Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanotechnology-based Drug Delivery for Alzheimer's and Parkinson's Diseases

Author(s): Phuong-Trang Nguyen-Thi, Thanh-Tam Ho*, Thuy Trang Nguyen* and Giau Van Vo

Volume 21, Issue 7, 2024

Published on: 19 July, 2023

Page: [917 - 931] Pages: 15

DOI: 10.2174/1567201820666230707113405

Price: $65

Abstract

The delivery of drugs to the brain is quite challenging in the treatment of the central nervous system (CNS) diseases due to the blood-brain barrier and the blood-cerebrospinal fluid barrier. However, significant developments in nanomaterials employed by nanoparticle drug-delivery systems have substantial potential to cross or bypass these barriers leading to enhanced therapeutic efficacies. Advances in nanoplatform, nanosystems based on lipids, polymers and inorganic materials have been extensively studied and applied in treating Alzheimer's and Parkinson's diseases. In this review, various types of brain drug delivery nanocarriers are classified, summarized, and their potential as drug delivery systems in Alzheimer's and Parkinson's diseases is discussed. Finally, challenges facing the clinical translation of nanoparticles from bench to bedside are highlighted.

Graphical Abstract

[1]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A.; Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karami, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[2]
Feng, L.; Wang, H.; Xue, X. Recent Progress of Nanomedicine in the Treatment of Central Nervous System Diseases. Adv. Ther. (Weinh.), 2020, 3(5), 1900159.
[http://dx.doi.org/10.1002/adtp.201900159]
[3]
Korczyn, A.D.; Reichmann, H.; Boroojerdi, B.; Häck, H.J. Rotigotine transdermal system for perioperative administration. J. Neural Transm. (Vienna), 2007, 114(2), 219-221.
[http://dx.doi.org/10.1007/s00702-006-0606-3] [PMID: 17177076]
[4]
Selikhova, M.; Williams, D.R.; Kempster, P.A.; Holton, J.L.; Revesz, T.; Lees, A.J. A clinico-pathological study of subtypes in Parkinson’s disease. Brain, 2009, 132(11), 2947-2957.
[http://dx.doi.org/10.1093/brain/awp234] [PMID: 19759203]
[5]
Bonelli, R.M.; Cummings, J.L. Frontal-Subcortical Dementias. Neurologist, 2008, 14(2), 100-107.
[http://dx.doi.org/10.1097/NRL.0b013e31815b0de2] [PMID: 18332839]
[6]
Nguyen, T.T.; Nguyen, T.T.D.; Nguyen, T.K.O.; Vo, T.K.; Vo, V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother., 2021, 139111623.
[http://dx.doi.org/10.1016/j.biopha.2021.111623] [PMID: 33915504]
[7]
Jankovic, J.; Aguilar, L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat., 2008, 4(4), 743-757.
[http://dx.doi.org/10.2147/NDT.S2006] [PMID: 19043519]
[8]
Tajes, M.; Ramos-Fernández, E.; Weng-Jiang, X.; Bosch-Morató, M.; Guivernau, B.; Eraso-Pichot, A.; Salvador, B.; Fernàndez-Busquets, X.; Roquer, J.; Muñoz, F.J. The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Mol. Membr. Biol., 2014, 31(5), 152-167.
[http://dx.doi.org/10.3109/09687688.2014.937468] [PMID: 25046533]
[9]
Liu, Y.; Zou, Y.; Feng, C.; Lee, A.; Yin, J.; Chung, R.; Park, J.B.; Rizos, H.; Tao, W.; Zheng, M.; Farokhzad, O.C.; Shi, B. Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Lett., 2020, 20(3), 1637-1646.
[http://dx.doi.org/10.1021/acs.nanolett.9b04683] [PMID: 32013452]
[10]
Lang, T.; Yin, Q.; Li, Y. Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy. Adv. Ther. (Weinh.), 2018, 1(7), 1800053.
[http://dx.doi.org/10.1002/adtp.201800053]
[11]
García, M.C. 4 - Nano- and microparticles as drug carriers.Engineering Drug Delivery Systems; Woodhead Publishing, 2020, pp. 71-110.
[12]
Elmowafy, M.; Al-Sanea, M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J., 2021, 29(9), 999-1012.
[http://dx.doi.org/10.1016/j.jsps.2021.07.015] [PMID: 34588846]
[13]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[14]
Liu, Q.; Kim, Y.J.; Im, G-B.; Zhu, J.; Wu, Y.; Liu, Y.; Bhang, S.H. Inorganic Nanoparticles Applied as Functional Therapeutics. Adv. Funct. Mater., 2021, 31(12), 2008171.
[http://dx.doi.org/10.1002/adfm.202008171]
[15]
Heuer-Jungemann, A.; Linko, V. Engineering Inorganic Materials with DNA Nanostructures. ACS Cent. Sci., 2021, 7(12), 1969-1979.
[http://dx.doi.org/10.1021/acscentsci.1c01272] [PMID: 34963890]
[16]
Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci., 2020, 7587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[17]
Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev., 2016, 103, 202-217.
[http://dx.doi.org/10.1016/j.addr.2016.02.008] [PMID: 26944096]
[18]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[19]
Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4(1), e1153568.
[http://dx.doi.org/10.1080/21688370.2016.1153568] [PMID: 27141426]
[20]
Jones, A.R.; Shusta, E.V. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm. Res., 2007, 24(9), 1759-1771.
[http://dx.doi.org/10.1007/s11095-007-9379-0] [PMID: 17619996]
[21]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[22]
Ingusci, S.; Verlengia, G.; Soukupova, M.; Zucchini, S.; Simonato, M. Gene Therapy Tools for Brain Diseases. Front. Pharmacol., 2019, 10, 724.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[23]
Ribeiro, M.M.B.; Domingues, M.M.; Freire, J.M.; Santos, N.C.; Castanho, M.A.R.B. Translocating the blood-brain barrier using electrostatics. Front. Cell. Neurosci., 2012, 6, 44.
[http://dx.doi.org/10.3389/fncel.2012.00044] [PMID: 23087614]
[24]
Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges. Adv. Sci. (Weinh.), 2021, 8(10), 2003937.
[http://dx.doi.org/10.1002/advs.202003937] [PMID: 34026447]
[25]
Johnsen, KB; Bak, M; Melander, F; Thomsen, MS; Burkhart, A; Kempen, PJ Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptortargeted gold nanoparticles and liposomal cargo. J. contr. rel., 2019, 295, 237-249.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.005]
[26]
Hersh, A.M.; Alomari, S.; Tyler, B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int. J. Mol. Sci., 2022, 23(8), 4153.
[http://dx.doi.org/10.3390/ijms23084153] [PMID: 35456971]
[27]
Jain, K.K. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis., 2007, 4(4), 287-291.
[http://dx.doi.org/10.1159/000101884] [PMID: 17627131]
[28]
Cummings, J.L. Alzheimer’s Disease. N. Engl. J. Med., 2004, 351(1), 56-67.
[http://dx.doi.org/10.1056/NEJMra040223] [PMID: 15229308]
[29]
Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew. Chem. Int. Ed., 2009, 48(17), 3030-3059.
[http://dx.doi.org/10.1002/anie.200802808] [PMID: 19330877]
[30]
Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.T.D.; Le, T.T.; Vo, V.G. Role of Insulin Resistance in the Alzheimer’s Disease Progression. Neurochem. Res., 2020, 45(7), 1481-1491.
[http://dx.doi.org/10.1007/s11064-020-03031-0] [PMID: 32314178]
[31]
Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.K.O.; Nguyen, T.T.D.; Van Giau, V. Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. Int. J. Mol. Sci., 2020, 21(9), 3165.
[http://dx.doi.org/10.3390/ijms21093165] [PMID: 32365816]
[32]
Bagyinszky, E.; Giau, V.V.; Shim, K.; Suk, K.; An, S.S.A.; Kim, S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurol. Sci., 2017, 376, 242-254.
[http://dx.doi.org/10.1016/j.jns.2017.03.031] [PMID: 28431620]
[33]
Atri, A. The Alzheimer’s Disease Clinical Spectrum. Med. Clin. North Am., 2019, 103(2), 263-293.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[34]
Thies, W.; Bleiler, L.; Bleiler, L. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement., 2013, 9(2), 208-245.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[35]
Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 32-42.
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[36]
Panza, F.; Frisardi, V.; Imbimbo, B.P.; D’Onofrio, G.; Pietrarossa, G.; Seripa, D.; Pilotto, A.; Solfrizzi, V. Bapineuzumab: anti-β-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy, 2010, 2(6), 767-782.
[http://dx.doi.org/10.2217/imt.10.80] [PMID: 21091109]
[37]
Tayeb, H.O.; Murray, E.D.; Price, B.H.; Tarazi, F.I. Bapineuzumab and solanezumab for Alzheimer’s disease: is the ‘amyloid cascade hypothesis’ still alive? Expert Opin. Biol. Ther., 2013, 13(7), 1075-1084.
[http://dx.doi.org/10.1517/14712598.2013.789856] [PMID: 23574434]
[38]
Ostrowitzki, S.; Deptula, D.; Thurfjell, L.; Barkhof, F.; Bohrmann, B.; Brooks, D.J.; Klunk, W.E.; Ashford, E.; Yoo, K.; Xu, Z.X.; Loetscher, H.; Santarelli, L. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol., 2012, 69(2), 198-207.
[http://dx.doi.org/10.1001/archneurol.2011.1538] [PMID: 21987394]
[39]
Budd Haeberlein, S.; Aisen, P.S.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; Iwatsubo, T.; Mallinckrodt, C.; Mummery, C.J.; Muralidharan, K.K.; Nestorov, I.; Nisenbaum, L.; Rajagovindan, R.; Skordos, L.; Tian, Y.; van Dyck, C.H.; Vellas, B.; Wu, S.; Zhu, Y.; Sandrock, A. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimers Dis., 2022, 9(2), 197-210.
[PMID: 35542991]
[40]
van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L.D.; Iwatsubo, T. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med., 2023, 388(1), 9-21.
[http://dx.doi.org/10.1056/NEJMoa2212948] [PMID: 36449413]
[41]
Song, Q.; Huang, M.; Yao, L.; Wang, X.; Gu, X.; Chen, J.; Chen, J.; Huang, J.; Hu, Q.; Kang, T.; Rong, Z.; Qi, H.; Zheng, G.; Chen, H.; Gao, X. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano, 2014, 8(3), 2345-2359.
[http://dx.doi.org/10.1021/nn4058215] [PMID: 24527692]
[42]
Dara, T.; Vatanara, A.; Sharifzadeh, M.; Khani, S.; Vakilinezhad, M.A.; Vakhshiteh, F.; Nabi Meybodi, M.; Sadegh Malvajerd, S.; Hassani, S.; Mosaddegh, M.H. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nanoparticles. Neurobiol. Learn. Mem., 2019, 166107082.
[http://dx.doi.org/10.1016/j.nlm.2019.107082] [PMID: 31493483]
[43]
Mohamadpour, H.; Azadi, A.; Rostamizadeh, K.; Andalib, S.; Saghatchi Zanjani, M.R.; Hamidi, M. Preparation, Optimization, and Evaluation of Methoxy Poly(ethylene glycol)- co -Poly(ε-caprolactone) Nanoparticles Loaded by Rivastigmine for Brain Delivery. ACS Chem. Neurosci., 2020, 11(5), 783-795.
[http://dx.doi.org/10.1021/acschemneuro.9b00691] [PMID: 32043866]
[44]
Sonawane, S.K.; Ahmad, A.; Chinnathambi, S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS Omega, 2019, 4(7), 12833-12840.
[http://dx.doi.org/10.1021/acsomega.9b01411] [PMID: 31460408]
[45]
Han, Y.; Gao, C.; Wang, H.; Sun, J.; Liang, M.; Feng, Y.; Liu, Q.; Fu, S.; Cui, L.; Gao, C.; Li, Y.; Yang, Y.; Sun, B. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioact. Mater., 2021, 6(2), 529-542.
[http://dx.doi.org/10.1016/j.bioactmat.2020.08.017] [PMID: 32995678]
[46]
Burilova, E.A.; Pashirova, T.N.; Zueva, I.V.; Gibadullina, E.M.; Lushchekina, S.V.; Sapunova, A.S.; Kayumova, R.M.; Rogov, A.M.; Evtjugin, V.G.; Sudakov, I.A.; Vyshtakalyuk, A.B.; Voloshina, A.D.; Bukharov, S.V.; Burilov, A.R.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer’s disease via an intranasal route. Nanoscale, 2020, 12(25), 13757-13770.
[http://dx.doi.org/10.1039/D0NR04037A] [PMID: 32573587]
[47]
Krishna, K.V.; Wadhwa, G.; Alexander, A.; Kanojia, N.; Saha, R.N.; Kukreti, R.; Singhvi, G.; Dubey, S.K. Design and Biological Evaluation of Lipoprotein-Based Donepezil Nanocarrier for Enhanced Brain Uptake through Oral Delivery. ACS Chem. Neurosci., 2019, 10(9), 4124-4135.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[48]
AnjiReddy, K.; Karpagam, S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation. Int. J. Biol. Macromol., 2017, 105(Pt 1), 131-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.021] [PMID: 28698078]
[49]
Pagar, K.P.; Sardar, S.M.; Vavia, P.R. Novel L-lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer’s disease. J. Biomed. Nanotechnol., 2014, 10(3), 415-426.
[http://dx.doi.org/10.1166/jbn.2014.1719] [PMID: 24730237]
[50]
Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Bhatnagar, A.; Ali, J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev. Ind. Pharm., 2014, 40(2), 278-287.
[http://dx.doi.org/10.3109/03639045.2012.758130] [PMID: 23369094]
[51]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[52]
Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Dawson, K.A.; Linse, S. Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem. Neurosci., 2010, 1(4), 279-287.
[http://dx.doi.org/10.1021/cn900027u] [PMID: 22778827]
[53]
Luo, J.; Wärmländer, S.K.T.S.; Yu, C.H.; Muhammad, K.; Gräslund, A.; Pieter Abrahams, J. The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes. Nanoscale, 2014, 6(12), 6720-6726.
[http://dx.doi.org/10.1039/C4NR00291A] [PMID: 24820873]
[54]
Fu, Z.; Luo, Y.; Derreumaux, P.; Wei, G. Induced β-Barrel Formation of the Alzheimer’s Aβ25–35 Oligomers on Carbon Nanotube Surfaces: Implication for Amyloid Fibril Inhibition Biophys. J., 2009, 97(6), 1795-1803.
[http://dx.doi.org/10.1016/j.bpj.2009.07.014] [PMID: 19751686]
[55]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[56]
Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399] [PMID: 22355802]
[57]
Pillay, S.; Pillay, V.; Choonara, Y.E.; Naidoo, D.; Khan, R.A.; du Toit, L.C.; Ndesendo, V.M.K.; Modi, G.; Danckwerts, M.P.; Iyuke, S.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int. J. Pharm., 2009, 382(1-2), 277-290.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.021] [PMID: 19703530]
[58]
Yoosefian, M.; Rahmanifar, E.; Etminan, N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif. Cells Nanomed. Biotechnol., 2018, 46, 434-446.
[59]
Fernandes, C.; Martins, C.; Fonseca, A.; Nunes, R.; Matos, M.J.; Silva, R.; Garrido, J.; Sarmento, B.; Remião, F.; Otero-Espinar, F.J.; Uriarte, E.; Borges, F. PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor. ACS Appl. Mater. Interfaces, 2018, 10(46), 39557-39569.
[http://dx.doi.org/10.1021/acsami.8b17224] [PMID: 30352150]
[60]
Kundu, P.; Das, M.; Tripathy, K.; Sahoo, S.K. Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood–Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson’s Disease. ACS Chem. Neurosci., 2016, 7(12), 1658-1670.
[http://dx.doi.org/10.1021/acschemneuro.6b00207] [PMID: 27642670]
[61]
Li, Y.; Chen, Z.; Lu, Z.; Yang, Q.; Liu, L.; Jiang, Z.; Zhang, L.; Zhang, X.; Qing, H. “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics, 2018, 8(19), 5469-5481.
[http://dx.doi.org/10.7150/thno.28295] [PMID: 30555558]
[62]
Zhao, N.; Yang, X.; Calvelli, H.R.; Cao, Y.; Francis, N.L.; Chmielowski, R.A.; Joseph, L.B.; Pang, Z.P.; Uhrich, K.E.; Baum, J.; Moghe, P.V. Antioxidant Nanoparticles for Concerted Inhibition of α-Synuclein Fibrillization, and Attenuation of Microglial Intracellular Aggregation and Activation. Front. Bioeng. Biotechnol., 2020, 8, 112.
[http://dx.doi.org/10.3389/fbioe.2020.00112] [PMID: 32154238]
[63]
Manfredsson, F.P.; Lewin, A.S.; Mandel, R.J. RNA knockdown as a potential therapeutic strategy in Parkinson’s disease. Gene Ther., 2006, 13(6), 517-524.
[http://dx.doi.org/10.1038/sj.gt.3302669] [PMID: 16267570]
[64]
Hu, K.; Chen, X.; Chen, W.; Zhang, L.; Li, J.; Ye, J.; Zhang, Y.; Zhang, L.; Li, C.H.; Yin, L.; Guan, Y.Q. Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine, 2018, 14(4), 1123-1136.
[http://dx.doi.org/10.1016/j.nano.2018.01.020] [PMID: 29474924]
[65]
Wang, W.; Zheng, J.; Zhou, H.; Liu, Q.; Jia, L.; Zhang, X.; Ge, D.; Shi, W.; Sun, Y. Polydopamine-Based Nanocomposite as a Biomimetic Antioxidant with a Variety of Enzymatic Activities for Parkinson’s Disease. ACS Appl. Mater. Interfaces, 2022, 14(29), 32901-32913.
[http://dx.doi.org/10.1021/acsami.2c06981] [PMID: 35820068]
[66]
Khanam, S.; Naz, F.; Ali, F.; Smita Jyoti, R.; Fatima, A.; Khan, W.; Singh, B.R.; Naqvi, A.H.; Siddique, Y.H. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol. Mech. Methods, 2018, 28(9), 699-708.
[http://dx.doi.org/10.1080/15376516.2018.1502386] [PMID: 30019977]
[67]
Umarao, P.; Bose, S.; Bhattacharyya, S.; Kumar, A.; Jain, S. Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson’s Disease. J. Nanosci. Nanotechnol., 2016, 16(1), 261-269.
[http://dx.doi.org/10.1166/jnn.2016.11103] [PMID: 27398453]
[68]
Kwon, H.J.; Cha, M.Y.; Kim, D.; Kim, D.K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer’s Disease. ACS Nano, 2016, 10(2), 2860-2870.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[69]
Kwon, H.J.; Kim, D.; Seo, K.; Kim, Y.G.; Han, S.I.; Kang, T.; Soh, M.; Hyeon, T. Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson’s Disease. Angew. Chem. Int. Ed., 2018, 57(30), 9408-9412.
[http://dx.doi.org/10.1002/anie.201805052] [PMID: 29862623]
[70]
Sarkar, S.; Raymick, J.; Imam, S. Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives. Int. J. Mol. Sci., 2016, 17(6), 904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[71]
Herrán, E.; Ruiz-Ortega, J.Á.; Aristieta, A.; Igartua, M.; Requejo, C.; Lafuente, J.V.; Ugedo, L.; Pedraz, J.L.; Hernández, R.M. In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur. J. Pharm. Biopharm., 2013, 85(3)(3 Pt B), 1183-1190.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.034] [PMID: 23639739]
[72]
Wang, X.S.; Zhang, Z.R.; Zhang, M.M.; Sun, M.X.; Wang, W.W.; Xie, C.L. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: a systematic experiment literatures review. BMC Complement. Altern. Med., 2017, 17(1), 412.
[http://dx.doi.org/10.1186/s12906-017-1922-x] [PMID: 28818104]
[73]
da Rocha Lindner, G.; Bonfanti Santos, D.; Colle, D.; Gasnhar Moreira, E.L.; Daniel Prediger, R.; Farina, M.; Khalil, N.M.; Mara Mainardes, R. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond.), 2015, 10(7), 1127-1138.
[http://dx.doi.org/10.2217/nnm.14.165] [PMID: 25929569]
[74]
Esteves, M.; Cristóvão, A.C.; Saraiva, T.; Rocha, S.M.; Baltazar, G.; Ferreira, L.; Bernardino, L. Retinoic acid-loaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson’s disease. Front. Aging Neurosci., 2015, 7, 20.
[http://dx.doi.org/10.3389/fnagi.2015.00020] [PMID: 25798108]
[75]
Johnsen, K.B.; Burkhart, A.; Melander, F.; Kempen, P.J.; Vejlebo, J.B.; Siupka, P.; Nielsen, M.S.; Andresen, T.L.; Moos, T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep., 2017, 7(1), 10396.
[http://dx.doi.org/10.1038/s41598-017-11220-1] [PMID: 28871203]
[76]
Abazari, M.A.; Soltani, M.; Kashkooli, F.M. Targeted nano-sized drug delivery to heterogeneous solid tumor microvasculatures: Implications for immunoliposomes exhibiting bystander killing effect. Phys. Fluids, 2023, 35(1), 011905.
[http://dx.doi.org/10.1063/5.0130259]
[77]
Nguyen, T.T.; Dung Nguyen, T.T.; Vo, T.K.; Tran, N.M.; Nguyen, M.K.; Van Vo, T. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. pharmacoth., 2021, 143, p. 112117.
[http://dx.doi.org/10.1016/j.biopha.2021.112117]
[78]
Li, A.; Tyson, J.; Patel, S.; Patel, M.; Katakam, S.; Mao, X.; He, W. Emerging Nanotechnology for Treatment of Alzheimer’s and Parkinson’s Disease. Front. Bioeng. Biotechnol., 2021, 96, 72594.
[http://dx.doi.org/10.3389/fbioe.2021.672594] [PMID: 34113606]
[79]
Zhong, G.; Long, H.; Zhou, T.; Liu, Y.; Zhao, J.; Han, J.; Yang, X.; Yu, Y.; Chen, F.; Shi, S. Blood-brain barrier Permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials, 2022, 288121690.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121690] [PMID: 35965114]
[80]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[81]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimer’s Disease. Pharm. Res., 2020, 37(7), 139.
[http://dx.doi.org/10.1007/s11095-020-02865-1] [PMID: 32661727]
[82]
Cai, J.; Dao, P.; Chen, H.; Yan, L.; Li, Y.L.; Zhang, W.; Li, L.; Du, Z.; Dong, C-Z.; Meunier, B. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer’s disease. Dyes Pigments, 2020, 173, 107968.
[http://dx.doi.org/10.1016/j.dyepig.2019.107968]
[83]
Sharma, M.; Tiwari, V.; Shukla, S.; Panda, J.J. Fluorescent Dopamine–Tryptophan Nanocomposites as Dual-Imaging and Antiaggregation Agents: New Generation of Amyloid Theranostics with Trimeric Effects. ACS Appl. Mater. Interfaces, 2020, 12(39), 44180-44194.
[http://dx.doi.org/10.1021/acsami.0c13223] [PMID: 32870652]
[84]
Gao, N.; Sun, H.; Dong, K.; Ren, J.; Qu, X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry, 2015, 21(2), 829-835.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[85]
Gao, W.; Wang, W.; Dong, X.; Sun, Y. Nitrogen‐Doped Carbonized Polymer Dots: A Potent Scavenger and Detector Targeting Alzheimer’s β. Amyloid Plaques. Small, 2020, 16(43), 2002804.
[http://dx.doi.org/10.1002/smll.202002804] [PMID: 33006250]
[86]
Mittapelly, N.; Thalla, M.; Pandey, G.; Banala, V.T.; Sharma, S.; Arya, A.; Mishra, S.; Mitra, K.; Shukla, S.; Mishra, P.R. Long Acting Ionically Paired Embonate Based Nanocrystals of Donepezil for the Treatment of Alzheimer’s Disease: a Proof of Concept Study. Pharm. Res., 2017, 34(11), 2322-2335.
[http://dx.doi.org/10.1007/s11095-017-2240-1] [PMID: 28808833]
[87]
Sunena; Singh, S.K.; Mishra, D.N. Nose to Brain Delivery of Galantamine Loaded Nanoparticles: In-vivo Pharmacodynamic and Biochemical Study in Mice. Curr. Drug Deliv., 2018, 16(1), 51-58.
[http://dx.doi.org/10.2174/1567201815666181004094707] [PMID: 30289074]
[88]
Misra, S.; Chopra, K.; Saikia, U.N.; Sinha, V.R.; Sehgal, R.; Modi, M.; Medhi, B. Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen. Med., 2016, 11(7), 629-646.
[http://dx.doi.org/10.2217/rme-2016-0032] [PMID: 27582416]
[89]
Hanafy, A.S.; Farid, R.M.; Helmy, M.W.; ElGamal, S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv., 2016, 23(8), 3111-3122.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[90]
Mittal, G.; Carswell, H.; Brett, R.; Currie, S.; Kumar, M.N. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Cont Rel., 2011, 150(2), 220-228.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.013]
[91]
Cao, X.; Hou, D.; Wang, L.; Li, S.; Sun, S.; Ping, Q.; Xu, Y. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol. Res., 2016, 49(1), 32.
[http://dx.doi.org/10.1186/s40659-016-0093-4] [PMID: 27378167]
[92]
Arisoy, S.; Sayiner, O.; Comoglu, T.; Onal, D.; Atalay, O.; Pehlivanoglu, B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm. Dev. Technol., 2020, 25(6), 735-747.
[http://dx.doi.org/10.1080/10837450.2020.1740257] [PMID: 32141798]
[93]
Vong, L.B.; Sato, Y.; Chonpathompikunlert, P.; Tanasawet, S.; Hutamekalin, P.; Nagasaki, Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater., 2020, 109, 220-228.
[http://dx.doi.org/10.1016/j.actbio.2020.03.021] [PMID: 32268242]
[94]
Yan, X.; Xu, L.; Bi, C.; Duan, D.; Chu, L.; Yu, X.; Wu, Z.; Wang, A.; Sun, K. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int. J. Nanomedicine, 2018, 13, 273-281.
[http://dx.doi.org/10.2147/IJN.S151475] [PMID: 29391788]
[95]
Bhattamisra, S.K.; Shak, A.T.; Xi, L.W.; Safian, N.H.; Choudhury, H.; Lim, W.M.; Shahzad, N.; Alhakamy, N.A.; Anwer, M.K.; Radhakrishnan, A.K.; Md, S. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm., 2020, 579, 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[96]
Sridhar, V.; Gaud, R.; Bajaj, A.; Wairkar, S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine, 2018, 14(8), 2609-2618.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[97]
Negro, S.; Boeva, L.; Slowing, K.; Fernandez-Carballido, A.; Garcia-García, L.; Barcia, E. Efficacy of Ropinirole-Loaded PLGA Microspheres for the Reversion of Rotenone- Induced Parkinsonism. Curr. Pharm. Des., 2017, 23(23), 3423-3431.
[PMID: 27779080]
[98]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[99]
Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Euro. J. Pharma. Sci., 2013, 48(3), 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007]
[100]
Sharma, S.; Lohan, S.; Murthy, R.S.R. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev. Ind. Pharm., 2014, 40(7), 869-878.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[101]
Gambaryan, P.Y.; Kondrasheva, I.G.; Severin, E.S.; Guseva, A.A.; Kamensky, A.A. Increasing the Effciency of Parkinson’s Disease Treatment Using a poly(lactic-co-glycolic acid) (PLGA) Based L-DOPA Delivery System. Exp. Neurobiol., 2014, 23(3), 246-252.
[http://dx.doi.org/10.5607/en.2014.23.3.246] [PMID: 25258572]
[102]
Leyva-Gómez, G.; Cortés, H.; Magaña, J.J.; Leyva-García, N.; Quintanar-Guerrero, D.; Florán, B. Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov. Today, 2015, 20(7), 824-837.
[http://dx.doi.org/10.1016/j.drudis.2015.02.009] [PMID: 25701281]
[103]
Esposito, E.; Mariani, P.; Ravani, L.; Contado, C.; Volta, M.; Bido, S.; Drechsler, M.; Mazzoni, S.; Menegatti, E.; Morari, M.; Cortesi, R. Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. Eur. J. Pharm. Biopharm., 2012, 80(2), 306-314.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.015] [PMID: 22061262]
[104]
Tsai, M.J.; Huang, Y.B.; Wu, P.C.; Fu, Y.S.; Kao, Y.R.; Fang, J.Y.; Tsai, Y.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J. Pharm. Sci., 2011, 100(2), 547-557.
[http://dx.doi.org/10.1002/jps.22285] [PMID: 20740670]
[105]
Wen, C.J.; Zhang, L.W.; Al-Suwayeh, S.A.; Yen, T.C.; Fang, J.Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomedicine, 2012, 7, 1599-1611.
[PMID: 22619515]
[106]
Hsu, S.H.; Wen, C.J.; Al-Suwayeh, S.A.; Chang, H.W.; Yen, T.C.; Fang, J.Y. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. Nanotechnology, 2010, 21(40), 405101.
[http://dx.doi.org/10.1088/0957-4484/21/40/405101] [PMID: 20823498]
[107]
Huang, R.; Han, L.; Li, J.; Ren, F.; Ke, W.; Jiang, C.; Pei, Y. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J. Gene Med., 2009, 11(9), 754-763.
[http://dx.doi.org/10.1002/jgm.1361] [PMID: 19554623]
[108]
Martinez-Fong, D.; Bannon, M.J.; Trudeau, L.E.; Gonzalez-Barrios, J.A.; Arango-Rodriguez, M.L.; Hernandez-Chan, N.G.; Reyes-Corona, D.; Armendáriz-Borunda, J.; Navarro-Quiroga, I. NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine, 2012, 8(7), 1052-1069.
[http://dx.doi.org/10.1016/j.nano.2012.02.009] [PMID: 22406187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy