Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Bacterial Pathogens: Potential Source For Antimicrobial Peptides

Author(s): Manaf AlMatar*, Osman Albarri*, Raja lakhal, Melda Meral Ocal, Işıl Var and Fatih Köksal

Volume 24, Issue 7, 2023

Published on: 07 August, 2023

Page: [551 - 566] Pages: 16

DOI: 10.2174/1389203724666230726100303

Price: $65

Abstract

As more antibiotics become ineffective due to drug-resistant bacteria, alternative therapies for infections must be prioritized. While pathogenic bacteria are a major threat, they also supply a massive reservoir of potential drugs for treating a wide range of illnesses. The concerning emergence of antimicrobial resistance and the rapidly dwindling therapeutic pipeline need the quick discovery and development of new antibiotics. Despite their great promise for natural product medicine development, pathogenic microorganisms have remained mostly unexplored and understudied. We review the antibacterial activity of specialized metabolites derived from pathogenic bacteria, emphasizing those presently in pre-clinical studies or with promise for medication development. Several atypical biosynthetic pathways are outlined, together with the crucial functions. We also discuss the mechanism of action and antibacterial activities of the antibiotics under consideration. Pathogenic bacteria as a rich source of antibiotics, along with recent advances in genomics and natural product research methods, may usher in a new golden age of antibiotic discovery.

Graphical Abstract

[1]
Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med., 2012, 18(5), 263-272.
[http://dx.doi.org/10.1016/j.molmed.2012.03.003] [PMID: 22480775]
[2]
AlMatar, M.; Albarri, O.; Makky, E.A.; Var, I.; Köksal, F. A glance on the role of bacterial siderophore from the perspectives of medical and biotechnological approaches. Curr. Drug Targets, 2020, 21(13), 1326-1343.
[http://dx.doi.org/10.2174/1389450121666200621193018] [PMID: 32564749]
[3]
AlMatar, M.; Albarri, O.; Makky, E.A.; Var, I.; Köksal, F. An overview of the activities of cefiderocol against sensitive and multidrug-resistant (MDR) bacteria. Mini Rev. Med. Chem., 2020, 20(18), 1908-1916.
[http://dx.doi.org/10.2174/1389557520666200818211405] [PMID: 32811410]
[4]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[5]
Pidot, S.J.; Coyne, S.; Kloss, F.; Hertweck, C. Antibiotics from neglected bacterial sources. Int. J. Med. Microbiol., 2014, 304(1), 14-22.
[http://dx.doi.org/10.1016/j.ijmm.2013.08.011] [PMID: 24120363]
[6]
Osman, A.; Işıl, V.; Fatih, K. Microbial siderophores: Potential medicinal applications of the siderophores. J. Biotechnol. Sci. Res, 2019, 6, 32.
[7]
Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.; MacHado, M.A.; Toth, I.; Salmond, G.; Foster, G.D. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol., 2012, 13(6), 614-629.
[http://dx.doi.org/10.1111/j.1364-3703.2012.00804.x] [PMID: 22672649]
[8]
Wilson, J.W.; Schurr, M.J.; LeBlanc, C.L.; Ramamurthy, R.; Buchanan, K.L.; Nickerson, C.A. Mechanisms of bacterial pathogenicity. Postgrad. Med. J., 2002, 78(918), 216-224.
[http://dx.doi.org/10.1136/pmj.78.918.216] [PMID: 11930024]
[9]
Albarri, O.; AlMatar, M.; Öcal, M.M.; Köksal, F. Overexpression of efflux oumps AcrAB and OqxAB contributes to ciprofloxacin resistance in clinical isolates of K. pneumoniae. Curr. Protein Pept. Sci., 2022, 23(5), 356-368.
[http://dx.doi.org/10.2174/1389203723666220630162920] [PMID: 35786184]
[10]
AlMatar, M.; Albarri, O.; Makky, E.A.; Köksal, F. Efflux pump inhibitors: new updates. Pharmacol. Rep., 2021, 73(1), 1-16.
[http://dx.doi.org/10.1007/s43440-020-00160-9] [PMID: 32946075]
[11]
Baldeweg, F.; Hoffmeister, D.; Nett, M. Correction: A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat. Prod. Rep., 2020, 37(3), 464.
[http://dx.doi.org/10.1039/D0NP90009E] [PMID: 32104837]
[12]
Shi, Y.M.; Bode, H.B. Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions. Nat. Prod. Rep., 2018, 35(4), 309-335.
[http://dx.doi.org/10.1039/C7NP00054E] [PMID: 29359226]
[13]
Dreyer, J.; Malan, A.P.; Dicks, L.M.T. Bacteria of the genus Xenorhabdus, a novel source of bioactive compounds. Front. Microbiol., 2018, 9, 3177.
[http://dx.doi.org/10.3389/fmicb.2018.03177] [PMID: 30619229]
[14]
Challinor, V.L.; Bode, H.B. Bioactive natural products from novel microbial sources. Ann. N. Y. Acad. Sci., 2015, 1354(1), 82-97.
[http://dx.doi.org/10.1111/nyas.12954] [PMID: 26509922]
[15]
Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y.; Zhao, L.; Li, W.; Zhang, T.; Xiao, D.; Guo, X.; Li, Y.; Yang, J.; Hu, Z.; Wang, M.; Zhong, W. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis., 2020, 6(9), 2524-2531.
[http://dx.doi.org/10.1021/acsinfecdis.0c00522] [PMID: 32786284]
[16]
Bode, H.B. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol., 2009, 13(2), 224-230.
[http://dx.doi.org/10.1016/j.cbpa.2009.02.037] [PMID: 19345136]
[17]
Walsh, C.T. Blurring the lines between ribosomal and nonribosomal peptide scaffolds. ACS Chem. Biol., 2014, 9(8), 1653-1661.
[http://dx.doi.org/10.1021/cb5003587] [PMID: 24883916]
[18]
Fischbach, M.A.; Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev., 2006, 106(8), 3468-3496.
[http://dx.doi.org/10.1021/cr0503097] [PMID: 16895337]
[19]
Winn, M.; Fyans, J.; Zhuo, Y.; Micklefield, J. Natural Product Reports. Nat. Prod. Rep., 2016, 33, 317.
[http://dx.doi.org/10.1039/C5NP00099H] [PMID: 26699732]
[20]
Pantel, L.; Florin, T.; Dobosz-Bartoszek, M.; Racine, E.; Sarciaux, M.; Serri, M.; Houard, J.; Campagne, J.M.; de Figueiredo, R.M.; Midrier, C.; Gaudriault, S.; Givaudan, A.; Lanois, A.; Forst, S.; Aumelas, A.; Cotteaux-Lautard, C.; Bolla, J.M.; Vingsbo Lundberg, C.; Huseby, D.L.; Hughes, D.; Villain-Guillot, P.; Mankin, A.S.; Polikanov, Y.S.; Gualtieri, M. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell, 2018, 70(1), 83-94.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.03.001] [PMID: 29625040]
[21]
Parmar, A.; Iyer, A.; Prior, S.H.; Lloyd, D.G.; Leng Goh, E.T.; Vincent, C.S.; Palmai-Pallag, T.; Bachrati, C.Z.; Breukink, E.; Madder, A.; Lakshminarayanan, R.; Taylor, E.J.; Singh, I. Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding. Chem. Sci. (Camb.), 2017, 8(12), 8183-8192.
[http://dx.doi.org/10.1039/C7SC03241B] [PMID: 29568465]
[22]
Hänchen, A.; Rausch, S.; Landmann, B.; Toti, L.; Nusser, A.; Süssmuth, R.D. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity. ChemBioChem, 2013, 14(5), 625-632.
[http://dx.doi.org/10.1002/cbic.201300032] [PMID: 23447362]
[23]
Racine, E.; Nordmann, P.; Pantel, L.; Sarciaux, M.; Serri, M.; Houard, J.; Villain-Guillot, P.; Demords, A.; Vingsbo Lundberg, C.; Gualtieri, M. In vitro and in vivo characterization of NOSO-502, a novel inhibitor of bacterial translation. Antimicrob. Agents Chemother., 2018, 62(9), e01016-18.
[http://dx.doi.org/10.1128/AAC.01016-18] [PMID: 29987155]
[24]
Andes, D.R.; Lepak, A.J. In vivo infection models in the pre-clinical pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Curr. Opin. Pharmacol., 2017, 36, 94-99.
[http://dx.doi.org/10.1016/j.coph.2017.09.004] [PMID: 28964956]
[25]
Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin. Infect. Dis., 1998, 26(1), 1-10.
[http://dx.doi.org/10.1086/516284] [PMID: 9455502]
[26]
Andes, D.; Craig, W.A. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int. J. Antimicrob. Agents, 2002, 19(4), 261-268.
[http://dx.doi.org/10.1016/S0924-8579(02)00022-5] [PMID: 11978497]
[27]
Ambrose, P.G. Use of pharmacokinetics and pharmacodynamics in a failure analysis of community-acquired pneumonia: implications for future clinical trial study design. Clin. Infect. Dis., 2008, 47(S3)(Suppl. 3), S225-S231.
[http://dx.doi.org/10.1086/591427] [PMID: 18986294]
[28]
Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother., 2006, 58(2), 256-265.
[http://dx.doi.org/10.1093/jac/dkl224] [PMID: 16816396]
[29]
Zhou, J.; Ledesma, K.R.; Chang, K.T.; Abodakpi, H.; Gao, S.; Tam, V.H. Pharmacokinetics and pharmacodynamics of minocycline against Acinetobacter baumannii in a neutropenic murine pneumonia model. Antimicrob. Agents Chemother., 2017, 61(5), e02371-16.
[http://dx.doi.org/10.1128/AAC.02371-16] [PMID: 28264853]
[30]
Rubino, C.M.; Bhavnani, S.M.; Forrest, A.; Dukart, G.; Dartois, N.; Cooper, A.; Korth-Bradley, J.; Ambrose, P.G. Pharmacokinetics-pharmacodynamics of tigecycline in patients with community-acquired pneumonia. Antimicrob. Agents Chemother., 2012, 56(1), 130-136.
[http://dx.doi.org/10.1128/AAC.00277-10] [PMID: 21968360]
[31]
Zhao, M.; Lepak, A.J.; Marchillo, K.; VanHecker, J.; Andes, D.R. In vivo pharmacodynamic target assessment of eravacycline against Escherichia coli in a murine thigh infection model. Antimicrob. Agents Chemother., 2017, 61(7), e00250-17.
[http://dx.doi.org/10.1128/AAC.00250-17] [PMID: 28416552]
[32]
Wang, Q.; Peng, K.; Liu, Y.; Xiao, X.; Wang, Z.; Li, R. Characterization of TMexCD3-TOprJ3, an RND-type efflux system conferring resistance to tigecycline in Proteus mirabilis, and its associated integrative conjugative element. Antimicrob. Agents Chemother., 2021, 65(7), e02712-20.
[http://dx.doi.org/10.1128/AAC.02712-20] [PMID: 33875423]
[33]
Zhao, M.; Lepak, A.J.; Marchillo, K.; VanHecker, J.; Andes, D.R. In vivo pharmacodynamic characterization of a novel odilorhabdin antibiotic, NOSO-502, against Escherichia coli and Klebsiella pneumoniae in a murine thigh infection model. Antimicrob. Agents Chemother., 2018, 62(9), e01067-18.
[http://dx.doi.org/10.1128/AAC.01067-18] [PMID: 29987156]
[34]
Bulkley, D.; Brandi, L.; Polikanov, Y.S.; Fabbretti, A.; O’Connor, M.; Gualerzi, C.O.; Steitz, T.A. The antibiotics dityromycin and GE82832 bind protein S12 and block EF-G-catalyzed translocation. Cell Rep., 2014, 6(2), 357-365.
[http://dx.doi.org/10.1016/j.celrep.2013.12.024] [PMID: 24412368]
[35]
Florin, T.; Maracci, C.; Graf, M.; Karki, P.; Klepacki, D.; Berninghausen, O.; Beckmann, R.; Vázquez-Laslop, N.; Wilson, D.N.; Rodnina, M.V.; Mankin, A.S. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat. Struct. Mol. Biol., 2017, 24(9), 752-757.
[http://dx.doi.org/10.1038/nsmb.3439] [PMID: 28741611]
[36]
Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide Antibiotics. Chem. Rev., 2005, 105(2), 685-714.
[http://dx.doi.org/10.1021/cr0300441] [PMID: 15700961]
[37]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[38]
Martin, A.; Fahrbach, K.; Zhao, Q.; Lodise, T. Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: Results of a systematic literature review and meta-analysis. Open Forum Infect. Dis., 2018, 5(7), ofy150.
[http://dx.doi.org/10.1093/ofid/ofy150] [PMID: 30046639]
[39]
Livermore, D.M.; Mushtaq, S.; Warner, M.; Woodford, N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother., 2016, 60(6), 3840-3844.
[http://dx.doi.org/10.1128/AAC.00436-16] [PMID: 27044556]
[40]
Castanheira, M.; Rhomberg, P.R.; Flamm, R.K.; Jones, R.N. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother., 2016, 60(9), 5454-5458.
[http://dx.doi.org/10.1128/AAC.00711-16] [PMID: 27381386]
[41]
Sader, H.S.; Castanheira, M.; Streit, J.M.; Duncan, L.R.; Flamm, R.K. Cefepime-zidebactam (WCK 5222) activity tested against gram-negative organisms causing bloodstream infections worldwide. Open Forum Infect. Dis., 2017, 4(Suppl. 1), S374-S375.
[http://dx.doi.org/10.1093/ofid/ofx163.922]
[42]
Kohira, N.; West, J.; Ito, A.; Ito-Horiyama, T.; Nakamura, R.; Sato, T.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother., 2016, 60(2), 729-734.
[http://dx.doi.org/10.1128/AAC.01695-15] [PMID: 26574013]
[43]
Li, J.; Chen, G.; Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol., 1997, 43(8), 770-773.
[http://dx.doi.org/10.1139/m97-110] [PMID: 9304787]
[44]
Cai, X.; Challinor, V.L.; Zhao, L.; Reimer, D.; Adihou, H.; Grün, P.; Kaiser, M.; Bode, H.B. Biosynthesis of the antibiotic nematophin and its elongated derivatives in entomopathogenic bacteria. Org. Lett., 2017, 19(4), 806-809.
[http://dx.doi.org/10.1021/acs.orglett.6b03796] [PMID: 28134534]
[45]
Stanišić, A.; Kries, H. Adenylation domains in nonribosomal peptide engineering. ChemBioChem, 2019, 20(11), 1347-1356.
[http://dx.doi.org/10.1002/cbic.201800750] [PMID: 30629787]
[46]
Jaitzig, J.; Li, J.; Süssmuth, R.; Neubauer, P. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microb Cell Fact, 2014, 14, 83.
[47]
Himmler, T.; Pirro, F.; Schmeer, N. Synthesis and antibacterial in vitro activity of novel analogues of nematophin. Bioorg. Med. Chem. Lett., 1998, 8(15), 2045-2050.
[http://dx.doi.org/10.1016/S0960-894X(98)00358-8] [PMID: 9873483]
[48]
Wesche, F.; Adihou, H.; Wichelhaus, T.A.; Bode, H.B. Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila. Beilstein J. Org. Chem., 2019, 15(1), 535-541.
[http://dx.doi.org/10.3762/bjoc.15.47] [PMID: 30873237]
[49]
Hasan, A.; Yeom, H.S.; Ryu, J.; Bode, H.B.; Kim, Y. Phenylethylamides derived from bacterial secondary metabolites specifically inhibit an insect serotonin receptor. Sci. Rep., 2019, 9(1), 20358.
[http://dx.doi.org/10.1038/s41598-019-56892-z] [PMID: 31885035]
[50]
Bode, E.; Brachmann, A.O.; Kegler, C.; Simsek, R.; Dauth, C.; Zhou, Q.; Kaiser, M.; Klemmt, P.; Bode, H.B. Simple “on-demand” production of bioactive natural products. ChemBioChem, 2015, 16(7), 1115-1119.
[http://dx.doi.org/10.1002/cbic.201500094] [PMID: 25826784]
[51]
Brachmann, A.O.; Kirchner, F.; Kegler, C.; Kinski, S.C.; Schmitt, I.; Bode, H.B. Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. J. Biotechnol., 2012, 157(1), 96-99.
[http://dx.doi.org/10.1016/j.jbiotec.2011.10.002] [PMID: 22085970]
[52]
Zhao, L.; Awori, R.M.; Kaiser, M.; Groß, J.; Opatz, T.; Bode, H.B. Structure, biosynthesis, and bioactivity of photoditritide from Photorhabdus temperata Meg1. J. Nat. Prod., 2019, 82(12), 3499-3503.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00932] [PMID: 31799840]
[53]
De Lay, N.; Schu, D.J.; Gottesman, S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J. Biol. Chem., 2013, 288(12), 7996-8003.
[http://dx.doi.org/10.1074/jbc.R112.441386] [PMID: 23362267]
[54]
Dietrich, M.; Munke, R.; Gottschald, M.; Ziska, E.; Boettcher, J.P.; Mollenkopf, H.; Friedrich, A. The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J., 2009, 276(19), 5507-5520.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07234.x] [PMID: 19691497]
[55]
Tobias, N.J.; Heinrich, A.K.; Eresmann, H.; Wright, P.R.; Neubacher, N.; Backofen, R.; Bode, H.B. Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environ. Microbiol., 2017, 19(1), 119-129.
[http://dx.doi.org/10.1111/1462-2920.13502] [PMID: 27555343]
[56]
Bode, E.; Heinrich, A.K.; Hirschmann, M.; Abebew, D.; Shi, Y.N.; Vo, T.D.; Wesche, F.; Shi, Y.M.; Grün, P.; Simonyi, S.; Keller, N.; Engel, Y.; Wenski, S.; Bennet, R.; Beyer, S.; Bischoff, I.; Buaya, A.; Brandt, S.; Cakmak, I.; Çimen, H.; Eckstein, S.; Frank, D.; Fürst, R.; Gand, M.; Geisslinger, G.; Hazir, S.; Henke, M.; Heermann, R.; Lecaudey, V.; Schäfer, W.; Schiffmann, S.; Schüffler, A.; Schwenk, R.; Skaljac, M.; Thines, E.; Thines, M.; Ulshöfer, T.; Vilcinskas, A.; Wichelhaus, T.A.; Bode, H.B. Promoter activation in Δhfq mutants as an efficient tool for specialized metabolite production enabling direct bioactivity testing. Angew. Chem., 2019, 131(52), 19133-19139.
[http://dx.doi.org/10.1002/ange.201910563]
[57]
Zipperer, A.; Konnerth, M.C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N.A.; Slavetinsky, C.; Marschal, M.; Willmann, M.; Kalbacher, H.; Schittek, B.; Brötz-Oesterhelt, H.; Grond, S.; Peschel, A.; Krismer, B. Human commensals producing a novel antibiotic impair pathogen colonization. Nature, 2016, 535(7613), 511-516.
[http://dx.doi.org/10.1038/nature18634] [PMID: 27466123]
[58]
Inahashi, Y.; Zhou, S.; Bibb, M.J.; Song, L.; Al-Bassam, M.M.; Bibb, M.J.; Challis, G.L. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chem. Sci. (Camb.), 2017, 8(4), 2823-2831.
[http://dx.doi.org/10.1039/C6SC03533G] [PMID: 28553520]
[59]
Pfeifer, B.A.; Wang, C.C.C.; Walsh, C.T.; Khosla, C. Biosynthesis of Yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host. Appl. Environ. Microbiol., 2003, 69(11), 6698-6702.
[http://dx.doi.org/10.1128/AEM.69.11.6698-6702.2003] [PMID: 14602630]
[60]
Hurdle, J.G.; O’Neill, A.J.; Chopra, I.; Lee, R.E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol., 2011, 9(1), 62-75.
[http://dx.doi.org/10.1038/nrmicro2474] [PMID: 21164535]
[61]
Wasserman, H.H.; Keggi, J.J.; McKeon, J.E. The Structure of Serratamolide 1-3 J. Am. Chem. Soc., 1962, 84(15), 2978-2982.
[http://dx.doi.org/10.1021/ja00874a028]
[62]
Wasserman, H.H.; Keggi, J.J.; McKeon, J.E. Serratamolide, a metabolic product of Serratia. J. Am. Chem. Soc., 1961, 83(19), 4107-4108.
[http://dx.doi.org/10.1021/ja01480a046]
[63]
Matsuyama, T.; Fujita, M.; Yano, I. Wetting agent produced by Serratia marcescens. FEMS Microbiol. Lett., 1985, 28(1), 125-129.
[http://dx.doi.org/10.1111/j.1574-6968.1985.tb00777.x]
[64]
Motley, J.L.; Stamps, B.W.; Mitchell, C.A.; Thompson, A.T.; Cross, J.; You, J.; Powell, D.R.; Stevenson, B.S.; Cichewicz, R.H. Opportunistic sampling of roadkill as an entry point to accessing natural products assembled by bacteria associated with non-anthropoidal mammalian microbiomes. J. Nat. Prod., 2017, 80(3), 598-608.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00772] [PMID: 28335605]
[65]
Matsuyama, T.; Kaneda, K.; Nakagawa, Y.; Isa, K.; Hara-Hotta, H.; Yano, I. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J. Bacteriol., 1992, 174(6), 1769-1776.
[http://dx.doi.org/10.1128/jb.174.6.1769-1776.1992] [PMID: 1548227]
[66]
Matsuyama, T.; Murakami, T.; Fujita, M.; Fujita, S.; Yano, I. Extracellular vesicle formation and biosurfactant production by Serratia marcescens. Microbiology (Reading), 1986, 132(4), 865-875.
[http://dx.doi.org/10.1099/00221287-132-4-865]
[67]
Park, J.T.; Strominger, J.L. Mode of action of penicillin. Science, 1957, 125(3238), 99-101.
[http://dx.doi.org/10.1126/science.125.3238.99] [PMID: 13390969]
[68]
Sunaga, S.; Li, H.; Sato, Y.; Nakagawa, Y.; Matsuyama, T. Identification and characterization of the pswP gene required for the parallel production of prodigiosin and serrawettin W1 in Serratia marcescens. Microbiol. Immunol., 2004, 48(10), 723-728.
[http://dx.doi.org/10.1111/j.1348-0421.2004.tb03597.x] [PMID: 15502404]
[69]
Trauger, J.W.; Kohli, R.M.; Mootz, H.D.; Marahiel, M.A.; Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature, 2000, 407(6801), 215-218.
[http://dx.doi.org/10.1038/35025116] [PMID: 11001063]
[70]
Li, H.; Tanikawa, T.; Sato, Y.; Nakagawa, Y.; Matsuyama, T. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol. Immunol., 2005, 49(4), 303-310.
[http://dx.doi.org/10.1111/j.1348-0421.2005.tb03734.x] [PMID: 15840955]
[71]
Dwivedi, D.; Jansen, R.; Molinari, G.; Nimtz, M.; Johri, B.N.; Wray, V. Antimycobacterial serratamolides and diacyl peptoglucosamine derivatives from Serratia sp. J. Nat. Prod., 2008, 71(4), 637-641.
[http://dx.doi.org/10.1021/np7007126] [PMID: 18303848]
[72]
Kadouri, D.E.; Shanks, R.M.Q. Identification of a methicillin-resistant Staphylococcus aureus inhibitory compound isolated from Serratia marcescens. Res. Microbiol., 2013, 164(8), 821-826.
[http://dx.doi.org/10.1016/j.resmic.2013.06.002] [PMID: 23791620]
[73]
Clements, T.; Ndlovu, T.; Khan, S.; Khan, W. Biosurfactants produced by Serratia species: Classification, biosynthesis, production and application. Appl. Microbiol. Biotechnol., 2019, 103(2), 589-602.
[http://dx.doi.org/10.1007/s00253-018-9520-5] [PMID: 30456577]
[74]
Su, C.; Xiang, Z.; Liu, Y.; Zhao, X.; Sun, Y.; Li, Z.; Li, L.; Chang, F.; Chen, T.; Wen, X.; Zhou, Y.; Zhao, F. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics, 2016, 17(1), 865.
[http://dx.doi.org/10.1186/s12864-016-3171-7] [PMID: 27809759]
[75]
Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol., 2019, 27(4), 323-338.
[http://dx.doi.org/10.1016/j.tim.2018.12.010] [PMID: 30683453]
[76]
Racine, E.; Gualtieri, M. From worms to drug candidate: the story of odilorhabdins, a new class of antimicrobial agents. Front. Microbiol., 2019, 10, 2893.
[http://dx.doi.org/10.3389/fmicb.2019.02893] [PMID: 31921069]
[77]
Zhou, W.; Li, J.; Chen, J.; Liu, X.; Xiang, T.; Zhang, L.; Wan, Y. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens. J. Invertebr. Pathol., 2016, 136, 92-94.
[http://dx.doi.org/10.1016/j.jip.2016.03.011] [PMID: 27000435]
[78]
Lee, J.S.; Kim, Y.S.; Park, S.; Kim, J.; Kang, S.J.; Lee, M.H.; Ryu, S.; Choi, J.M.; Oh, T.K.; Yoon, J.H. Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl. Environ. Microbiol., 2011, 77(14), 4967-4973.
[http://dx.doi.org/10.1128/AEM.01986-10] [PMID: 21642414]
[79]
Stankovic, N.; Senerovic, L.; Ilic-Tomic, T.; Vasiljevic, B.; Nikodinovic-Runic, J. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl. Microbiol. Biotechnol., 2014, 98(9), 3841-3858.
[80]
Yamaguchi, H.; Nakayama, Y.; Takeda, K.; Tawara, K.; Maeda, K.; Takeuchi, T.; Umezawa, H. A new antibiotic, althiomycin. J. Antibiot. (Tokyo), 1957, 10(5), 195-200.
[PMID: 13513511]
[81]
Inami, K.; Shiba, T. Syntheses of althiomycin analogs in relation to antibacterial activities. Bull. Chem. Soc. Jpn., 1986, 59(7), 2185-2189.
[http://dx.doi.org/10.1246/bcsj.59.2185]
[82]
Emtenäs, H.; Taflin, C.; Almqvist, F. Efficient microwave assisted synthesis of optically active bicyclic 2-pyridinones via2-thiazolines. Mol. Divers., 2003, 7(2-4), 165-169.
[http://dx.doi.org/10.1023/B:MODI.0000006800.46154.99] [PMID: 14870846]
[83]
Birch, R.G.; Patil, S.S. R. G.; PATIL, S. S. Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. Microbiology (Reading), 1985, 131(5), 1069-1075.
[http://dx.doi.org/10.1099/00221287-131-5-1069]
[84]
Kretz, J.; Kerwat, D.; Schubert, V.; Grätz, S.; Pesic, A.; Semsary, S.; Cociancich, S.; Royer, M.; Süssmuth, R.D. Total synthesis of albicidin: a lead structure from Xanthomonas albilineans for potent antibacterial gyrase inhibitors. Angew. Chem. Int. Ed., 2015, 54(6), 1969-1973.
[http://dx.doi.org/10.1002/anie.201409584] [PMID: 25504839]
[85]
Herrmann, J.; Fayad, A.A.; Müller, R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep., 2017, 34(2), 135-160.
[http://dx.doi.org/10.1039/C6NP00106H] [PMID: 27907217]
[86]
Gänzle, M.G.; Höltzel, A.; Walter, J.; Jung, G.; Hammes, W.P. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol., 2000, 66(10), 4325-4333.
[http://dx.doi.org/10.1128/AEM.66.10.4325-4333.2000] [PMID: 11010877]
[87]
Mai, P.Y.; Levasseur, M.; Buisson, D.; Touboul, D.; Eparvier, V. Identification of antimicrobial compounds from Sandwithia guyanensis-associated endophyte using molecular network approach. Plants, 2019, 9(1), 47.
[http://dx.doi.org/10.3390/plants9010047] [PMID: 31905762]
[88]
Gänzle, M.; Vogel, R.F. Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int. J. Food Microbiol., 2003, 80(1), 31-45.
[http://dx.doi.org/10.1016/S0168-1605(02)00146-0] [PMID: 12430769]
[89]
Hurdle, J.G.; Heathcott, A.E.; Yang, L.; Yan, B.; Lee, R.E. Reutericyclin and related analogues kill stationary phase Clostridium difficile at achievable colonic concentrations. J. Antimicrob. Chemother., 2011, 66(8), 1773-1776.
[http://dx.doi.org/10.1093/jac/dkr201] [PMID: 21632577]
[90]
Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; Honrao, C.; Ma, X.; Guo, J.J.; Makriyannis, A.; Linares-Otoya, L.; Böhringer, N.; Wuisan, Z.G.; Kaur, H.; Wu, R.; Mateus, A.; Typas, A.; Savitski, M.M.; Espinoza, J.L.; O’Rourke, A.; Nelson, K.E.; Hiller, S.; Noinaj, N.; Schäberle, T.F.; D’Onofrio, A.; Lewis, K. A new antibiotic selectively kills Gram-negative pathogens. Nature, 2019, 576(7787), 459-464.
[http://dx.doi.org/10.1038/s41586-019-1791-1] [PMID: 31747680]
[91]
Waisvisz, J.M.; van der Hoeven, M.G.; van Peppen, J.; Zwennis, W.C.M. Bottromycin. I. A new sulfur-containing antibiotic. J. Am. Chem. Soc., 1957, 79(16), 4520-4521.
[http://dx.doi.org/10.1021/ja01573a072]
[92]
Crone, W.J.K.; Leeper, F.J.; Truman, A.W. Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides. Chem. Sci. (Camb.), 2012, 3(12), 3516.
[http://dx.doi.org/10.1039/c2sc21190d]
[93]
Takahashi, Y.; Naganawa, H.; Takita, T.; Umezawa, H.; Nakamura, S. The revised structure of Bottromycin A2. J. Antibiot. (Tokyo), 1976, 29(10), 1120-1123.
[http://dx.doi.org/10.7164/antibiotics.29.1120] [PMID: 994331]
[94]
Yamada, T.; Yagita, M.; Kobayashi, Y.; Sennari, G.; Shimamura, H.; Matsui, H.; Horimatsu, Y.; Hanaki, H.; Hirose, T.; O̅mura, S.; Sunazuka, T. Synthesis and evaluation of antibacterial activity of bottromycins. J. Org. Chem., 2018, 83(13), 7135-7149.
[http://dx.doi.org/10.1021/acs.joc.8b00045] [PMID: 29560726]
[95]
Kobayashi, Y.; Ichioka, M.; Hirose, T.; Nagai, K.; Matsumoto, A.; Matsui, H.; Hanaki, H.; Masuma, R.; Takahashi, Y.; Ōmura, S.; Sunazuka, T. Bottromycin derivatives: Efficient chemical modifications of the ester moiety and evaluation of anti-MRSA and anti-VRE activities. Bioorg. Med. Chem. Lett., 2010, 20(20), 6116-6120.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.037] [PMID: 20833545]
[96]
Inouye, Y.; Hashimoto, M.; Sugiyama, M.; Takesue, Y.; Santo, T.; Yokoyama, T. Susceptibility of methicillin-resistant Staphylococcus aureus clinical isolates to various antimicrobial agents. IV. Aminoglycoside-modifying enzyme AAC(6′)/APH(2") is responsible for arbekacin-resistance enhanced by bleomycin. Hiroshima J. Med. Sci., 1994, 43(3), 87-92.
[PMID: 7534753]
[97]
Mukai, A.; Fukai, T.; Hoshino, Y.; Yazawa, K.; Harada, K.; Mikami, Y. Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J. Antibiot. (Tokyo), 2009, 62(11), 613-619.
[http://dx.doi.org/10.1038/ja.2009.90] [PMID: 19745839]
[98]
Vinogradov, A.A.; Suga, H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol., 2020, 27(8), 1032-1051.
[http://dx.doi.org/10.1016/j.chembiol.2020.07.003] [PMID: 32698017]
[99]
Li, R.; Stapon, A.; Blanchfield, J.T.; Townsend, C.A. Three unusual reactions mediate carbapenem and carbapenam biosynthesis. J. Am. Chem. Soc., 2000, 122(38), 9296-9297.
[http://dx.doi.org/10.1021/ja001723l]
[100]
Malnoy, M.; Martens, S.; Norelli, J.L.; Barny, M.A.; Sundin, G.W.; Smits, T.H.M.; Duffy, B. Fire blight: applied genomic insights of the pathogen and host. Annu. Rev. Phytopathol., 2012, 50(1), 475-494.
[http://dx.doi.org/10.1146/annurev-phyto-081211-172931] [PMID: 22702352]
[101]
Feistner, G.; Staub, C.M. 6-Thioguanine from Erwinia amylovora. Curr. Microbiol., 1986, 13(2), 95-101.
[http://dx.doi.org/10.1007/BF01568289]
[102]
Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: past, present, and future. Antimicrob. Agents Chemother., 2011, 55(11), 4943-4960.
[http://dx.doi.org/10.1128/AAC.00296-11] [PMID: 21859938]
[103]
Coulthurst, S.J.; Barnard, A.M.L.; Salmond, G.P.C. Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat. Rev. Microbiol., 2005, 3(4), 295-306.
[http://dx.doi.org/10.1038/nrmicro1128] [PMID: 15759042]
[104]
Parker, W.L.; Rathnum, M.L.; Wells, J.E.R.R.Y.J.S.C.O.T.T., Jr; Trejo, W.H.; Principe, P.A.; Sykes, R.B. SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. J. Antibiot. (Tokyo), 1982, 35(6), 653-660.
[http://dx.doi.org/10.7164/antibiotics.35.653] [PMID: 7118721]
[105]
Scannell, J.P.; Pruess, D.L.; Kellett, M.; Demny, T.C.; Stempel, A. Antimetabolites produced by microorganisms. III 2-aminopurine-6-thiol (thioguanine). J. Antibiot. (Tokyo), 1971, 24(5), 328-329.
[http://dx.doi.org/10.7164/antibiotics.24.328] [PMID: 4931964]
[106]
Mandel, H.G.; Latimer, R.G.; Riis, M. The actions of thioguanine in Bacillus cereus. Biochem. Pharmacol., 1965, 14(5), 661-682.
[http://dx.doi.org/10.1016/0006-2952(65)90084-5] [PMID: 4953933]
[107]
Munshi, P.N.; Lubin, M.; Bertino, J.R. 6-thioguanine: a drug with unrealized potential for cancer therapy. Oncologist, 2014, 19(7), 760-765.
[http://dx.doi.org/10.1634/theoncologist.2014-0178] [PMID: 24928612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy