Abstract
Background: Large datasets are logically common yet frequently difficult to interpret. Principal Component Analysis (PCA) is a technique to reduce the dimensionality of a dataset.
Objective: The main objective of this work is to use principal component analysis to interpret and classify phonocardiogram signals.
Methods: Finding new factors aids in the reduction of important components of an eigenvalue/ eigenvector problem, thus enabling the new factors to be represented by the current dataset and making PCA a flexible data analysis tool. PCA is adaptable to a variety of systems created to update different data types and technology advancements.
Results: Signals acquired from a patient, i.e., bio-signals, are used to investigate the patient's strength. One such bio-signal of central significance is the phonocardiogram (PCG), which addresses the working of the heart. Any change in the PCG signal is a characteristic proportion of heart failure, an arrhythmia condition.
Conclusion: Long-term observation is difficult due to the many complexities, such as the lack of human competence and the high chance of misdiagnosis.
Graphical Abstract
[http://dx.doi.org/10.1186/s13634-018-0545-9]
[http://dx.doi.org/10.1109/10.277274] [PMID: 8200671]
[http://dx.doi.org/10.1016/j.compbiomed.2007.09.006] [PMID: 18037395]
[http://dx.doi.org/10.1017/S0263574721000382]
[http://dx.doi.org/10.1016/j.jneumeth.2020.108918] [PMID: 32853592]
[http://dx.doi.org/10.1142/S1793524516500947]
[http://dx.doi.org/10.22489/CinC.2016.324-249]
[http://dx.doi.org/10.1016/j.eswa.2010.11.100]
[http://dx.doi.org/10.1037/h0071325]
[http://dx.doi.org/10.1002/0471725331]
[http://dx.doi.org/10.1016/j.measurement.2016.03.017]
[http://dx.doi.org/10.1098/rsta.2015.0202] [PMID: 26953178]