Abstract
Background: Palbociclib and ribociclib are substrates of efflux transporter P-glycoprotein which plays a key role in absorption and transport of these drugs. Proton pump inhibitors, when co-administered with them are known to show inhibitory effect on P-glycoprotein.
Objective: Therefore, this study aims to investigate the role of proton pump inhibitors in inhibition of P-glycoprotein mediated efflux of palbociclib and ribociclib.
Method: A combined approach of molecular docking and ex vivo everted gut sac model was implemented to predict the potential of proton pump inhibitors i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole to inhibit the P-glycoprotein mediated intestinal transport of palbociclib and ribociclib and study the molecular basis of interaction taking place.
Results: Molecular docking studies revealed that omeprazole, rabeprazole and pantoprazole bound to the ATP site of nucleotide binding domain with binding energies of -27.53, -29.56 and -38.44 Kcal/mol respectively. In ex vivo studies, rabeprazole and omeprazole, affected the absorptive permeability of palbociclib by 3.04 and 1.26 and ribociclib by 1.76 and 2.54 folds, respectively. Results of molecular docking studies and ex vivo studies highlighted that proton pump inhibitors bound to the ATP binding site to block its hydrolysis thereby inhibiting the P-glycoprotein mediated efflux of palbociclib and ribociclib.
Conclusion: The experimental evidence presented highlights the fact that proton pump inhibitors have potential to inhibit P-glycoprotein, giving rise to drug interactions with palbociclib and ribociclib. Hence, monitoring is required while proton pump inhibitors and cyclin-dependent kinase inhibitors are being co-administered to avoid adverse events.
Graphical Abstract
[http://dx.doi.org/10.1007/s11096-020-01193-z] [PMID: 33170404]
[http://dx.doi.org/10.1007/s40265-020-01461-2] [PMID: 33369721]
[http://dx.doi.org/10.1016/j.bcp.2018.04.013] [PMID: 29673999]
[http://dx.doi.org/10.1093/chromsci/bmac084] [PMID: 36241222]
[http://dx.doi.org/10.1016/j.critrevonc.2017.01.014] [PMID: 28259289]
[http://dx.doi.org/10.1007/s40262-016-0503-3] [PMID: 28101705]
[http://dx.doi.org/10.1177/1758835919833867] [PMID: 31205497]
[http://dx.doi.org/10.1002/cpt.940] [PMID: 29134635]
[PMID: 36367432]
[http://dx.doi.org/10.2174/1389200223666220218090948] [PMID: 35184709]
[http://dx.doi.org/10.1007/s00210-001-0489-7] [PMID: 11770010]
[http://dx.doi.org/10.1111/fcp.12154] [PMID: 26392328]
[http://dx.doi.org/10.1016/j.ejps.2018.07.046] [PMID: 30048798]
[http://dx.doi.org/10.1002/ptr.7547] [PMID: 35778986]
[http://dx.doi.org/10.1016/j.ejmech.2006.01.013] [PMID: 16546303]
[http://dx.doi.org/10.1111/j.1472-8206.1999.tb00009.x] [PMID: 10456292]
[http://dx.doi.org/10.1126/science.1168750] [PMID: 19325113]
[http://dx.doi.org/10.1371/journal.pone.0187971] [PMID: 29121121]
[http://dx.doi.org/10.1155/2014/358425]
[http://dx.doi.org/10.1016/j.biopha.2020.110032] [PMID: 32187961]
[http://dx.doi.org/10.3390/ijms21114058] [PMID: 32517082]
[http://dx.doi.org/10.1371/journal.pcbi.1002083]
[http://dx.doi.org/10.3390/molecules22040600] [PMID: 28397762]
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00475] [PMID: 31329454]
[http://dx.doi.org/10.1016/j.ejphar.2019.04.002] [PMID: 30959046]
[http://dx.doi.org/10.1007/s10637-015-0266-y] [PMID: 26123925]
[http://dx.doi.org/10.1007/s10822-013-9697-8] [PMID: 24322389]
[http://dx.doi.org/10.1177/1078155218761798] [PMID: 29523051]
[http://dx.doi.org/10.1177/1078155218770904] [PMID: 29726787]
[http://dx.doi.org/10.1021/ci400195v] [PMID: 23802684]
[http://dx.doi.org/10.1016/j.tips.2016.08.003] [PMID: 27659854]
[http://dx.doi.org/10.1007/s40262-019-00844-3] [PMID: 31788764]
[http://dx.doi.org/10.2147/DDDT.S249098] [PMID: 32431491]