Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Evaluation of the Interaction between Ricin Protein and Quercetin using Different Analytical Methods

Author(s): Mayra Cristina Martínez-Ceniceros, Lenin Omar Nevarez-Prado, David Neder-Suarez, Fabiola Sandoval-Salas, Luz María Rodríguez-Valdez, Linda-Lucila Landeros-Martínez, Karla Bernal-Alvarado and León Hernández-Ochoa*

Volume 20, Issue 2, 2023

Published on: 10 August, 2023

Page: [120 - 127] Pages: 8

DOI: 10.2174/1570164620666230717114018

Price: $65

Abstract

Background: Ricin is the most toxic protein known. It is part of the ribosome-inactivating proteins, RIPs, type 2, which has generated importance in his research; it is possible to detoxify this protein with phenolic compounds; however, it is essential to understand how this detoxification occurs. To analyze using electrophoresis, UV-visible spectroscopy, and high-performance liquid chromatography (HPLC) the protein ricin with the flavonol quercetin, understanding the detoxification process.

Methods: The UV-visible analysis was performed on both the supernatant and the precipitate of the samples; these results were analyzed using one-factor analysis of variance (ANOVA) and a Tukey test with a significance level of 0.05.

Results: 34.9 μg/mL of total protein and 4.2 μg / mL of ricin were obtained in the extraction method. Eight interactions were carried out, and all presented precipitation, observing through the electrophoresis technique a decrease in the bands corresponding to the protein; these results were analyzed with HPLC observing a decrease in the size of the area of the peaks in the chromatograms.

Conclusion: The results obtained in this study suggest an agglomeration of the protein, generating a precipitate that could benefit the protein's inactivation as a detoxification process.

Graphical Abstract

[1]
Wegener, G. ‘Let food be thy medicine, and medicine be thy food’: Hippocrates revisited. Acta Neuropsychiatr., 2014, 26(1), 1-3.
[http://dx.doi.org/10.1017/neu.2014.3] [PMID: 25279413]
[2]
Bøhn, S.K.; Croft, K.D.; Burrows, S.; Puddey, I.B.; Mulder, T.P.J.; Fuchs, D.; Woodman, R.J.; Hodgson, J.M. Effects of black tea on body composition and metabolic outcomes related to cardiovascular disease risk: A randomized controlled trial. Food Funct., 2014, 5(7), 1613-1620.
[http://dx.doi.org/10.1039/C4FO00209A] [PMID: 24889137]
[3]
Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20, 1-42.
[http://dx.doi.org/10.1080/10942912.2017.1354017]
[4]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[5]
Diplock, A.T.; Charuleux, J-L.; Crozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr., 1998, 80(S1), S77-S112.
[http://dx.doi.org/10.1079/BJN19980106] [PMID: 9849355]
[6]
Oh, M.M.; Trick, H.N.; Rajashekar, C.B. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J. Plant Physiol., 2009, 166(2), 180-191.
[http://dx.doi.org/10.1016/j.jplph.2008.04.015] [PMID: 18562042]
[7]
Castro-López, C.; Ventura-Sobrevilla, J.M.; González-Hernández, M.D.; Rojas, R.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Martínez-Ávila, G.C.G. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chem., 2017, 237, 1139-1148.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.032] [PMID: 28763961]
[8]
Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed., 2011, 50(3), 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137]
[9]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[10]
Yue, W.; Ming, Q.; Lin, B.; Rahman, K.; Zheng, C.J.; Han, T.; Qin, L. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol., 2016, 36(2), 215-232.
[http://dx.doi.org/10.3109/07388551.2014.923986] [PMID: 24963701]
[11]
Mulaudzi, R.B.; Ndhlala, A.R.; Kulkarni, M.G.; Van Staden, J. Pharmacological properties and protein binding capacity of phenolic extracts of some Venda medicinal plants used against cough and fever. J. Ethnopharmacol., 2012, 143(1), 185-193.
[http://dx.doi.org/10.1016/j.jep.2012.06.022] [PMID: 22732728]
[12]
Marranzano, M.; Rosa, R.L.; Malaguarnera, M.; Palmeri, R.; Tessitori, M.; Barbera, A.C. Polyphenols: Plant sources and food industry applications. Curr. Pharm. Des., 2019, 24(35), 4125-4130.
[http://dx.doi.org/10.2174/1381612824666181106091303] [PMID: 30398104]
[13]
D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci., 2010, 11(4), 1321-1342.
[http://dx.doi.org/10.3390/ijms11041321] [PMID: 20480022]
[14]
Guo, W.; Kong, E.; Meydani, M. Dietary polyphenols, inflammation, and cancer. Nutr. Cancer, 2009, 61(6), 807-810.
[http://dx.doi.org/10.1080/01635580903285098] [PMID: 20155620]
[15]
Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant compounds for plant defence... and for a healthy human diet. Not. Bot. Horti Agrobot. Cluj-Napoca, 2018, 46(1), 14-21.
[http://dx.doi.org/10.15835/nbha46110992]
[16]
Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism chemistry and structure of the flavonoids. Nutrition, 2002, 18(1), 75-81.
[17]
Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[18]
Yu, J.; Ahmedna, M.; Bansode, R.R. Agricultural By-Products as Important Food Sources of Polyphenols; Nova Science Publishers, Inc., 2014, pp. 1-32.
[19]
Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[20]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[21]
Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; Lip, G.Y.H.; Graham, I.; Wong, N.; Rysz, J.; Banach, M. Effects of quercetin on blood pressure: A systematic review and meta‐analysis of randomized controlled trials. J. Am. Heart Assoc., 2016, 5(7), e002713.
[http://dx.doi.org/10.1161/JAHA.115.002713] [PMID: 27405810]
[22]
de Freitas, V.; Mateus, N. Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem., 2001, 49(2), 940-945.
[http://dx.doi.org/10.1021/jf000981z] [PMID: 11262053]
[23]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[24]
Olsnes, S.; Kozlov, J.V. Ricin. Toxicon, 2001, 39(11), 1723-1728.
[http://dx.doi.org/10.1016/S0041-0101(01)00158-1] [PMID: 11595634]
[25]
Rutenber, E.; Katzin, B.J.; Ernst, S.; Collins, E.J.; Mlsna, D.; Ready, M.P.; Robertus, J.D. Crystallographic refinement of ricin to 2.5 Å. Proteins, 1991, 10(3), 240-250.
[http://dx.doi.org/10.1002/prot.340100308] [PMID: 1881880]
[26]
Katzin, B.J.; Collins, E.J.; Robertus, J.D. Structure of ricin A-chain at 2.5 Å. Proteins, 1991, 10(3), 251-259.
[http://dx.doi.org/10.1002/prot.340100309] [PMID: 1881881]
[27]
Whitfield, S.J.; Padgen, D.B.; Knight, S.; Gwyther, R.J.; Holley, J.L.; Clark, G.C.; Green, A.C. Establishment of a novel oral murine model of ricin intoxication and efficacy assessment of ovine ricin antitoxins. Toxins, 2020, 12(12), 784.
[http://dx.doi.org/10.3390/toxins12120784] [PMID: 33302573]
[28]
Polito, L.; Bortolotti, M.; Battelli, M.; Calafato, G.; Bolognesi, A. Ricin: An ancient story for a timeless plant toxin. Toxins, 2019, 11(6), 324.
[http://dx.doi.org/10.3390/toxins11060324] [PMID: 31174319]
[29]
Ling, E.A.; Wen, C.Y.; Shieh, J.Y.; Yick, T.Y.; Wong, W.C. Ultrastructural changes of the nodose ganglion cells following an intraneural injection of Ricinus communis agglutinin-60 into the vagus nerve in hamsters. J. Anat., 1991, 179, 23-32.
[PMID: 1817137]
[30]
Soler-Rodríguez, A.M.; Ghetie, M.A.; Oppenheimer-Marks, N.; Uhr, J.W.; Vitetta, E.S. Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: implications for vascular leak syndrome. Exp. Cell Res., 1993, 206(2), 227-234.
[http://dx.doi.org/10.1006/excr.1993.1142] [PMID: 8388800]
[31]
Shankar, A.; Joshi, K. A review of extraction and detection of ricin from castor plant and the effect of ricin on humans. J Stud Res, 2022, 11(3)
[http://dx.doi.org/10.47611/jsrhs.v11i3.2751]
[32]
Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Yusaf, T.; Kusumo, F.; Mahlia, T.M.I. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study. Ind. Crops Prod., 2016, 85, 274-286.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.017]
[33]
Akande, T.O.; Odunsi, A.A.; Akinfala, E.O. A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. J. Anim. Physiol. Anim. Nutr., 2016, 100(2), 201-210.
[http://dx.doi.org/10.1111/jpn.12360] [PMID: 26150062]
[34]
Sousa, N.L.; Cabral, G.B.; Vieira, P.M.; Baldoni, A.B.; Aragão, F.J.L. Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds. Sci. Rep., 2017, 7(1), 15385.
[http://dx.doi.org/10.1038/s41598-017-15636-7] [PMID: 29133924]
[35]
Martínez-Ceniceros, M.C.; Landeros-Martínez, L.L.; Sánchez-Bojorge, N.A.; Sandoval-Salas, F.; Piñón-Castillo, H.A.; Hernández-Ochoa, L.R.; Rodríguez-Valdez, L.M. A potential inhibition process of ricin protein with the flavonoids quercetin and epigallocatechin gallate. A quantum-chemical and molecular docking study. Processes, 2020, 8(11), 1393.
[http://dx.doi.org/10.3390/pr8111393]
[36]
Dyer, P.D.R.; Kotha, A.K.; Gollings, A.S.; Shorter, S.A.; Shepherd, T.R.; Pettit, M.W.; Alexander, B.D.; Getti, G.T.M.; El-Daher, S.; Baillie, L.; Richardson, S.C.W. An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(7), 1541-1550.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.024] [PMID: 27017946]
[37]
Voisin, G.; Jansen, F.; Gros, P. Cytotoxic products formed by covalent bonding of the a chain of ricin with an antibody and the process for their preparation and use. U.S. Patent 4,340,535, 1982.
[38]
Minitab, INC Minitab 16 statistical software. 2010. Available from: https://www.minitab.com/en-us/products/minitab/
[39]
Braun, A.V.; Taranchenko, V.F.; Tikhomirov, L.A.; Grechukhin, A.P.; Rybal’chenko, I.V. Detection of ricin in plant extracts and soil using liquid chromatography–high-resolution mass spectrometry. J. Anal. Chem., 2018, 73(8), 786-795.
[http://dx.doi.org/10.1134/S1061934818080026]
[40]
Worbs, S.; Skiba, M.; Söderström, M.; Rapinoja, M.L.; Zeleny, R.; Russmann, H.; Schimmel, H.; Vanninen, P.; Fredriksson, S.Å.; Dorner, B. Characterization of Ricin and R. communis agglutinin reference materials. Toxins, 2015, 7(12), 4906-4934.
[http://dx.doi.org/10.3390/toxins7124856] [PMID: 26703723]
[41]
Andrade, I.R.A.; Cândido, M.J.D.; Pompeu, R.C.F.F.; Feitosa, T.S.; Bomfim, M.A.D.; Salles, H.O.; Egito, A.S. Inactivation of lectins from castor cake by alternative chemical compounds. Toxicon, 2019, 160, 47-54.
[http://dx.doi.org/10.1016/j.toxicon.2019.02.003] [PMID: 30790577]
[42]
Meneguelli de Souza, L.C.; Carvalho, L.P.; Araújo, J.S.; Melo, E.J.T.; Machado, O.L.T. Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. Int. J. Biol. Macromol., 2018, 113(113), 821-828.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.024] [PMID: 29522821]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy