Abstract
Dry Blood Spots (DBS) have been used in combination with liquid chromatography-mass spectrometry for targeted proteomics to identify sensitive and specific novel biomarkers. DBS presents several advantages over other traditional blood sampling methods. This review discusses the past, present and future of the technology, focusing on studies with clinical and population relevance. Arguments for and against DBS are presented by discussing technological advances, particularly those related to Mass Spectrometry (MS) and Multiple Reaction Monitoring (MRM), sample preparation issues, disease biomarkers, pharmacokinetics, and pharmacodynamics. There will be a focus on proteomic studies that rely on DBS as a sampling method. In this context, numerous studies on the diagnosis and treatment of several diseases. To date, proteomic reports of studies using DBS have shown that DBS can facilitate diagnosis and prognosis. DBS offers several advantages that make it a viable option for many fields. Moreover, some of its disadvantages can be easily overcome through automation to increase reproducibility and reduce protocol variability and standardization of parameters such as the volume of sample used. Within this context, here we propose to review the advantages and disadvantages of using DBS for blood proteomics and provide an understanding of how current DBS-based protocols are being conducted for future standardization and protocol optimization.
Graphical Abstract
[http://dx.doi.org/10.1007/s00216-011-5161-6] [PMID: 21706235];
(b) Scriver, C.R. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants, by Robert Guthrie and Ada Susi, Pediatrics, 1963;32:318-343. Pediatrics, 1998, 102(1 Pt 2)(1), 236-237.
[http://dx.doi.org/10.1542/peds.102.S1.236] [PMID: 9651440]
(b) Farzadegan, H.; Noori, K.H.; Ala, F. Detection of hepatitis-B surface antigen in blood and blood products dried on filter paper. Lancet, 1978, 311(8060), 362-363.
[http://dx.doi.org/10.1016/S0140-6736(78)91085-1] [PMID: 75399]
[http://dx.doi.org/10.1373/clinchem.2015.247668] [PMID: 26647314]
[http://dx.doi.org/10.1016/j.phrp.2014.09.005] [PMID: 25562044]
[http://dx.doi.org/10.4269/ajtmh.17-0889] [PMID: 29968557]
[http://dx.doi.org/10.1586/14789450.2014.965158] [PMID: 25308552]
[http://dx.doi.org/10.1586/14789450.2014.904204] [PMID: 24697571];
(b) Gaissmaier, T.; Siebenhaar, M.; Todorova, V.; Hüllen, V.; Hopf, C. Therapeutic drug monitoring in dried blood spots using liquid microjunction surface sampling and high resolution mass spectrometry. Analyst, 2016, 141(3), 892-901.
[http://dx.doi.org/10.1039/C5AN02302E]
[http://dx.doi.org/10.1016/j.jpba.2017.10.007] [PMID: 29078175];
(b) Zhao, J.; Sharat, C.; Mehta, P.A.; Mizuno, K.; Vinks, A.A.; Setchell, K.D.R. Paperspray ionization mass spectrometry as a tool for predicting real-time optimized dosing of the chemotherapeutic drug melphalan. J. Appl. Lab. Med., 2021, 6(3), 625-636.
[http://dx.doi.org/10.1093/jalm/jfaa237] [PMID: 33582807]
[http://dx.doi.org/10.1016/j.ijantimicag.2018.04.020] [PMID: 29751121];
(b) Dodin, Y.I.; Suyagh, M.F.; Saleh, M.I.; Nuseir, Z.T.; Aburuz, S.M.; Al-Qudah, A.A.; Masri, A.T.; Younes, A.M.; Al-Ghazawi, M.A. Population pharmacokinetics modeling of lamotrigine in jordanian epileptic patients using dried blood spot sampling. Drug Res., 2021, 71(8), 429-437.
[http://dx.doi.org/10.1055/a-1524-0913]
[http://dx.doi.org/10.1007/s00216-020-02634-4] [PMID: 32300840]
[http://dx.doi.org/10.1373/clinchem.2008.111989] [PMID: 18845768]
[http://dx.doi.org/10.1074/mcp.TIR119.001820] [PMID: 31896676]
[http://dx.doi.org/10.1002/ejlt.201700362]
[http://dx.doi.org/10.1016/j.clinbiochem.2022.03.007] [PMID: 35346637];
(b) Carpentieri, D.; Colvard, A.; Petersen, J.; Marsh, W.; David-Dirgo, V.; Huentelman, M.; Pirrotte, P.; Sivakumaran, T.A. Mind the quality gap when banking on dry blood spots. Biopreserv. Biobank., 2021, 19(2), 136-142.
[http://dx.doi.org/10.1089/bio.2020.0131] [PMID: 33567235];
(c) Rincón, J.P.; Meesters, R.J.W. Evaluation of peripheral blood microsampling techniques in combination with liquid chromatography-high resolution mass spectrometry for the determination of drug pharmacokinetics in clinical studies. Drug Test. Anal., 2014, 6(6), 568-577.
[http://dx.doi.org/10.1002/dta.1582] [PMID: 24259410]
[http://dx.doi.org/10.1016/j.scitotenv.2014.06.142] [PMID: 25058892]
(b) Eick, G.N.; Kowal, P.; Barrett, T.; Thiele, E.A.; Snodgrass, J.J. Enzyme-linked immunoassay-based quantitative measurement of apolipoprotein B (ApoB) in dried blood spots, a biomarker of cardiovascular disease risk. Biodemogr. Soc. Biol., 2017, 63(2), 116-130.
[http://dx.doi.org/10.1080/19485565.2017.1283582]
[http://dx.doi.org/10.1373/clinchem.2005.049270] [PMID: 15845800]
[http://dx.doi.org/10.1093/jac/dkp150] [PMID: 19403653]
[http://dx.doi.org/10.1373/clinchem.2008.111641] [PMID: 19299546]
[http://dx.doi.org/10.1373/clinchem.2003.029488] [PMID: 14981035]
[http://dx.doi.org/10.1074/mcp.RA117.000015] [PMID: 28501802]
[http://dx.doi.org/10.1016/j.ymgme.2015.06.011] [PMID: 26212339]
[http://dx.doi.org/10.1016/j.biopsych.2020.09.005] [PMID: 33187600]
[http://dx.doi.org/10.1016/j.jpba.2020.113844] [PMID: 33388640]
[http://dx.doi.org/10.1002/prca.201400042] [PMID: 25220422];
(b) Anderson, D.N.; Anderson, C.; Lanka, N.; Sharma, R.; Butson, C.R.; Baker, B.W.; Dorval, A.D. The μDBS: Multiresolution, directional deep brain stimulation for improved targeting of small diameter fibers. Front. Neurosci., 2019, 13, 1152.
[http://dx.doi.org/10.3389/fnins.2019.01152] [PMID: 31736693];
(c) Hogeling, S.M.; Cox, M.T.; Bradshaw, R.M.; Smith, D.P.; Duckett, C.J. Quantification of proteins in whole blood, plasma and DBS, with element-labelled antibody detection by ICP-MS. Anal. Biochem., 2019, 575, 10-16.
[http://dx.doi.org/10.1016/j.ab.2019.03.006] [PMID: 30902647]
(b) Nakajima, D.; Ohara, O.; Kawashima, Y. Data-independent acquisition mass spectrometry-based deep proteome analysis for hydrophobic proteins from dried blood spots enriched by sodium carbonate precipitation. Methods Mol. Biol., 2022, 2420, 39-52.
[http://dx.doi.org/10.1007/978-1-0716-1936-0_4] [PMID: 34905164]
[http://dx.doi.org/10.1007/s13361-013-0658-1] [PMID: 23728546]
[http://dx.doi.org/10.1007/s13361-012-0477-9] [PMID: 22993042]
[http://dx.doi.org/10.1002/pmic.201300316] [PMID: 24482221]
[http://dx.doi.org/10.1007/s13361-013-0678-x] [PMID: 23821375]
[http://dx.doi.org/10.1038/s41467-020-17643-1] [PMID: 32764543]
[http://dx.doi.org/10.1038/nmeth.2369] [PMID: 23443629]
[http://dx.doi.org/10.1074/mcp.M112.022442] [PMID: 23221968]
[http://dx.doi.org/10.1038/srep45178] [PMID: 28345601]
[http://dx.doi.org/10.1074/mcp.O115.049957] [PMID: 26342038]
[http://dx.doi.org/10.1007/978-1-62703-405-0_13] [PMID: 23585092]
[http://dx.doi.org/10.4103/ijp.IJP_578_16] [PMID: 29674802];
(b) Moretti, M.; Freni, F.; Carelli, C.; Previderé, C.; Grignani, P.; Vignali, C.; Cobo-Golpe, M.; Morini, L. Analysis of cannabinoids and metabolites in dried urine spots (DUS). Molecules, 2021, 26(17), 5334.
[http://dx.doi.org/10.3390/molecules26175334] [PMID: 34500772]
[http://dx.doi.org/10.1186/gb-2006-7-9-r80] [PMID: 16948836]
[http://dx.doi.org/10.4155/bio.14.197] [PMID: 25486228];
(b) Preece, R.L.; Han, S.Y.S.; Bahn, S. Proteomic approaches to identify blood-based biomarkers for depression and bipolar disorders. Expert Rev. Proteomics, 2018, 15(4), 325-340.
[http://dx.doi.org/10.1080/14789450.2018.1444483] [PMID: 29466886]
[http://dx.doi.org/10.1016/j.jprot.2016.12.008] [PMID: 28007617];
(b) Cooper, J.D.; Ozcan, S.; Gardner, R.M.; Rustogi, N.; Wicks, S.; van Rees, G.F.; Leweke, F.M.; Dalman, C.; Karlsson, H.; Bahn, S. Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl. Psychiatry, 2017, 7(12), 1290.
[http://dx.doi.org/10.1038/s41398-017-0027-0] [PMID: 29249827];
(c) Han, M.; Jun, S.H.; Song, S.H.; Park, H.D.; Park, K.U.; Song, J. Ultra-performance liquid chromatography/tandem mass spectrometry for determination of sulfatides in dried blood spots from patients with metachromatic leukodystrophy. Rapid Commun. Mass Spectrom., 2014, 28(6), 587-594.
[http://dx.doi.org/10.1002/rcm.6823] [PMID: 24519821];
(d) Meesters, R.J.W.; van Kampen, J.J.A.; Reedijk, M.L.; Scheuer, R.D.; Dekker, L.J.M.; Burger, D.M.; Hartwig, N.G.; Osterhaus, A.D.M.E.; Luider, T.M.; Gruters, R.A. Ultrafast and high-throughput mass spectrometric assay for therapeutic drug monitoring of antiretroviral drugs in pediatric HIV-1 infection applying dried blood spots. Anal. Bioanal. Chem., 2010, 398(1), 319-328.
[http://dx.doi.org/10.1007/s00216-010-3952-9] [PMID: 20632164];
(e) Krone, C.; Oja, A.; van de Groep, K.; Sanders, E.; Bogaert, D.; Trzciński, K. Dried saliva spots: A robust method for detecting streptococcus pneumoniae carriage by PCR. Int. J. Mol. Sci., 2016, 17(3), 343.
[http://dx.doi.org/10.3390/ijms17030343] [PMID: 26959014];
(f) Rao, R.N.; Prasad, K.G.; Naidu, C.G.; Saida, S.; Agwane, S.B. Development of a validated LC-MS/MS method for determination of doxofylline on rat dried blood spots and urine: Application to pharmacokinetics. J. Pharm. Biomed. Anal., 2013, 78-79, 211-216.
[http://dx.doi.org/10.1016/j.jpba.2013.02.017] [PMID: 23501441]
[http://dx.doi.org/10.1373/clinchem.2017.275966] [PMID: 29187355]
[http://dx.doi.org/10.1016/j.clinbiochem.2020.02.007] [PMID: 32087137]
[http://dx.doi.org/10.1080/10408363.2017.1297358] [PMID: 28393579]
[http://dx.doi.org/10.1002/mas.21441] [PMID: 25252132]