggered herringbone micromixer. Microfluid. Nanofluidics, 2018, 22(5), 54.
[http://dx.doi.org/10.1007/s10404-018-2074-0]
[63]
Sabotin, I.; Tristo, G.; Lebar, A.; Prijatelj, M.; Jerman, M.; Valentinčič, J. Investigation on staggered herringbone micromixer design suitable for micro EDM milling. WCMNM 2018 World Congress on Micro and Nano Manufacturing., 2018.
[http://dx.doi.org/10.3850/978-981-11-2728-1_48]
[64]
Miyake, R.; Lammerink, T.S.J.; Elwenspoek, M.; Fluitman, J.H.J. Micro mixer with fast diffusion.Proceedings IEEE Micro Electro Mechanical Systems; 10-10 FebFort Lauderdale, FL, USA, 1993, p. 248-253.
[http://dx.doi.org/10.1109/MEMSYS.1993.296914]
[65]
Microreactor. Available from: https://en.wikipedia.org/wiki/Microreactor
[66]
Yasvanthrajan, N.; Sivakumar, P.; Muthukumar, K.; Appusamy, A. Production of biodiesel using immobilised rhizopus oryzae lipase in a microchannel reactor. J. Ins. Eng. (India): Series E, 2023, 104(1), 165-170.
[http://dx.doi.org/10.1007/s40034-022-00257-1]
[67]
Phillips, T.W.; Lignos, I.G.; Maceiczyk, R.M.; deMello, A.J.; deMello, J.C. Nanocrystal synthesis in microfluidic reactors: Where next? Lab Chip, 2014, 14(17), 3172-3180.
[http://dx.doi.org/10.1039/C4LC00429A] [PMID: 24911190]
[68]
Jensen, K.F.; Reizman, B.J.; Newman, S.G. Tools for chemical synthesis in microsystems. Lab Chip, 2014, 14(17), 3206-3212.
[http://dx.doi.org/10.1039/C4LC00330F] [PMID: 24865228]
[69]
Shin, M.S.; Park, N.; Park, M.J.; Cheon, J.Y.; Kang, J.K.; Jun, K-W.; Ha, K-S. Modeling a channel-type reactor with a plate heat exchanger for cobalt-based Fischer–Tropsch synthesis. Fuel Process. Technol., 2014, 118, 235-243.
[http://dx.doi.org/10.1016/j.fuproc.2013.09.006]
[70]
Mei, D.; Qian, M.; Liu, B.; Jin, B.; Yao, Z.; Chen, Z. A micro-reactor with micro-pin-fin arrays for hydrogen production via methanol steam reforming. J. Power Sources, 2012, 205, 367-376.
[http://dx.doi.org/10.1016/j.jpowsour.2011.12.062]
[71]
Bao, Z.; Yang, F.; Wu, Z.; Nyallang Nyamsi, S.; Zhang, Z. Optimal design of metal hydride reactors based on CFD–Taguchi combined method. Energy Convers. Manage., 2013, 65, 322-330.
[http://dx.doi.org/10.1016/j.enconman.2012.07.027]
[72]
Odiba, S.; Olea, M.; Hodgson, S.; Adgar, A. Computational fluid dynamics for microreactors used in catalytic oxidation of propane. Proceedings of the 213 COMSOL Conference, Boston2013.
[73]
Tsuchiya, K.; Nunokawa, T.; Kikuchi, A.; Nakao, M. Study on multi-layering of metal micro-reactor using diffusion bonding. SeisanKenkyu., 2012, 64, 83-86.
[74]
Chen, G.; Chao, Y.; Chen, C. Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation. Int. J. Hydrogen Energy, 2008, 33(10), 2586-2595.
[http://dx.doi.org/10.1016/j.ijhydene.2008.02.071]
[75]
Küpper, M.; Hessel, V.; Löwe, H.; Stark, W.; Kinkel, J.; Michel, M.; Schmidt-Traub, H. Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochim. Acta, 2003, 48(20-22), 2889-2896.
[http://dx.doi.org/10.1016/S0013-4686(03)00353-0]
[76]
Tonomura, O.; Takase, T.; Kano, M.; Hasebe, S. Systematic procedure for designing a microreactor with slit-type mixing structure. Comput. Aided Chem. Eng., 2006, 21, 823-828.
[http://dx.doi.org/10.1016/S1570-7946(06)80147-1]
[77]
Barone, S.; Braglia, M.; Gabbrielli, R.; Miceli, S.; Neri, P.; Paoli, A.; Razionale, A.V. Fabrication of fluidic reactors by a customized 3D printing process. Procedia Struct. Integr., 2018, 12, 113-121.
[http://dx.doi.org/10.1016/j.prostr.2018.11.102]
[78]
Zhai, X.; Ding, S.; Cheng, Y.; Jin, Y.; Cheng, Y. CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor. Int. J. Hydrogen Energy, 2010, 35(11), 5383-5392.
[http://dx.doi.org/10.1016/j.ijhydene.2010.03.034]
[79]
Huang, Y.X.; Jang, J.Y.; Cheng, C.H. Fractal channel design in a micro methanol steam reformer. Int. J. Hydrogen Energy, 2014, 39(5), 1998-2007.
[http://dx.doi.org/10.1016/j.ijhydene.2013.11.088]
[80]
Zhong, Q.; Ding, H.; Gao, B.; He, Z.; Gu, Z. Advances of microfluidics in biomedical engineering. Adv. Mater. Technol., 2019, 4(6), 1800663.
[http://dx.doi.org/10.1002/admt.201800663]
[81]
Fontana, F.; Martins, J.P.; Torrieri, G.; Santos, H.A. Nuts and bolts: Microfluidics for the production of biomaterials. Adv. Mater. Technol., 2019, 4(6), 1800611.
[http://dx.doi.org/10.1002/admt.201800611]
[82]
Zhang, Y.; Chen, X. Dielectrophoretic microfluidic device for separation of red blood cells and platelets: A model-based study. J. Braz. Soc. Mech. Sci. Eng., 2020, 42(2), 89.
[http://dx.doi.org/10.1007/s40430-020-2169-x]
[83]
Valijam, S.; Salehi, A. Influence of the obstacles on dielectrophoresis-assisted separation in microfluidic devices for cancerous cells. J. Braz. Soc. Mech. Sci. Eng., 2021, 43(3), 134.
[http://dx.doi.org/10.1007/s40430-021-02875-z]
[84]
Pakhira, W.; Kumar, R.; Ibrahimi, K.M.; Bhattacharjee, R. Design and analysis of a microfluidic lab-on-chip utilizing dielectrophoresis mechanism for medical diagnosis and liquid biopsy. J. Braz. Soc. Mech. Sci. Eng., 2022, 44(10), 482.
[http://dx.doi.org/10.1007/s40430-022-03793-4]
[85]
Mehta, P.; Rahman, Z.; ten Dijke, P.; Boukany, P.E. Microfluidics meets 3D cancer cell migration. Trends Cancer, 2022, 8(8), 683-697.
[http://dx.doi.org/10.1016/j.trecan.2022.03.006] [PMID: 35568647]
[86]
Balakrishnan, S.G.; Ahmad, M.R.; Koloor, S.S.R.; Petrů, M. Separation of ctDNA by superparamagnetic bead particles in microfluidic platform for early cancer detection. J. Adv. Res., 2021, 33, 109-116.
[http://dx.doi.org/10.1016/j.jare.2021.03.001] [PMID: 34603782]
[87]
Noroozi, R.; Mashhadi, K.M.; Taghvaei, H.; Zolfagharian, A.; Bodaghi, M. 3D-printed microfluidic droplet generation systems for drug delivery applications. Mater. Today Proc., 2022, 70, 443-446.
[http://dx.doi.org/10.1016/j.matpr.2022.09.363]
[88]
Sun, M.; Gong, J.; Cui, W.; Li, C.; Yu, M.; Ye, H.; Cui, Z.; Chen, J.; He, Y.; Liu, A.; Wang, H. Developments of microfluidics for orthopedic applications: A review. Smart Mater. Med., 2023, 4, 111-122.
[http://dx.doi.org/10.1016/j.smaim.2022.07.001]
[89]
Bhattacharjee, G.; Gohil, N.; Shukla, M.; Sharma, S.; Mani, I.; Pandya, A.; Chu, D-T.; Bui, N.L.; Thi, Y-V.N.; Khambhati, K.; Maurya, R.; Ramakrishna, S.; Singh, V. Exploring the potential of microfluidics for next-generation drug delivery systems. Open-Nano, 2023, 12, 100150.
[http://dx.doi.org/10.1016/j.onano.2023.100150]
[90]
Zhang, H.; Yang, J.; Sun, R.; Han, S.; Yang, Z.; Teng, L. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization. Acta Pharm. Sin. B, 2023.
[http://dx.doi.org/10.1016/j.apsb.2023.01.018]
[91]
Agha, A.; Waheed, W.; Stiharu, I.; Nerguizian, V.; Destgeer, G.; Abu-Nada, E.; Alazzam, A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Nanoscale Res. Lett., 2023, 18(1), 18.
[PMID: 36800044]
[92]
Ling, F.W.M.; Abdulbari, H.A.; Chin, S.Y. Microfluidic chips for formulation of silica nanoparticles and enzyme immobilization. Chem. Eng. Technol., 2021, 44(8), 1423-1431.
[http://dx.doi.org/10.1002/ceat.202100098]
[93]
Khan, I.U.; Serra, C.A.; Anton, N.; Vandamme, T.F. Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin. Drug Deliv., 2015, 12(4), 547-562.
[http://dx.doi.org/10.1517/17425247.2015.974547] [PMID: 25345543]
[94]
Zeggari, R.; Manceau, J.F.; Aybeke, E.N.; Yahiaoui, R.; Lesniewska, E.; Boireau, W. Design and fabrication of an acoustic micromixer for biological media activation. Procedia Eng., 2014, 87, 935-938.
[http://dx.doi.org/10.1016/j.proeng.2014.11.309]
[95]
Guan, Y.; Xu, F.; Sun, B.; Meng, X.; Liu, Y.; Bai, M. A hybrid electrically-and-piezoelectrically driven micromixer built on paper for microfluids mixing. Biomed. Microdevices, 2020, 22(3), 47.
[http://dx.doi.org/10.1007/s10544-020-00502-7] [PMID: 32642797]
[96]
Sarabi, M.R.; Yigci, D.; Alseed, M.M.; Mathyk, B.A.; Ata, B.; Halicigil, C.; Tasoglu, S. Disposable paper-based microfluidics for fertility testing. iScience, 2022, 25(9), 104986.
[http://dx.doi.org/10.1016/j.isci.2022.104986] [PMID: 36105592]
[97]
Davoodi, E.; Sarikhani, E.; Montazerian, H.; Ahadian, S.; Costantini, M.; Swieszkowski, W.; Willerth, S.M.; Walus, K.; Mofidfar, M.; Toyserkani, E.; Khademhosseini, A.; Ashammakhi, N. Extrusion and microfluidicbased bioprinting to fabricate biomimetic tissues and organs. Adv. Mater. Technol., 2020, 5(8), 1901044.
[http://dx.doi.org/10.1002/admt.201901044] [PMID: 33072855]
[98]
Luo, X.; Su, P.; Zhang, W.; Raston, C.L. Microfluidic devices in fabricating nano or micromaterials for biomedical applications. Adv. Mater. Technol., 2019, 4(12), 1900488.
[http://dx.doi.org/10.1002/admt.201900488]
[99]
Bendre, A.; Bhat, M.P.; Lee, K.H.; Altalhi, T.; Alruqi, M.A.; Kurkuri, M. Recent developments in microfluidic technology for synthesis and toxicity-efficiency studies of biomedical nanomaterials. Mater. Today Adv., 2022, 13, 100205.
[http://dx.doi.org/10.1016/j.mtadv.2022.100205]
[100]
Stucki, A.O.; Stucki, J.D.; Hall, S.R.R.; Felder, M.; Mermoud, Y.; Schmid, R.A.; Geiser, T.; Guenat, O.T. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip, 2015, 15(5), 1302-1310.
[http://dx.doi.org/10.1039/C4LC01252F] [PMID: 25521475]
[101]
Fasciano, S.; Wang, S. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS Technol., 2023, S2472-6303(23), 00034-1.
[http://dx.doi.org/10.1016/j.slast.2023.05.002] [PMID: 37245659]
[102]
Ranjbaran, M.; Verma, M.S. Microfluidics at the interface of bacteria and fresh produce. Trends Food Sci. Technol., 2022, 128, 102-117.
[http://dx.doi.org/10.1016/j.tifs.2022.07.014]
[103]
Lin, Z.; Zou, Z.; Pu, Z.; Wu, M.; Zhang, Y. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery. Acta Pharm. Sin. B, 2023.
[http://dx.doi.org/10.1016/j.apsb.2023.02.014] [PMID: 36855672]
[104]
Orazi, L.; Siciliani, V.; Pelaccia, R.; Oubellaouch, K.; Reggiani, B. Ultrafast laser micromanufacturing of microfluidic devices. Procedia CIRP, 2022, 110, 122-127.
[http://dx.doi.org/10.1016/j.procir.2022.06.023]
[105]
Raj, M. K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci., 2020, 137(27), 48958.
[http://dx.doi.org/10.1002/app.48958]
[106]
Aralekallu, S.; Boddula, R.; Singh, V. Development of glass-based microfluidic devices: A review on its fabrication and biologic applications. Mater. Des., 2023, 225, 111517.
[http://dx.doi.org/10.1016/j.matdes.2022.111517]
[107]
Zhou, W.; Deng, W.; Lu, L.; Zhang, J.; Qin, L.; Ma, S.; Tang, Y. Laser micro-milling of microchannel on copper sheet as catalyst support used in microreactor for hydrogen production. Int. J. Hydrogen Energy, 2014, 39(10), 4884-4894.
[http://dx.doi.org/10.1016/j.ijhydene.2014.01.041]
[108]
Sarma, P.; Borah, D.J.; Patowari, P.K.; Likhite, A. Machinability study of austempered ductile iron using die-sinking EDM. Int. J. Mach. Mach. Mater., 2022, 24(3/4), 314-329.
[http://dx.doi.org/10.1504/IJMMM.2022.125201]
[109]
Sarma, P.; Borah, D.J.; Patowari, P.K.; Likhite, A. Comparative machinability study of ADI-4h and mild steel using WEDM. Int. J. Mach. Mach. Mater., 2023, 25(1), 69-88.
[110]
Sarma, P.; Patowari, P.K. Fabrication of metallic micromixers using WEDM and EDM for application in microfluidic devices and circuitries. Micro Nanosyst., 2018, 10(2), 137-147.
[http://dx.doi.org/10.2174/1876402911666181128125409]
[111]
Santaolalla, A.; Alvarez-Braña, Y.; Barona, A.; Basabe-Desmonts, L.; Benito-Lopez, F.; Rojo, N. Sustainable mold biomachining for the manufacturing of microfluidic devices. J. Ind. Eng. Chem., 2023, 120, 332-339.
[http://dx.doi.org/10.1016/j.jiec.2022.12.040]
[112]
Liu, K.; Yang, Q.; He, S.; Chen, F.; Zhao, Y.; Fan, X.; Li, L.; Shan, C.; Bian, H. A high-efficiency three-dimensional helical micromixer in fused silica. Microsyst. Technol., 2013, 19(7), 1033-1040.
[http://dx.doi.org/10.1007/s00542-012-1695-6]
[113]
Brandner, J.J. Microfabrication in metals, ceramics and polymers. Russ. J. Gen. Chem., 2012, 82(12), 2025-2033.
[http://dx.doi.org/10.1134/S1070363212120249]
[114]
Tuchinskiy, L. Novel manufacturing process for metal and ceramic microhoneycombs. Adv. Eng. Mater., 2008, 10(3), 219-222.
[http://dx.doi.org/10.1002/adem.200700268]
[115]
Brandner, J.J. Fabrication of microreactors made from metals and ceramics. In: Microreactors in organic synthesis and catalysis; Wirth, T., Ed.; Wiley-VCH, 2008; pp. 1-18.
[http://dx.doi.org/10.1002/9783527622856.ch1]
[116]
Sarma, P.; Patowari, P.K. Alternate soft lithographic approaches for microfluidic device fabrication using PCM and EDM based tools. In: Advances in science and technology; Kakati, B; Bora, D, Eds.; i-manager publications, 2019; I, p. 1-5.
[117]
Dixon, C.; Lamanna, J.; Wheeler, A.R. Printed Microfluidics. Adv. Funct. Mater., 2017, 27(11), 1604824.
[http://dx.doi.org/10.1002/adfm.201604824]
[118]
Espinosa, A.; Diaz, J.; Vazquez, E.; Acosta, L.; Santiago, A.; Cunci, L. Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament. Talanta Open, 2022, 6, 100142.
[http://dx.doi.org/10.1016/j.talo.2022.100142] [PMID: 36093430]
[119]
Garcia-Cardosa, M.; Granados-Ortiz, F.J.; Ortega-Casanova, J. A review on additive manufacturing of micromixing devices. Micromachines, 2021, 13(1), 73.
[http://dx.doi.org/10.3390/mi13010073] [PMID: 35056237]
[120]
Badu-Tawiah, A.K.; Lathwal, S.; Kaastrup, K.; Al-Sayah, M.; Christodouleas, D.C.; Smith, B.S.; Whitesides, G.M.; Sikes, H.D. Polymerization-based signal amplification for paper-based immunoassays. Lab Chip, 2015, 15(3), 655-659.
[http://dx.doi.org/10.1039/C4LC01239A] [PMID: 25427131]
[121]
Šercer, M.; Godec, D.; Šantek, B.; Ludwig, R.; Andlar, M.; Rezić, I.; Ivušić, F.; Pilipović, A.; Oros, D.; Rezić, T. Microreactor production by PolyJet matrix 3D-printing technology: Hydrodynamic characterization. Food Technol. Biotechnol., 2019, 57(2), 272-281.
[http://dx.doi.org/10.17113/ftb.57.02.19.5725] [PMID: 31537976]
[122]
Castiaux, A.D.; Pinger, C.W.; Hayter, E.A.; Bunn, M.E.; Martin, R.S.; Spence, D.M. PolyJet 3D-printed enclosed microfluidic channels without photocurable supports. Anal. Chem., 2019, 91(10), 6910-6917.
[http://dx.doi.org/10.1021/acs.analchem.9b01302] [PMID: 31035747]
[123]
Sochol, R.D.; Sweet, E.; Glick, C.C.; Venkatesh, S.; Avetisyan, A.; Ekman, K.F.; Raulinaitis, A.; Tsai, A.; Wienkers, A.; Korner, K.; Hanson, K.; Long, A.; Hightower, B.J.; Slatton, G.; Burnett, D.C.; Massey, T.L.; Iwai, K.; Lee, L.P.; Pister, K.S.J.; Lin, L. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip, 2016, 16(4), 668-678.
[http://dx.doi.org/10.1039/C5LC01389E] [PMID: 26725379]
[124]
Childs, E.H.; Latchman, A.V.; Lamont, A.C.; Hubbard, J.D.; Sochol, R.D. Additive assembly for polyjet-based multi-material 3D printed microfluidics. J. Microelectromech. Syst., 2020, 29(5), 1094-1096.
[http://dx.doi.org/10.1109/JMEMS.2020.3003858]
[125]
Macdonald, N.P.; Cabot, J.M.; Smejkal, P.; Guijt, R.M.; Paull, B.; Breadmore, M.C. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem., 2017, 89(7), 3858-3866.
[http://dx.doi.org/10.1021/acs.analchem.7b00136] [PMID: 28281349]
[126]
Zeraatkar, M.; Filippini, D.; Percoco, G. On the impact of the fabrication method on the performance of 3D printed mixers. Micromachines, 2019, 10(5), 298.
[http://dx.doi.org/10.3390/mi10050298] [PMID: 31052338]
[127]
Lee, J.M.; Zhang, M.; Yeong, W.Y. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid. Nanofluidics, 2016, 20(1), 5.
[http://dx.doi.org/10.1007/s10404-015-1688-8]
[128]
Urrios, A.; Parra-Cabrera, C.; Bhattacharjee, N.; Gonzalez-Suarez, A.M.; Rigat-Brugarolas, L.G.; Nallapatti, U.; Samitier, J.; DeForest, C.A.; Posas, F.; Garcia-Cordero, J.L.; Folch, A. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip, 2016, 16(12), 2287-2294.
[http://dx.doi.org/10.1039/C6LC00153J] [PMID: 27217203]
[129]
Ionita, C.N.; Mokin, M.; Varble, N.; Bednarek, D.R.; Xiang, J.; Snyder, K.V. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc. SPIE Int. Soc. Opt. Eng., 2014, 9038, 90380M.
[130]
Keating, S.J.; Gariboldi, M.I.; Patrick, W.G.; Sharma, S.; Kong, D.S.; Oxman, N. 3D printed multimaterial microfluidic valve. PLoS One, 2016, 11(8), e0160624.
[http://dx.doi.org/10.1371/journal.pone.0160624] [PMID: 27525809]
[131]
Zhang, H.; Kopfmüller, T.; Achermann, R.; Zhang, J.; Teixeira, A.; Shen, Y.; Jensen, K.F. Accessing multidimensional mixing via 3D printing and showerhead micromixer design. AIChE J., 2020, 66(4), e16873.
[http://dx.doi.org/10.1002/aic.16873]
[132]
Capel, A.J.; Edmondson, S.; Christie, S.D.R.; Goodridge, R.D.; Bibb, R.J.; Thurstans, M. Design and additive manufacture for flow chemistry. Lab Chip, 2013, 13(23), 4583-4590.
[http://dx.doi.org/10.1039/c3lc50844g] [PMID: 24100659]
[133]
Xiong, S.; Chen, X. Simulation and experimental research of an effective SAR multilayer interlaced micromixer based on Koch fractal geometry. Microfluid. Nanofluidics, 2021, 25(11), 92.
[http://dx.doi.org/10.1007/s10404-021-02495-y]
[134]
Aravind, T.; Boominathasellarajan, S.; Arunachalam, N. Fabrication of micro-channels on polymethyl methacrylate (PMMA) plates by thermal softening process using nichrome wire: Tool design and surface property evaluation. Procedia Manuf., 2021, 53, 182-188.
[http://dx.doi.org/10.1016/j.promfg.2021.06.088]
[135]
Ladeesh, V.G.; Manu, R. Machining of fluidic channels on borosilicate glass using grinding-aided electrochemical discharge engraving (G-ECDE) and process optimization. J. Braz. Soc. Mech. Sci. Eng., 2018, 40(6), 299.
[http://dx.doi.org/10.1007/s40430-018-1227-0]
[136]
Khashayar, P.; Amoabediny, G.; Larijani, B.; Hosseini, M.; Van Put, S.; Verplancke, R.; Vanfleteren, J. Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors. J. Braz. Soc. Mech. Sci. Eng., 2017, 39(5), 1469-1477.
[http://dx.doi.org/10.1007/s40430-016-0684-6]
[137]
Wu, J.; Fang, H.; Zhang, J.; Yan, S. Modular microfluidics for life sciences. J. Nanobiotechnology, 2023, 21(1), 85.
[http://dx.doi.org/10.1186/s12951-023-01846-x] [PMID: 36906553]
[138]
Bandulasena, M.V.; Vladisavljević, G.T.; Benyahia, B. Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing. J. Colloid Interface Sci., 2019, 542, 23-32.
[http://dx.doi.org/10.1016/j.jcis.2019.01.119] [PMID: 30721833]
[139]
Wang, S.; Yang, X.; Wu, F.; Min, L.; Chen, X.; Hou, X. Inner surface design of functional microchannels for microscale flow control. Small, 2019, 16(9), 1905318.
[PMID: 31793747]
[140]
Löwe, H.; Hessel, V.; Mueller, A. Microreactors. Prospects already achieved and possible misuse. Pure Appl. Chem., 2002, 74(12), 2271-2276.
[http://dx.doi.org/10.1351/pac200274122271]
[141]
Qasim Almajidi, Y.; Algahtani, S.M.; Sajjad Alsawad, O.; Setia Budi, H.; Mansouri, S.; Ali, I.R.; Mazin Al-Hamdani, M.; Mireya Romero-Parra, R. Recent applications of microfluidic immunosensors. Microchem. J., 2023, 190, 108733.
[http://dx.doi.org/10.1016/j.microc.2023.108733]
[142]
Mehta, S.K.; Mondal, B.; Pati, S.; Patowari, P.K. Enhanced electroosmotic mixing of non-Newtonian fluids in a heterogeneous surface charged micromixer with obstacles. Colloids Surf. A Physicochem. Eng. Asp., 2022, 648, 129215.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129215]
[143]
Yang, J.; Zhang, Q.; Mao, Z.S.; Yang, C. Enhanced Micromixing of non-Newtonian fluids by a novel zigzag punched impeller. Ind. Eng. Chem. Res., 2019, 58(16), 6822-6829.
[http://dx.doi.org/10.1021/acs.iecr.9b00465]
[144]
Segerink, L.I.; Eijkel, J.C.T. Nanofluidics in point of care applications. Lab Chip, 2014, 14(17), 3201-3205.
[http://dx.doi.org/10.1039/C4LC00298A] [PMID: 24833191]
[145]
Naula, E.A.; Rodríguez, B.L.; Garza-Castañon, L.E.; Martínez-López, J.I. Manufacturing of stereolithography enabled soft tools for point of care micromixing and sensing chambers for underwater vehicles. Procedia Manuf., 2021, 53, 443-449.
[http://dx.doi.org/10.1016/j.promfg.2021.06.047]
[146]
Bi, W.; Cai, S.; Lei, T.; Wang, L. Implementation of blood-brain barrier on microfluidic chip: Recent advance and future prospects. Ageing Res. Rev., 2023, 87, 101921.
[http://dx.doi.org/10.1016/j.arr.2023.101921] [PMID: 37004842]
[147]
Fang, Y.; Wu, R.; Lee, J.M.; Chan, L.H.M.; Chan, K.Y.J. Microfluidic in vitro fertilization technologies: Transforming the future of human reproduction. Trends Analyt. Chem., 2023, 160, 116959.
[http://dx.doi.org/10.1016/j.trac.2023.116959]
[148]
Zhao, Y.; Lv, X.; Li, X.; Rcheulishvili, N.; Chen, Y.; Li, Z. Microfluidic actuated and controlled systems and application for lab-on-chip in space life science. Space Sci. Technol., 2023, 3, 0008.
[http://dx.doi.org/10.34133/space.0008]
[149]
Kuang, S.; Singh, N.M.; Wu, Y.; Shen, Y.; Ren, W.; Tu, L.; Yong, K.T.; Song, P. Role of microfluidics in accelerating new space missions. Biomicrofluidics, 2022, 16(2), 021503.
[http://dx.doi.org/10.1063/5.0079819] [PMID: 35497325]
[150]
Soni, P.; Anupom, T.; Lesanpezeshki, L.; Rahman, M.; Hewitt, J.E.; Vellone, M. Microfluidics-integrated spaceflight hardware for measuring muscle strength of caenorhabditis elegans on the international space station. NPJ Microgravity, 2022, 8, 50.
[151]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442(7101), 368-373.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy