Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Computational Structural Validation of CYP2C9 Mutations and Evaluation of Machine Learning Algorithms in Predicting the Therapeutic Outcomes of Warfarin

Author(s): Kannan Sridharan*, Thirumal Kumar D, Suchetha Manikandan, Gaurav Prasanna, Lalitha Guruswamy, Rashed Al Banna and George Priya Doss C

Volume 24, Issue 6, 2023

Published on: 24 July, 2023

Page: [466 - 476] Pages: 11

DOI: 10.2174/1389200224666230705124329

Price: $65

Abstract

Aim: The study aimed to identify the key pharmacogenetic variable influencing the therapeutic outcomes of warfarin using machine learning algorithms and bioinformatics tools.

Background: Warfarin, a commonly used anticoagulant drug, is influenced by cytochrome P450 (CYP) enzymes, particularly CYP2C9. MLAs have been identified to have great potential in personalized therapy.

Objective: The purpose of the study was to evaluate MLAs in predicting the critical outcomes of warfarin therapy and validate the key predictor genotyping variable using bioinformatics tools.

Methods: An observational study was conducted on adults receiving warfarin. Allele discrimination method was used for estimating the single nucleotide polymorphisms (SNPs) in CYP2C9, VKORC1, and CYP4F2. MLAs were used for identifying the significant genetic and clinical variables in predicting the poor anticoagulation status (ACS) and stable warfarin dose. Advanced computational methods (SNPs' deleteriousness and impact on protein destabilization, molecular dockings, and 200 ns molecular dynamics simulations) were employed for examining the influence of CYP2C9 SNPs on structure and function.

Results: Machine learning algorithms revealed CYP2C9 to be the most important predictor for both outcomes compared to the classical methods. Computational validation confirmed the altered structural activity, stability, and impaired functions of protein products of CYP2C9 SNPs. Molecular docking and dynamics simulations revealed significant conformational changes with mutations R144C and I359L in CYP2C9.

Conclusion: We evaluated various MLAs in predicting the critical outcome measures associated with warfarin and observed CYP2C9 as the most critical predictor variable. The results of our study provide insight into the molecular basis of warfarin and the CYP2C9 gene. A prospective study validating the MLAs is urgently needed.

Graphical Abstract

[1]
Barnes, G.D.; Lucas, E.; Alexander, G.C.; Goldberger, Z.D. National trends in ambulatory oral anticoagulant use. Am. J. Med., 2015, 128(12), 1300-1305.e2.
[http://dx.doi.org/10.1016/j.amjmed.2015.05.044] [PMID: 26144101]
[2]
Ho, K.H.; van Hove, M.; Leng, G. Trends in anticoagulant prescribing: A review of local policies in English primary care. BMC Health Serv. Res., 2020, 20(1), 279.
[http://dx.doi.org/10.1186/s12913-020-5058-1] [PMID: 32245380]
[3]
Sridharan, K.; Al Banna, R.; Malalla, Z.; Husain, A.; Sater, M.; Jassim, G.; Otoom, S. Influence of CYP2C9, VKORC1, and CYP4F2 poly-morphisms on the pharmacodynamic parameters of warfarin: A cross-sectional study. Pharmacol. Rep., 2021, 73(5), 1405-1417.
[http://dx.doi.org/10.1007/s43440-021-00256-w] [PMID: 33811620]
[4]
Lee, A.; Crowther, M. Practical issues with vitamin K antagonists: Elevated INRs, low time-in-therapeutic range, and warfarin failure. J. Thromb. Thrombolysis, 2011, 31(3), 249-258.
[http://dx.doi.org/10.1007/s11239-011-0555-z] [PMID: 21274594]
[5]
Roche-Lima, A.; Roman-Santiago, A.; Feliu-Maldonado, R.; Rodriguez-Maldonado, J.; Nieves-Rodriguez, B.G.; Carrasquillo-Carrion, K.; Ramos, C.M.; da Luz Sant’Ana, I.; Massey, S.E.; Duconge, J. Machine learning algorithm for predicting warfarin dose in caribbean hispanics using pharmacogenetic data. Front. Pharmacol., 2020, 10, 1550.
[http://dx.doi.org/10.3389/fphar.2019.01550] [PMID: 32038238]
[6]
Lee, H.; Kim, H.J.; Chang, H.W.; Kim, D.J.; Mo, J.; Kim, J.E. Development of a system to support warfarin dose decisions using deep neural networks. Sci. Rep., 2021, 11(1), 14745.
[http://dx.doi.org/10.1038/s41598-021-94305-2] [PMID: 34285309]
[7]
Hu, Y.H.; Wu, F.; Lo, C.L.; Tai, C.T. Predicting warfarin dosage from clinical data: A supervised learning approach. Artif. Intell. Med., 2012, 56(1), 27-34.
[http://dx.doi.org/10.1016/j.artmed.2012.04.001] [PMID: 22537823]
[8]
Steiner, H.E.; Giles, J.B.; Patterson, H.K.; Feng, J.; El Rouby, N.; Claudio, K.; Marcatto, L.R.; Tavares, L.C.; Galvez, J.M.; Calderon-Ospina, C.A.; Sun, X.; Hutz, M.H.; Scott, S.A.; Cavallari, L.H.; Fonseca-Mendoza, D.J.; Duconge, J.; Botton, M.R.; Santos, P.C.J.L.; Karnes, J.H. Ma-chine learning for prediction of stable warfarin dose in US latinos and latin americans. Front. Pharmacol., 2021, 12, 749786.
[http://dx.doi.org/10.3389/fphar.2021.749786] [PMID: 34776967]
[9]
Zhang, F.; Liu, Y.; Ma, W.; Zhao, S.; Chen, J.; Gu, Z. Nonlinear machine learning in warfarin dose prediction: Insights from contemporary modelling studies. J. Pers. Med., 2022, 12(5), 717.
[http://dx.doi.org/10.3390/jpm12050717] [PMID: 35629140]
[10]
Sridharan, K.; Ramanathan, M.; Al Banna, R. Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin. Int. J. Clin. Pharm., 2022, 45(1), 79-87.
[http://dx.doi.org/10.1007/s11096-022-01471-y] [PMID: 36306062]
[11]
Sridharan, K.; Al Banna, R.; Qader, A.M.; Husain, A. Evaluation of inter-patient variability in the pharmacodynamic indices of warfarin. Expert Rev. Cardiovasc. Ther., 2020, 18(11), 835-840.
[http://dx.doi.org/10.1080/14779072.2020.1814144] [PMID: 32820971]
[12]
Siddiqui, S.; Deremer, C.; Waller, J.; Gujral, J. Variability in the calculation of time in therapeutic range for the quality control measurement of warfarin. J. Innov. Card. Rhythm Manag., 2018, 9(12), 3428-3434.
[http://dx.doi.org/10.19102/icrm.2018.091203] [PMID: 32494479]
[13]
Sridharan, K.; Banny, R.A.; Husain, A. Evaluation of stable doses of warfarin in a patient cohort. Drug Res., 2020, 70(12), 570-575.
[http://dx.doi.org/10.1055/a-1228-5033] [PMID: 32820470]
[14]
Bendl, J.; Stourac, J.; Salanda, O.; Pavelka, A.; Wieben, E.D.; Zendulka, J.; Brezovsky, J.; Damborsky, J. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLOS Comput. Biol., 2014, 10(1), e1003440.
[http://dx.doi.org/10.1371/journal.pcbi.1003440] [PMID: 24453961]
[15]
Chen, C.W.; Lin, J.; Chu, Y.W. iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 2013, 14(S2)(Suppl. 2), S5.
[http://dx.doi.org/10.1186/1471-2105-14-S2-S5] [PMID: 23369171]
[16]
Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res., 2016, 44(W1), W344-W350.
[http://dx.doi.org/10.1093/nar/gkw408] [PMID: 27166375]
[17]
Lindahl, E.; Abraham, M.J.; Hess, B.; van der Spoel, D. GROMACS Documentation - Release 2019.2. In: GROMACS In: Documentation - Release; , 2019; p. 607.
[18]
Gordon, J.; Norman, M.; Hurst, M.; Mason, T.; Dickerson, C.; Sandler, B.; Pollock, K.G.; Farooqui, U.; Groves, L.; Tsang, C.; Clifton, D.; Bakhai, A.; Hill, N.R. Using machine learning to predict anticoagulation control in atrial fibrillation: A UK Clinical Practice Research Datalink study. Informat. Med. Unlocked, 2021, 25, 100688.
[http://dx.doi.org/10.1016/j.imu.2021.100688]
[19]
Sharabiani, A.; Darabi, H.; Bress, A.; Cavallari, L.; Nutescu, E.; Drozda, K. Machine learning based prediction of warfarin optimal dosing for African American patients.2013 In: IEEE international conference on automation science and engineering.,; , 2013; pp. 623-628.
[http://dx.doi.org/10.1109/CoASE.2013.6653999]
[20]
Nguyen, V.L.; Nguyen, H.D.; Cho, Y.S.; Kim, H.S.; Han, I.Y.; Kim, D.K.; Ahn, S.; Shin, J.G. Comparison of multivariate linear regression and a machine learning algorithm developed for prediction of precision warfarin dosing in a Korean population. J. Thromb. Haemost., 2021, 19(7), 1676-1686.
[http://dx.doi.org/10.1111/jth.15318] [PMID: 33774911]
[21]
Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; Ander-son, J.L.; Pirmohamed, M.; Klein, T.E.; Limdi, N.A.; Cavallari, L.H.; Wadelius, M. Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther., 2017, 102(3), 397-404.
[http://dx.doi.org/10.1002/cpt.668] [PMID: 28198005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy