Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Research Article

An Identification of RET Inhibitor: A Computational Study

Author(s): Anil Verma and Pankaj Wadhwa*

Volume 18, Issue 2, 2023

Published on: 29 August, 2023

Article ID: e170823219883 Pages: 14

DOI: 10.2174/1574362418666230817100406

Price: $65

Abstract

Introduction: RET (Rearranged during transcription) kinase is one of the key targets for anticancer drug development. Understanding the real mechanism of pharmacological action is aided by the protein-ligand interaction. The purpose of this study is to find the most effective RET inhibitors.

Methods: Firstly, through a literature survey, we understood that tetrazole is useful nuclei to provide anticancer activity. Hence, a molecule was drawn containing tetrazole ring using Chemdraw 16.0. This drawn compound was used to determine further ligands employing Zincpharmer. Then, the 3D energy minimized structure of proposed ligands and positive control (selpercatinib and pralsetinib) were drawn using Chem3D. Further, docking was performed for all the ligands with phosphorylated RET kinase (PDB ID - 2IVU) using trial version of Molegro virtual docker 7.0.

Results: Determined ligands were docked with the help of Molegro virtual Docker (MVD) 7.0 employing RET kinase (2ivu) as protein.

Conclusion: Top 10 compounds were selected and their drug-like properties along with their oral bioavailability were also determined. ZINC12180698, ZINC12180696, ZINC09616526, ZINC12180701, ZINC09616182, ZINC09616145, ZINC17052231, ZINC17052262, ZINC12180700, and ZINC0961 6518 were among the top ten compounds that showed the strongest affinity for the target for RETmediated cancer in this study.

Graphical Abstract

[1]
Zuercher WJ, Turunen BJ, Lackey KE. Current review of small molecule Ret kinase inhibitors. Mini Rev Med Chem 2010; 10(2): 138-46.
[http://dx.doi.org/10.2174/138955710791185154] [PMID: 20105131]
[2]
Khoury G, Baliban R, Floudasa C. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci Rep 2011; 1: 90.
[3]
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298(5600): 1912-34.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[4]
Shi Y. Serine/threonine phosphatases: Mechanism through structure. Cell 2009; 139(3): 468-84.
[http://dx.doi.org/10.1016/j.cell.2009.10.006] [PMID: 19879837]
[5]
Brognard J, Hunter T. Protein kinase signaling networks in cancer. Curr Opin Genet Dev 2011; 21(1): 4-11.
[http://dx.doi.org/10.1016/j.gde.2010.10.012] [PMID: 21123047]
[6]
Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009; 9(1): 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[7]
Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 2001; 12(4): 361-73.
[http://dx.doi.org/10.1016/S1359-6101(01)00012-0] [PMID: 11544105]
[8]
Golden JP, DeMaro JA, Osborne PA, Milbrandt J, Johnson EM Jr. Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol 1999; 158(2): 504-28.
[http://dx.doi.org/10.1006/exnr.1999.7127] [PMID: 10415156]
[9]
Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci 2003; 116(19): 3855-62.
[http://dx.doi.org/10.1242/jcs.00786] [PMID: 12953054]
[10]
Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 2006; 28(2): 117-27.
[http://dx.doi.org/10.1038/367380a0]
[11]
Salomon R, Attie T, Amiel J, Pelet A, Niaudet P, Lyonnet S. RET proto-oncogene: Role in kidney development and molecular pathology. Adv Nephrol Necker Hosp 1998; 28: 401-17.
[PMID: 9890001]
[12]
Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985; 42(2): 581-8.
[http://dx.doi.org/10.1016/0092-8674(85)90115-1] [PMID: 2992805]
[13]
Ishizaka Y, Itoh F, Tahira T, et al. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 1989; 4(12): 1519-21.[From NLM.].
[PMID: 2687772]
[14]
Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60(4): 557-63.
[http://dx.doi.org/10.1016/0092-8674(90)90659-3] [PMID: 2406025]
[15]
Mulligan LM, Kwok JBJ, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363(6428): 458-60.
[http://dx.doi.org/10.1038/363458a0] [PMID: 8099202]
[16]
Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-ƒ¿ a novel receptor for GDNF. Cell 1996; 85(7): 1113-24.
[http://dx.doi.org/10.1016/S0092-8674(00)81311-2] [PMID: 8674117]
[17]
Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012; 18(3): 375-7.
[http://dx.doi.org/10.1038/nm.2644] [PMID: 22327624]
[18]
Knowles PP, Murray-Rust J, Kjar S, et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006; 281(44): 33577-87.
[http://dx.doi.org/10.1074/jbc.M605604200] [PMID: 16928683]
[19]
a) Tahira T, Ishizaka Y, Itoh F, Sugimura T, Nagao M. Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell lineOncogene 1990; 5(1): 97-102.
[PMID: 7478523];
(b) Characterization of RET proto-oncogene 3' splicing variants and polyadenylation sites: A novel C-terminus for RET. Oncogene 1995; 11(10): 2039-45.
[PMID: 7478523]
[20]
Carter MT, Yome JL, Marcil MN, Martin CA, Vanhorne JB, Mulligan LM. Conservation of RET proto-oncogene splicing variants and implications for RET isoform function. Cytogenet Genome Res 2001; 95(3-4): 169-76.
[http://dx.doi.org/10.1159/000059341] [PMID: 12063395]
[21]
a) Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domainsOncogene 1988; 3(5): 571-8.
[PMID: 2660074];
b) Takahashi M, Buma Y, Hiai H. Isolation of ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene 1989; 4(6): 805-6.
[PMID: 2660074]
[22]
a) Trupp M, Arenas E, Fainzilber M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 1996; 381(6585): 785-9.;
b) GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996; 381(6585): 789-93.
[23]
Borrello MG, Ardini E, Locati LD, Greco A, Licitra L, Pierotti MA. RET inhibition: implications in cancer therapy. Expert Opin Ther Targets 2013; 17(4): 403-19.
[http://dx.doi.org/10.1517/14728222.2013.758715] [PMID: 23461584]
[24]
Lu C, Zhou Q. Diagnostics, therapeutics and RET inhibitor resistance for RET fusion–positive non-small cell lung cancers and future perspectives. Cancer Treat Rev 2021; 96: 102153.
[http://dx.doi.org/10.1016/j.ctrv.2021.102153] [PMID: 33773204]
[25]
Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 2021; 49(D1): D437-51.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[26]
Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[27]
Bitencourt-Ferreira G. Azevedo WFd. Molegro virtual docker for docking.Docking screens for drug discovery. Springer 2019; pp. 149-67.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10]
[28]
Zainab R, Kaleem A, Ponczek MB, Abdullah R, Iqtedar M, Hoessli DC. Finding inhibitors for PCSK9 using computational methods. PLoS One 2021; 16(8): e0255523.
[http://dx.doi.org/10.1371/journal.pone.0255523] [PMID: 34351937]
[29]
Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Res 2008; 36(2): 223-8.
[http://dx.doi.org/10.1093/nar/gkn187]
[30]
Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J Comput Biol 2008; 15(7): 737-54.
[http://dx.doi.org/10.1089/cmb.2007.0130] [PMID: 18662104]
[31]
Langer T, Hoffmann RD. Pharmacophore modelling: Applications in drug discovery. Expert Opin Drug Discov 2006; 1(3): 261-7.
[http://dx.doi.org/10.1517/17460441.1.3.261] [PMID: 23495846]
[32]
Koes DR, Camacho CJ. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res 2012; 40(W1): 409-14.
[http://dx.doi.org/10.1093/nar/gks378]
[33]
Yang H, Lou C, Sun L, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019; 35(6): 1067-9.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[34]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[35]
Guimarães AP, Oliveira AA, da Cunha EFF, Ramalho TC, França TCC. Analysis of Bacillus anthracis nucleoside hydrolase viain silico docking with inhibitors and molecular dynamics simulation. J Mol Model 2011; 17(11): 2939-51.
[http://dx.doi.org/10.1007/s00894-011-0968-9] [PMID: 21318235]
[36]
Guan L, Yang H, Cai Y, et al. ADMET-score: A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm 2019; 10(1): 148-57.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy