Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview

Author(s): Sagar Pardeshi, Popat Mohite*, Tanavirsing Rajput and Abhijeet Puri

Volume 21, Issue 2, 2024

Published on: 20 September, 2023

Article ID: e260723219113 Pages: 18

DOI: 10.2174/1570163820666230726125809

Price: $65

Abstract

It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.

Graphical Abstract

[1]
Jaruga E, Salvioli S, Dobrucki J, et al. Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Lett 1998; 433(3): 287-93.
[http://dx.doi.org/10.1016/S0014-5793(98)00919-3] [PMID: 9744813]
[2]
Sun M, Su X, Ding B, et al. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine 2012; 7(7): 1085-100.
[http://dx.doi.org/10.2217/nnm.12.80] [PMID: 22846093]
[3]
Sreejayan, Rao MNA. Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 2011; 46(12): 1013-6.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03258.x]
[4]
Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med 2011; 6(1): 31.
[http://dx.doi.org/10.1186/1749-8546-6-31] [PMID: 21859497]
[5]
Ammon H, Wahl M. Pharmacology of Curcuma longa. Planta Med 1991; 57(1): 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[6]
Tung BT, Nham DT, Hai NT, Thu DK. Curcuma Longa, the polyphenolic curcumin compound and pharmacological effects on liver. Dietary Interv Liver Dis 2019; 2019: 125-34.
[http://dx.doi.org/10.1016/B978-0-12-814466-4.00010-0]
[7]
Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[8]
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A promising candidate for therapeutic applications. Front Pharmacol 2020; 11: 487.
[http://dx.doi.org/10.3389/fphar.2020.00487] [PMID: 32425772]
[9]
Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 2013; 334(1): 133-41.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[10]
Freitas RA Jr. What is nanomedicine? Nanomedicine 2005; 1(1): 2-9.
[http://dx.doi.org/10.1016/j.nano.2004.11.003] [PMID: 17292052]
[11]
Rahman S, Cao S, Steadman KJ, Wei M, Parekh HS. Native and β-cyclodextrin-enclosed curcumin: Entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv 2012; 19(7): 346-53.
[http://dx.doi.org/10.3109/10717544.2012.721143] [PMID: 23030405]
[12]
Gao X. Shi, Gao X. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int J Nanomedicine 2012; 2601: 2601.
[http://dx.doi.org/10.2147/IJN.S31439]
[13]
Serpa Guerra AM, Gómez Hoyos C, Velásquez-Cock JA, et al. The nanotech potential of turmeric (Curcuma longa L.) in food technology: A review. Crit Rev Food Sci Nutr 2020; 60(11): 1842-54.
[http://dx.doi.org/10.1080/10408398.2019.1604490] [PMID: 31017458]
[14]
Hamasalim HJ. The impact of some widely probiotic (Iraqi Probiotic) on health and performance. J Biosci Med 2015; 3(8): 25-36.
[http://dx.doi.org/10.4236/jbm.2015.38003]
[15]
Houshmand M, Garello F, Circosta P, et al. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials 2020; 10(2): 276.
[http://dx.doi.org/10.3390/nano10020276] [PMID: 32041219]
[16]
Gera M, Sharma N, Ghosh M, et al. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017; 8(39): 66680-98.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[17]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[18]
Alok A. Curcumin-pharmacological actions and its role in oral submucous fibrosis: A review. J Clin Diagn Res 2015; 9(10): ZE01-3.
[http://dx.doi.org/10.7860/JCDR/2015/13857.6552]
[19]
Zielińska A, Alves H, Marques V, et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects. Medicina 2020; 56(7): 336.
[http://dx.doi.org/10.3390/medicina56070336] [PMID: 32635279]
[20]
Pan Y, Ju R, Cao X, Pei H, Zheng T, Wang W. Optimization extraction and purification of biological activity curcumin from Curcuma longa L by high‐performance counter‐current chromatography. J Sep Sci 2020; 43(8): 1586-92.
[http://dx.doi.org/10.1002/jssc.201901174] [PMID: 32027757]
[21]
Shirsath SR, Sable SS, Gaikwad SG, Sonawane SH, Saini DR, Gogate PR. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrason Sonochem 2017; 38: 437-45.
[http://dx.doi.org/10.1016/j.ultsonch.2017.03.040] [PMID: 28633845]
[22]
Gökdemir B, Baylan N, Çehreli S. Application of a novel ionic liquid as an alternative green solvent for the extraction of curcumin from turmeric with response surface methodology: Determination and optimization study. Anal Lett 2020; 53(13): 2111-21.
[http://dx.doi.org/10.1080/00032719.2020.1730394]
[23]
Dall’armellina A, Letan M, Duval C, Contino-Pépin C. One-pot solvent-free extraction and formulation of lipophilic natural products: From curcuma to dried formulations of curcumin. Green Chem 2021; 23(22): 8891-900.
[http://dx.doi.org/10.1039/D1GC00587A]
[24]
Degot P, Huber V, Hofmann E, Hahn M, Touraud D, Kunz W. Solubilization and extraction of curcumin from Curcuma Longa using green, sustainable, and food-approved surfactant-free microemulsions. Food Chem 2021; 336: 127660.
[http://dx.doi.org/10.1016/j.foodchem.2020.127660] [PMID: 32771898]
[25]
Yuvapriya S, Chandramohan M, Muthukumaran P. Isolation and extraction of curcumin from three different varieties of Curcuma Longa L-A comparative study. Int J Pharm Res and Allied Science 2015; 4(2): 79-84.
[26]
Dandekar DV, Gaikar VG. Microwave assisted extraction of curcuminoids from Curcuma longa. Sep Sci Technol 2002; 37(11): 2669-90.
[http://dx.doi.org/10.1081/SS-120004458]
[27]
Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction of curcumin by sample–solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal 2008; 46(2): 322-7.
[http://dx.doi.org/10.1016/j.jpba.2007.10.020] [PMID: 18309573]
[28]
Fernández-Marín R, Fernandes SCM, Andrés MA, Labidi J. Microwave-assisted extraction of Curcuma longa L. Oil: Optimization, chemical structure and composition, antioxidant activity and comparison with conventional soxhlet extraction. Molecules 2021; 26(6): 1516.
[http://dx.doi.org/10.3390/molecules26061516] [PMID: 33802053]
[29]
Sr G. Extraction methods and applications of curcumin: A review gowthaman SR and Ranjith S. ~ 1199 ~ The Pharma. Innov J 2022; (6): 1199-204.
[30]
Chopra H, Dey PS, Das D, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021; 26(16): 4998.
[http://dx.doi.org/10.3390/molecules26164998] [PMID: 34443593]
[31]
Pabon HJJ. A synthesis of curcumin and related compounds. Recl Trav Chim Pays Bas 1964; 83(4): 379-86.
[http://dx.doi.org/10.1002/recl.19640830407]
[32]
Rao EV, Sudheer P. Revisiting curcumin chemistry part I: A new strategy for the synthesis of curcuminoids. Indian J Pharm Sci 2011; 73(3): 262-70.
[PMID: 22457548]
[33]
Jiang T, Ghosh R, Charcosset C. Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends Food Sci Technol 2021; 112: 419-30.
[http://dx.doi.org/10.1016/j.tifs.2021.04.015]
[34]
Kurnik IS, Noronha MA, Câmara MCC, et al. Separation and purification of curcumin using novel aqueous two-phase micellar systems composed of amphiphilic copolymer and cholinium ionic liquids. Separ Purif Tech 2020; 250: 117262.
[http://dx.doi.org/10.1016/j.seppur.2020.117262]
[35]
Oglah MK, Mustafa YF, Bashir MK, Jasim MH. Curcumin and its derivatives: A review of their biological activities. Sys Rev Pharm 2020; 11(3): 472-81.
[http://dx.doi.org/10.5530/srp.2020.3.60]
[36]
Belkacemi A, Doggui S, Dao L, Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev Mol Med 2011; 13: e34.
[http://dx.doi.org/10.1017/S1462399411002055] [PMID: 22051121]
[37]
Stanić Z. Curcumin, a compound from natural sources, a true scientific challenge-a review. Plant Foods Hum Nutr 2017; 72(1): 1-12.
[http://dx.doi.org/10.1007/s11130-016-0590-1] [PMID: 27995378]
[38]
Lopresti AL. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv Nutr 2018; 9(1): 41-50.
[http://dx.doi.org/10.1093/advances/nmx011] [PMID: 29438458]
[39]
Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853(1-2): 183-9.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[40]
Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: Problems and promises. Curr Med Chem 2013; 20(20): 2572-82.
[http://dx.doi.org/10.2174/09298673113209990120] [PMID: 23514412]
[41]
Schneider C, Gordon ON, Edwards RL, Luis PB. Degradation of curcumin: From mechanism to biological implications. J Agric Food Chem 2015; 63(35): 7606-14.
[http://dx.doi.org/10.1021/acs.jafc.5b00244] [PMID: 25817068]
[42]
Hoehle SI, Pfeiffer E, Sólyom AM, Metzler M. Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J Agric Food Chem 2006; 54(3): 756-64.
[http://dx.doi.org/10.1021/jf058146a] [PMID: 16448179]
[43]
Garcea G, Jones DJL, Singh R, et al. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 2004; 90(5): 1011-5.
[http://dx.doi.org/10.1038/sj.bjc.6601623] [PMID: 14997198]
[44]
Aggarwal BB, Surh Y-J, Shishodia S, Eds. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Boston, MA: Springer US 2007; Vol. 595.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1]
[45]
Sundar Dhilip Kumar S, Houreld N, Abrahamse H. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules 2018; 23(4): 835.
[http://dx.doi.org/10.3390/molecules23040835] [PMID: 29621160]
[46]
Zainuddin N, Ahmad I, Zulfakar MH, Kargarzadeh H, Ramli S. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydr Polym 2021; 254: 117401.
[http://dx.doi.org/10.1016/j.carbpol.2020.117401] [PMID: 33357890]
[47]
Peltonen L, Hirvonen J, Laaksonen T. Drug nanocrystals and nanosuspensions in medicine. In: Frontiers in Nanobiomedical Research Handbook of Nanobiomedical Research. World Scientific Publishing 2014; pp. 169-97.
[http://dx.doi.org/10.1142/9789814520652_0005]
[48]
Xie M, Fan D, Zhao Z, et al. Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy. Int J Pharm 2015; 496(2): 732-40.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.016] [PMID: 26570985]
[49]
Lachowicz D, Karabasz A, Bzowska M, Szuwarzyński M, Karewicz A, Nowakowska M. Blood-compatible, stable micelles of sodium alginate-curcumin bioconjugate for anti-cancer applications. Eur Polym J 2019; 113: 208-19.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.058]
[50]
Bolat ZB, Islek Z, Demir BN, Yilmaz EN, Sahin F, Ucisik MH. Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on hct116 colorectal cancer model. Front Bioeng Biotechnol 2020; 8: 50.
[http://dx.doi.org/10.3389/fbioe.2020.00050] [PMID: 32117930]
[51]
Rahdar A, Hajinezhad MR, Sargazi S, et al. Biochemical, ameliorative and cytotoxic effects of newly synthesized curcumin microemulsions: Evidence from in vitro and in vivo studies. Nanomaterials 2021; 11(3): 817.
[http://dx.doi.org/10.3390/nano11030817] [PMID: 33806829]
[52]
Riaz M, Riaz M, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[53]
van Hoogevest P. Review-an update on the use of oral phospholipid excipients. Eur J Pharm Sci 2017; 108: 1-12.
[http://dx.doi.org/10.1016/j.ejps.2017.07.008] [PMID: 28711714]
[54]
Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 2012; 17(5): 5972-87.
[http://dx.doi.org/10.3390/molecules17055972] [PMID: 22609787]
[55]
Dhule SS, Penfornis P, Frazier T, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine 2012; 8(4): 440-51.
[http://dx.doi.org/10.1016/j.nano.2011.07.011] [PMID: 21839055]
[56]
Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H, et al. RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl 2021; 35(7): 743-53.
[http://dx.doi.org/10.1177/0885328220949367] [PMID: 32807016]
[57]
Naik JB, Pardeshi SR, Patil RP, Patil PB, Mujumdar A. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: An overview. Bionanoscience 2020; 10(3): 564-82.
[http://dx.doi.org/10.1007/s12668-020-00752-y]
[58]
Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601: 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[59]
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem Soc Rev 2018; 47(23): 8572-610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
[60]
Palomba R, di Francesco M, di Francesco V, et al. Boosting nanomedicine performance by conditioning macrophages with methyl palmitate nanoparticles. Mater Horiz 2021; 8(10): 2726-41.
[http://dx.doi.org/10.1039/D1MH00937K] [PMID: 34617542]
[61]
Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett 2021; 16(1): 95.
[http://dx.doi.org/10.1186/s11671-021-03553-8] [PMID: 34032937]
[62]
Nikonovas T, Spessa A, Doerr SH, Clay GD, Mezbahuddin S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun Earth Environ 2020; 1(1): 65.
[http://dx.doi.org/10.1038/s43247-020-00069-4]
[63]
Nunes SS, Miranda SEM, de Oliveira Silva J, et al. pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomed Pharmacother 2021; 144: 112317.
[http://dx.doi.org/10.1016/j.biopha.2021.112317] [PMID: 34634556]
[64]
Ma Q, Qian W, Tao W, Zhou Y, Xue B. Delivery of curcumin nanoliposomes using surface modified With CD133 aptamers for prostate cancer. Drug Des Devel Ther 2019; 13: 4021-33.
[http://dx.doi.org/10.2147/DDDT.S210949] [PMID: 31819373]
[65]
Qi C, Wang D, Gong X, et al. Co-delivery of curcumin and capsaicin by dual-targeting liposomes for inhibition of aHSC-induced drug resistance and metastasis. ACS Appl Mater Interfaces 2021; 13(14): 16019-35.
[http://dx.doi.org/10.1021/acsami.0c23137] [PMID: 33819006]
[66]
Babazadeh A, Zeinali M, Hamishehkar H. Nano-Phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 2018; 19(2): 170-80.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[67]
Azeez NA, Deepa VS, Sivapriya V. Phytosomes: Emergent promising nano vesicular drug delivery system for targeted tumor therapy. Adv Nat Sci: Nanosci Nanotechnol 2018; 9(3): 033001.
[http://dx.doi.org/10.1088/2043-6254/aadc50]
[68]
Hashemzehi M, Behnam-Rassouli R, Hassanian SM, et al. Phytosomal‐curcumin antagonizes cell growth and migration, induced by thrombin through AMP‐Kinase in breast cancer. J Cell Biochem 2018; 119(7): 5996-6007.
[http://dx.doi.org/10.1002/jcb.26796] [PMID: 29600521]
[69]
Marjaneh RM, Rahmani F, Hassanian SM, et al. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J Cell Physiol 2018; 233(10): 6785-98.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[70]
Moradi-Marjaneh R, Hassanian SM, Rahmani F, Aghaee-Bakhtiari SH, Avan A, Khazaei M. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr Pharm Des 2019; 24(39): 4626-38.
[http://dx.doi.org/10.2174/1381612825666190110145151] [PMID: 30636578]
[71]
Mukherjee S, Fried A, Hussaini R, et al. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J Exp Clin Cancer Res 2018; 37(1): 168.
[http://dx.doi.org/10.1186/s13046-018-0792-5] [PMID: 30041669]
[72]
Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 2013; 448(1): 168-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.021] [PMID: 23524117]
[73]
Yeo PL, Lim CL, Chye SM, Kiong Ling AP, Koh RY. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed 2018; 11(4): 301-14.
[http://dx.doi.org/10.1515/abm-2018-0002]
[74]
Honarvari B, Karimifard S, Akhtari N, et al. Folate-targeted curcumin-loaded niosomes for site-specific delivery in breast cancer treatment: In silico and in vitro study. Molecules 2022; 27(14): 4634.
[http://dx.doi.org/10.3390/molecules27144634] [PMID: 35889513]
[75]
Akbarzadeh I, Shayan M, Bourbour M, et al. Preparation, optimization and in vitro evaluation of curcumin-loaded Niosome@calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology 2021; 10(3): 173.
[http://dx.doi.org/10.3390/biology10030173] [PMID: 33652630]
[76]
Ag Seleci D, Seleci M, Stahl F, Scheper T. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Advances 2017; 7(53): 33378-84.
[http://dx.doi.org/10.1039/C7RA05071B]
[77]
Muzzalupo R, Mazzotta E. Do niosomes have a place in the field of drug delivery? Expert Opin Drug Deliv 2019; 16(11): 1145-7.
[http://dx.doi.org/10.1080/17425247.2019.1663821] [PMID: 31496311]
[78]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[79]
G DB. P VL. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): A brief review of these in enhancing transdermal delivery of drug. Futur J Pharm Sci 2020; 6: 100.
[http://dx.doi.org/10.1186/s43094-020-00117-y]
[80]
Abtahi NA, Naghib SM, Haghiralsadat F, et al. Smart stimuli-responsive biofunctionalized niosomal nanocarriers for programmed release of bioactive compounds into cancer cells in vitro and in vivo. Nanotechnol Rev 2021; 10(1): 1895-911.
[http://dx.doi.org/10.1515/ntrev-2021-0119]
[81]
Alemi A, Zavar Reza J, Haghiralsadat F, et al. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J Nanobiotechnology 2018; 16(1): 28.
[http://dx.doi.org/10.1186/s12951-018-0351-4] [PMID: 29571289]
[82]
Sethi S, Choudhary S, Sharma D, Jyothi VGSS, Baldi A, Madan NKMJ. Armamentarium of anticancer analogues of curcumin: Portray of structural insight, bioavailability, drug-target interaction and therapeutic efficacy. J Mol Struct 2021; 1231: 129691.
[http://dx.doi.org/10.1016/j.molstruc.2020.129691]
[83]
Jyoti K, Pandey RS, Madan J, Jain UK. Inhalable cationic niosomes of curcumin enhanced drug delivery and apoptosis in lung cancer cells. Indian J Pharm Educ Res 2016; 50: S23-31.
[84]
Chang C, Meikle TG, Drummond CJ, Yang Y, Conn CE. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter 2021; 17(12): 3306-13.
[http://dx.doi.org/10.1039/D0SM01655A] [PMID: 33623948]
[85]
Spicer PT. Progress in liquid crystalline dispersions: Cubosomes. Curr Opin Colloid Interface Sci 2005; 10(5-6): 274-9.
[http://dx.doi.org/10.1016/j.cocis.2005.09.004]
[86]
Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci Commun 2022; 46: 100561.
[http://dx.doi.org/10.1016/j.colcom.2021.100561]
[87]
Caltagirone C, Falchi AM, Lampis S, et al. Cancer-cell-targeted theranostic cubosomes. Langmuir 2014; 30(21): 6228-36.
[http://dx.doi.org/10.1021/la501332u] [PMID: 24815031]
[88]
Tu YS, Fu JW, Sun DM, et al. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. J Microencapsul 2014; 31(6): 551-9.
[http://dx.doi.org/10.3109/02652048.2014.885607] [PMID: 24641575]
[89]
Chaurasia S, Chaubey P, Patel RR, Kumar N, Mishra B. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Dev Ind Pharm 2016; 42(5): 694-700.
[http://dx.doi.org/10.3109/03639045.2015.1064941] [PMID: 26165247]
[90]
Xiong K, Zhang Y, Wen Q, et al. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm 2020; 589: 119875.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119875] [PMID: 32919003]
[91]
Duse L, Agel MR, Pinnapireddy SR, et al. Photodynamic Therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles. Pharmaceutics 2019; 11(6): 282.
[http://dx.doi.org/10.3390/pharmaceutics11060282] [PMID: 31208085]
[92]
Medel S, Syrova Z, Kovacik L, et al. Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. Eur Polym J 2017; 93: 116-31.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.036]
[93]
Wang G, Song W, Shen N, et al. Curcumin-encapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment. Sci China Mater 2017; 60(10): 995-1007.
[http://dx.doi.org/10.1007/s40843-017-9107-x]
[94]
Jafari S, Lavasanifar A, Hejazi MS, Maleki-Dizaji N, Mesgari M, Molavi O. STAT3 inhibitory stattic enhances immunogenic cell death induced by chemotherapy in cancer cells. Daru 2020; 28(1): 159-69.
[http://dx.doi.org/10.1007/s40199-020-00326-z] [PMID: 31942696]
[95]
Pakizehkar S, Ranji N, Naderi Sohi A, Sadeghizadeh M. Curcumin loaded PEG 400 ‐OA nanoparticles: A suitable system to increase apoptosis, decrease migration, and deregulate miR‐125b/miR182 in MDA‐MB‐231 human breast cancer cells. Polym Adv Technol 2020; 31(8): 1793-804.
[http://dx.doi.org/10.1002/pat.4906]
[96]
Chen FP, Liu LL, Tang CH. Spray-drying microencapsulation of curcumin nanocomplexes with soy protein isolate: Encapsulation, water dispersion, bioaccessibility and bioactivities of curcumin. Food Hydrocoll 2020; 105: 105821.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105821]
[97]
Pan K, Chen H, Baek SJ, Zhong Q. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem 2018; 246: 82-9.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.002] [PMID: 29291882]
[98]
Liu C, Yang X, Wu W, et al. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll 2018; 77: 834-42.
[http://dx.doi.org/10.1016/j.foodhyd.2017.11.027]
[99]
Kianamiri S, Dinari A, Sadeghizadeh M, et al. Mitochondria-targeted polyamidoamine dendrimer–curcumin construct for hepatocellular cancer treatment. Mol Pharm 2020; 17(12): 4483-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00566] [PMID: 33205974]
[100]
Mohammadpour K, Salahvarzi S, Dadgar Z. Connection of poly (Propylene Imine) dendrimer to curcumin and investigation into anti-cancer effects of its products. Asian Journal of Nanosciences and Materials 2020; 3(4): 340-50.
[101]
Song Z, Zhu W, Song J, et al. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ɛ-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv 2015; 22(1): 58-68.
[http://dx.doi.org/10.3109/10717544.2014.901436] [PMID: 24725028]
[102]
Lozano-Cruz T, Gómez R, de la Mata FJ, Ortega P. New bow-tie cationic carbosilane dendritic system with a curcumin core as an anti-breast cancer agent. New J Chem 2018; 42(14): 11732-8.
[http://dx.doi.org/10.1039/C8NJ01713A]
[103]
Hemmati K, Ahmadi Nasab N, Hesaraki S, Nezafati N. In vitro evaluation of curcumin-loaded chitosan-coated hydroxyapatite nanocarriers as a potential system for effective treatment of cancer. J Biomater Sci Polym Ed 2021; 32(10): 1267-87.
[http://dx.doi.org/10.1080/09205063.2021.1910920] [PMID: 33820489]
[104]
Ali ES, Sharker SM, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectivesSeminars in cancer biology. Elsevier 2021; Vol. 69: pp. 52-68.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.011]
[105]
More MP, Pardeshi SR, Pardeshi C, et al. Recent advances in phytochemical based nano-formulation for drug resistant cancer. Med Drug Discov 2021; Vol. 10: 100082.
[106]
Zhao Y, Zhong R, Fu Y, Zhou Z, Yang M, He L. Simple and feasible design of a polymeric nanoparticle for efficient anticancer drug delivery. Chem Pap 2021; 75(8): 4035-44.
[http://dx.doi.org/10.1007/s11696-021-01589-9]
[107]
Thummarati P, Suksiriworapong J, Sakchaisri K, Junyaprasert VB. Effect of chemical linkers of curcumin conjugated hyaluronic acid on nanoparticle properties and in vitro performances in various cancer cells. J Drug Deliv Sci Technol 2021; 61: 102323.
[http://dx.doi.org/10.1016/j.jddst.2021.102323]
[108]
Lai H, Ding X, Ye J, Deng J, Cui S. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2021; 198: 111455.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111455] [PMID: 33243547]
[109]
Abdel-Hakeem MA, Mongy S, Hassan B, Tantawi OI, Badawy I. Curcumin loaded chitosan-protamine nanoparticles revealed antitumor activity via suppression of NF-κB, proinflammatory cytokines and Bcl-2 gene expression in the breast cancer cells. J Pharm Sci 2021; 110(9): 3298-305.
[http://dx.doi.org/10.1016/j.xphs.2021.06.004] [PMID: 34097977]
[110]
Ahmed A, Sarwar S, Hu Y, et al. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2021; 18(1): 1-24.
[http://dx.doi.org/10.1080/17425247.2020.1822321] [PMID: 32905714]
[111]
Badrzadeh F, Akbarzadeh A, Zarghami N, et al. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells. Asian Pac J Cancer Prev 2014; 15(20): 8931-6.
[http://dx.doi.org/10.7314/APJCP.2014.15.20.8931] [PMID: 25374231]
[112]
Quirós-Fallas MI, Wilhelm-Romero K, Quesada-Mora S, et al. Curcumin hybrid lipid polymeric nanoparticles: antioxidant activity, immune cellular response, and cytotoxicity evaluation. Biomedicines 2022; 10(10): 2431.
[http://dx.doi.org/10.3390/biomedicines10102431] [PMID: 36289694]
[113]
Sharifi S, Dalir Abdolahinia E, Ghavimi MA, et al. Effect of curcumin-loaded mesoporous silica nanoparticles on the head and neck cancer cell line, HN5. Curr Issues Mol Biol 2022; 44(11): 5247-59.
[http://dx.doi.org/10.3390/cimb44110357] [PMID: 36354669]
[114]
Lohcharoenkal W, Wang L, Chen Y C, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014; 2014.
[http://dx.doi.org/10.1155/2014/180549]
[115]
Teixeira FJ, Santos HO, Howell SL, Pimentel GD. Whey protein in cancer therapy: A narrative review. Pharmacol Res 2019; 144: 245-56.
[http://dx.doi.org/10.1016/j.phrs.2019.04.019] [PMID: 31005617]
[116]
Jayaprakasha GK, Chidambara Murthy KN, Patil BS. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein. Eur J Pharmacol 2016; 789: 291-300.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.017] [PMID: 27404761]
[117]
Saleh T, Soudi T, Shojaosadati SA. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int J Biol Macromol 2019; 130: 109-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.129] [PMID: 30802519]
[118]
Gallien J, Srinageshwar B, Gallo K, et al. Curcumin loaded dendrimers specifically reduce viability of glioblastoma cell lines. Molecules 2021; 26(19): 6050.
[http://dx.doi.org/10.3390/molecules26196050] [PMID: 34641594]
[119]
Wang L, Xu X, Zhang Y, et al. Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med 2013; 24(9): 2137-44.
[http://dx.doi.org/10.1007/s10856-013-4969-3] [PMID: 23779153]
[120]
More MP, Deshmukh PK. Quality by design approach for the synthesis of graphene oxide nanosheets using full factorial design with enhanced delivery of Gefitinib nanocrystals. Mater Res Express 2021; 8(7): 075602.
[http://dx.doi.org/10.1088/2053-1591/ac144b]
[121]
More MP, Chitalkar RV, Bhadane MS, et al. Development of graphene-drug nanoparticle based supramolecular self assembled pH sensitive hydrogel as potential carrier for targeting MDR tuberculosis. Mater Technol 2019; 34(6): 324-35.
[http://dx.doi.org/10.1080/10667857.2018.1556468]
[122]
Hussein Y, Loutfy SA, Kamoun EA, El-Moslamy SH, Radwan EM, Elbehairi SEI. Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: Preparation and in vitro bioevaluation. Int J Biol Macromol 2021; 170: 107-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.133] [PMID: 33358954]
[123]
Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH. Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech 2018; 19(6): 2719-39.
[http://dx.doi.org/10.1208/s12249-018-1098-9] [PMID: 29978290]
[124]
Zhao G, Sun Y, Dong X. Zwitterionic polymer micelles with dual conjugation of doxorubicin and curcumin: Synergistically enhanced efficacy against multidrug-resistant tumor cells. Langmuir 2020; 36(9): 2383-95.
[http://dx.doi.org/10.1021/acs.langmuir.9b03722] [PMID: 32036662]
[125]
Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol 2020; 29(2): 149-68.
[http://dx.doi.org/10.1007/s10068-019-00731-4] [PMID: 32064124]
[126]
McClements DJ, Rao J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 2011; 51(4): 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[127]
Kumar R, Uppal S, Mansi K, et al. Ultrasonication induced synthesis of TPGS stabilized clove oil nanoemulsions and their synergistic effect against breast cancer cells and harmful bacteria. J Mol Liq 2021; 118130.
[128]
Bharmoria P, Bisht M, Gomes MC, et al. Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Sci Rep 2021; 11(1): 9099.
[http://dx.doi.org/10.1038/s41598-021-88482-3] [PMID: 33907277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy