Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Natural and Synthetic Peptides to Control Drug-resistant Pathogens

Author(s): Francisca J.F. de Sousa, Igor R.S. Costa, Francisco L.P. Cavalcante, Ana J.O. Silva, Daiane M.S. Brito, José Y.G. da Silva, José J.L. Silva, Camila G.L. Almeida, Felipe P. Mesquita and Pedro F.N. Souza*

Volume 24, Issue 7, 2023

Published on: 10 July, 2023

Page: [567 - 578] Pages: 12

DOI: 10.2174/1389203724666230621121330

Price: $65

Abstract

Due to the excessive and inappropriate use of antibiotics in farming and clinic, pathogens developed resistance mechanisms to currently used drugs. Thus, because of this resistance, drugs become ineffective, leading to public health problems worldwide. According to the World Health Organization (WHO), microbial resistance to drugs is one of the most threats that humanity must face. Therefore, it is imperative to seek alternative methods to overcome microbial resistance. Here, the potential of natural or synthetic antimicrobial peptides to overcome microbial resistance will be discussed, and how peptides could be a source for new therapeutics molecules. In this context, antimicrobial peptides (natural or synthetic) are considered promising molecules based on their antifungal, antiviral, and antibacterial properties, making them eligible for developing new drugs. In addition, they can act synergistically with existing drugs on the market, revealing a broad spectrum of applications.

Graphical Abstract

[1]
Lyddiard, D.; Jones, G.L.; Greatrex, B.W. Keeping it simple: lessons from the golden era of antibiotic discovery. FEMS Microbiol. Lett., 2016, 363(8), fnw084.
[http://dx.doi.org/10.1093/femsle/fnw084] [PMID: 27036144]
[2]
Ngambenjawong, C.; Chan, L.W.; Fleming, H.E.; Bhatia, S.N. Conditional antimicrobial peptide therapeutics. ACS Nano, 2022, 16(10), 15779-15791.
[http://dx.doi.org/10.1021/acsnano.2c04162] [PMID: 35980829]
[3]
Valdez, C.; Costa, C.; Simões, M.; de Carvalho, C.C.C.R.; Baptista, T.; Campos, M.J. Detection of mcr-1 gene in undefined Vibrio species isolated from clams. Microorganisms, 2022, 10(2), 394.
[http://dx.doi.org/10.3390/microorganisms10020394] [PMID: 35208850]
[4]
Manniello, M.D.; Moretta, A.; Salvia, R.; Scieuzo, C.; Lucchetti, D.; Vogel, H.; Sgambato, A.; Falabella, P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci., 2021, 78(9), 4259-4282.
[http://dx.doi.org/10.1007/s00018-021-03784-z] [PMID: 33595669]
[5]
Gan, B.H.; Cai, X.; Javor, S.; Köhler, T.; Reymond, J.L. Synergistic effect of propidium iodide and small molecule antibiotics with the antimicrobial peptide dendrimer G3KL against gram-negative bacteria. Molecules, 2020, 25(23), 5643.
[http://dx.doi.org/10.3390/molecules25235643] [PMID: 33266085]
[6]
Sharma, K.; Aaghaz, S.; Shenmar, K.; Jain, R. Short antimicrobial peptides. Rec. Patents Anti-Infect. Drug Disc., 2018, 13(1), 12-52.
[http://dx.doi.org/10.2174/1574891X13666180628105928] [PMID: 29952266]
[7]
Septimus, E.J. Antimicrobial resistance. Med. Clin. North Am., 2018, 102(5), 819-829.
[http://dx.doi.org/10.1016/j.mcna.2018.04.005] [PMID: 30126573]
[8]
Murray, A.K.; Stanton, I.; Gaze, W.H.; Snape, J. Dawning of a new ERA: Environmental risk assessment of antibiotics and their potential to select for antimicrobial resistance. Water Res., 2021, 200, 117233.
[http://dx.doi.org/10.1016/j.watres.2021.117233] [PMID: 34038824]
[9]
Rodríguez, A.A.; Otero-González, A.; Ghattas, M.; Ständker, L. Discovery, optimization, and clinical application of natural antimicrobial peptides. Biomedicines, 2021, 9(10), 1381.
[http://dx.doi.org/10.3390/biomedicines9101381] [PMID: 34680498]
[10]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[11]
Kaur-Boparai, J.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett., 2020, 27(1), 4-16.
[http://dx.doi.org/10.2174/18755305MTAwENDE80] [PMID: 31438824]
[12]
Gao, Y.; Fang, H.; Fang, L.; Liu, D.; Liu, J.; Su, M.; Fang, Z.; Ren, W.; Jiao, H. The modification and design of antimicrobial peptide. Curr. Pharm. Des., 2018, 24(8), 904-910.
[http://dx.doi.org/10.2174/1381612824666180213130318] [PMID: 29436993]
[13]
Zhu, J.; Huang, Y.; Chen, M.; Hu, C.; Chen, Y. Functional synergy of antimicrobial peptides and chlorhexidine acetate against gram-negative/gram-positive bacteria and a fungus In Vitro and In Vivo . Infect. Drug Resist., 2019, 12, 3227-3239.
[http://dx.doi.org/10.2147/IDR.S218778] [PMID: 31686873]
[14]
Almeida, R.N.; Silva, F.L.; Moreira, A.S.; Vilanova, J.V.A. Incidência e perfil de susceptibilidade de bactérias isoladas do trato respiratório de pacientes em unidade de terapia intensiva. Revista Arquivos Científicos (IMMES), 2020, 3(1), 95-105. [IMMES].
[http://dx.doi.org/10.5935/2595-4407/rac.immes.v3n1p95-105]
[15]
Gupta, A.; Mumtaz, S.; Li, C.H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev., 2019, 48(2), 415-427.
[http://dx.doi.org/10.1039/C7CS00748E] [PMID: 30462112]
[16]
Rocha, C.H.L.; Muniz, G.S.; Rocha, F.M.G. Identificação de bactérias presentes em biofilmes de superfícies metálicas. Revista de Investigação Biomédica, 2019, 10(2), 172.
[http://dx.doi.org/10.24863/rib.v10i2.284]
[17]
Castro, B.G.; Pinto, L.S.; Souto, R.C.F. Prevalência de bactérias Gram-positivas em infecção do trato urinário. Revista Brasileira de Análises Clínicas, 2020, 51(4), 322-7.
[http://dx.doi.org/10.21877/2448-3877.201900791]
[18]
Da Silva, M. C. R.; Monteiro, D. V. D. S.; Dos Santos, D. D. L.; Nunes, E.; Brabo, J. S. Defense mechanism of the immune system against superbacteria. Multidiscipl Mag Heal., 2021, 2(2), 6.
[http://dx.doi.org/10.51161/rems/945]
[19]
Mohanta, T.K.; Bae, H. The diversity of fungal genome. Biol. Proced. Online, 2015, 17(1), 8.
[http://dx.doi.org/10.1186/s12575-015-0020-z] [PMID: 25866485]
[20]
Keller, N.P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol., 2019, 17(3), 167-180.
[http://dx.doi.org/10.1038/s41579-018-0121-1] [PMID: 30531948]
[21]
Perlin, D. S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis., 2017, 17(12), e383-e392.
[http://dx.doi.org/10.1016/S1473-3099(17)30316-X]
[22]
Robbins, Nicole; Wright, Gerard D.; Cowen, Leah E. Antifungal drugs: the current armamentarium and development of new agents. Microbiol spect., 2016, 4, 4-5.
[http://dx.doi.org/10.1128/microbiolspec.FUNK-0002-2016]
[23]
Armstrong-James, D.; Meintjes, G.; Brown, G.D. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol., 2014, 22(3), 120-127.
[http://dx.doi.org/10.1016/j.tim.2014.01.001] [PMID: 24530175]
[24]
Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci., 2016, 73(23), 4433-4448.
[http://dx.doi.org/10.1007/s00018-016-2299-6] [PMID: 27392606]
[25]
Duffy, S. Why are RNA virus mutation rates so damn high? PLOS Biol., 2018, 16(8), e3000003.
[http://dx.doi.org/10.1371/journal.pbio.3000003]
[26]
Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science, 2020, 368(6490), eaau5480.
[http://dx.doi.org/10.1126/science.aau5480] [PMID: 32355003]
[27]
Loffredo, M.R.; Ghosh, A.; Harmouche, N.; Casciaro, B.; Luca, V.; Bortolotti, A.; Cappiello, F.; Stella, L.; Bhunia, A.; Bechinger, B.; Mangoni, M.L. Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2327-2339.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.009] [PMID: 28912103]
[28]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[29]
Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci., 2019, 111(5), e24122.
[http://dx.doi.org/10.1002/pep2.24122]
[30]
Fry, D.E. Antimicrobial Peptides. Surg. Infect., 2018, 19(8), 804-811.
[http://dx.doi.org/10.1089/sur.2018.194] [PMID: 30265592]
[31]
Shafee, T.M.A.; Lay, F.T.; Phan, T.K.; Anderson, M.A.; Hulett, M.D. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci., 2017, 74(4), 663-682.
[http://dx.doi.org/10.1007/s00018-016-2344-5] [PMID: 27557668]
[32]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[33]
Dassanayake, R.P.; Atkinson, B.M.; Mullis, A.S.; Falkenberg, S.M.; Nicholson, E.M.; Casas, E.; Narasimhan, B.; Bearson, S.M.D. Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates. Sci. Rep., 2021, 11(1), 19276.
[http://dx.doi.org/10.1038/s41598-021-98860-6] [PMID: 34588573]
[34]
Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol., 2014, 59(3), 181-196.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[35]
Annunziato, G.; Costantino, G. Antimicrobial peptides (AMPs): a patent review (2015–2020). Expert Opin. Ther. Pat., 2020, 30(12), 931-947.
[http://dx.doi.org/10.1080/13543776.2020.1851679] [PMID: 33187458]
[36]
Molchanova, N.; Hansen, P.; Franzyk, H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules, 2017, 22(9), 1430.
[http://dx.doi.org/10.3390/molecules22091430] [PMID: 28850098]
[37]
Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev., 2021, 50(8), 4932-4973.
[http://dx.doi.org/10.1039/D0CS01026J] [PMID: 33710195]
[38]
Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil. Med. Res., 2021, 8(1), 48.
[http://dx.doi.org/10.1186/s40779-021-00343-2] [PMID: 34496967]
[39]
Nagra, S.; Kumar, D.; Bhattacharyya, R.; Banerjee, D.; Mukherjee, T. Designing of a penta-peptide against drug resistant E. coli. Bioinformation, 2017, 13(6), 192-195.
[http://dx.doi.org/10.6026/97320630013192] [PMID: 28729761]
[40]
Wojciechowska, M.; Macyszyn, J.; Miszkiewicz, J.; Grzela, R.; Trylska, J. Stapled anoplin as an antibacterial agent. Front. Microbiol., 2021, 12, 772038.
[http://dx.doi.org/10.3389/fmicb.2021.772038] [PMID: 34966367]
[41]
Chapuis, H.; Slaninová, J.; Bednárová, L.; Monincová, L.; Buděšínský, M.; Čeřovský, V. Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera. Amino Acids, 2012, 43(5), 2047-2058.
[http://dx.doi.org/10.1007/s00726-012-1283-1] [PMID: 22526241]
[42]
Wu, J.; Liu, S.; Wang, H. Invasive fungi-derived defensins kill drug-resistant bacterial pathogens. Peptides, 2018, 99, 82-91.
[http://dx.doi.org/10.1016/j.peptides.2017.11.009] [PMID: 29174563]
[43]
Oliveira, J.T.A.; Souza, P.F.N.; Vasconcelos, I.M.; Dias, L.P.; Martins, T.F.; Van Tilburg, M.F.; Guedes, M.I.F.; Sousa, D.O.B. Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie, 2019, 157, 10-21.
[http://dx.doi.org/10.1016/j.biochi.2018.10.016] [PMID: 30389515]
[44]
Prada-Prada, S.; Flórez-Castillo, J.; Farfán-García, A.; Guzmán, F.; Hernández-Peñaranda, I. Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7. PLoS One, 2020, 15(2), e0229019.
[http://dx.doi.org/10.1371/journal.pone.0229019] [PMID: 32053687]
[45]
de Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.; van der Heijde, T.; Boekema, B.K.; Kwakman, P.H.S.; Kamp, N.; El Ghalbzouri, A.; Lohner, K.; Zaat, S.A.J.; Drijfhout, J.W.; Nibbering, P.H. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med., 2018, 10(423), eaan4044.
[http://dx.doi.org/10.1126/scitranslmed.aan4044] [PMID: 29321257]
[46]
Hitt, S.J.; Bishop, B.M.; van Hoek, M.L. Komodo-dragon cathelicidin-inspired peptides are antibacterial against carbapenem-resistant Klebsiella pneumoniae. J. Med. Microbiol., 2020, 69(11), 1262-1272.
[http://dx.doi.org/10.1099/jmm.0.001260] [PMID: 33084564]
[47]
Felício, M.R.; Silveira, G.G.O.S.; Oshiro, K.G.N.; Meneguetti, B.T.; Franco, O.L.; Santos, N.C.; Gonçalves, S. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens. J. Antimicrob. Chemother., 2021, 76(5), 1174-1186.
[http://dx.doi.org/10.1093/jac/dkaa560] [PMID: 33501992]
[48]
Wu, C.L.; Hsueh, J.Y.; Yip, B.S.; Chih, Y.H.; Peng, K.L.; Cheng, J.W. Antimicrobial peptides display strong synergy with vancomycin against vancomycin-resistant E. faecium, S. aureus, and wild-type E. coli. Int. J. Mol. Sci., 2020, 21(13), 4578.
[http://dx.doi.org/10.3390/ijms21134578] [PMID: 32605123]
[49]
Martinez, M.; Gonçalves, S.; Felício, M.R.; Maturana, P.; Santos, N.C.; Semorile, L.; Hollmann, A.; Maffía, P.C. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochim. Biophys. Acta Biomembr., 2019, 1861(7), 1329-1337.
[http://dx.doi.org/10.1016/j.bbamem.2019.05.008] [PMID: 31095945]
[50]
Zharkova, M.S.; Orlov, D.S.; Golubeva, O.Y.; Chakchir, O.B.; Eliseev, I.E.; Grinchuk, T.M.; Shamova, O.V. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—a novel way to combat antibiotic resistance? Front. Cell. Infect. Microbiol., 2019, 9, 128.
[http://dx.doi.org/10.3389/fcimb.2019.00128] [PMID: 31114762]
[51]
Duong, L.; Gross, S.P.; Siryaporn, A. Developing antimicrobial synergy with AMPs. Front. Med. Technol., 2021, 3, 640981.
[http://dx.doi.org/10.3389/fmedt.2021.640981] [PMID: 35047912]
[52]
Wu, C.L.; Peng, K.L.; Yip, B.S.; Chih, Y.H.; Cheng, J.W. Boosting synergistic effects of short antimicrobial peptides with conventional antibiotics against resistant bacteria. Front. Microbiol., 2021, 12(12), 747760.
[http://dx.doi.org/10.3389/fmicb.2021.747760] [PMID: 34733262]
[53]
Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother., 2003, 52(1), 1-1.
[http://dx.doi.org/10.1093/jac/dkg301] [PMID: 12805255]
[54]
Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev., 2022, 42(4), 1377-1422.
[http://dx.doi.org/10.1002/med.21879] [PMID: 34984699]
[55]
Xu, J.; Li, Y.; Wang, H.; Zhu, M.; Feng, W.; Liang, G. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int. J. Nanomedicine, 2021, 16, 4831-4846.
[http://dx.doi.org/10.2147/IJN.S315839] [PMID: 34295158]
[56]
Soravia, E.; Martini, G.; Zasloff, M. Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Lett., 1988, 228(2), 337-340.
[http://dx.doi.org/10.1016/0014-5793(88)80027-9] [PMID: 3125066]
[57]
Strandberg, E.; Tremouilhac, P.; Wadhwani, P.; Ulrich, A.S. Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1667-1679.
[http://dx.doi.org/10.1016/j.bbamem.2008.12.018] [PMID: 19272296]
[58]
Zerweck, J.; Strandberg, E.; Kukharenko, O.; Reichert, J.; Bürck, J.; Wadhwani, P.; Ulrich, A.S. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci. Rep., 2017, 7(1), 13153.
[http://dx.doi.org/10.1038/s41598-017-12599-7] [PMID: 29030606]
[59]
Ma, W.; Sun, S.; Li, W.; Zhang, Z.; Lin, Z.; Xia, Y.; Yuan, B.; Yang, K. Individual roles of peptides PGLa and magainin 2 in synergistic membrane poration. Langmuir, 2020, 36(26), 7190-7199.
[http://dx.doi.org/10.1021/acs.langmuir.0c00194] [PMID: 32529830]
[60]
Powers, J.P.S.; Hancock, R.E.W. The relationship between peptide structure and antibacterial activity. Peptides, 2003, 24(11), 1681-1691.
[http://dx.doi.org/10.1016/j.peptides.2003.08.023] [PMID: 15019199]
[61]
Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem. Soc. Rev., 2021, 50(13), 7820-7880.
[http://dx.doi.org/10.1039/D0CS00729C] [PMID: 34042120]
[62]
Ciandrini, E.; Morroni, G.; Cirioni, O.; Kamysz, W.; Kamysz, E.; Brescini, L.; Baffone, W.; Campana, R. Synergistic combinations of antimicrobial peptides against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices. J. Glob. Antimicrob. Resist., 2020, 21, 203-210.
[http://dx.doi.org/10.1016/j.jgar.2019.10.022] [PMID: 31678322]
[63]
Souza, P.F.N.; Marques, L.S.M.; Oliveira, J.T.A.; Lima, P.G.; Dias, L.P.; Neto, N.A.S.; Lopes, F.E.S.; Sousa, J.S.; Silva, A.F.B.; Caneiro, R.F.; Lopes, J.L.S.; Ramos, M.V.; Freitas, C.D.T. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie, 2020, 175, 132-145.
[http://dx.doi.org/10.1016/j.biochi.2020.05.016] [PMID: 32534825]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy