Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Advances in Nanocarrier-based Approaches to Atopic Dermatitis and Emerging Trends in Drug Development and Design

Author(s): Amisha, Dilpreet Singh, Balak Das Kurmi and Amrinder Singh*

Volume 21, Issue 7, 2024

Published on: 19 May, 2023

Page: [932 - 960] Pages: 29

DOI: 10.2174/1567201820666230508121716

Price: $65

Abstract

Atopic dermatitis (AD), commonly known as Eczema, is a non-communicable skin condition that tends to become chronic. The deteriorating immunological abnormalities are marked by mild to severe erythema, severe itching, and recurrent eczematous lesions. Different pharmacological approaches are used to treat AD. The problem with commercial topical preparations lies in the limitation of skin atrophy, systemic side effects, and burning sensation that decreases patient compliance. The carrier-based system promises to eliminate these shortcomings; thus, a novel approach to treating AD is required. Liposomes, microemulsions, solid lipid nanoparticles (SLNs), nanoemulsions, etc., have been developed recently to address this ailment. Despite extensive research in the development method and various techniques, it has been challenging to demonstrate the commercial feasibility of these carrier- based systems, which illustrates a gap among the different research areas. Further, different soft wares and other tools have proliferated among biochemists as part of a cooperative approach to drug discovery. It is crucial in designing, developing, and analyzing processes in the pharmaceutical industry and is widely used to reduce costs, accelerate the development of biologically innovative active ingredients, and shorten the development time. This review sheds light on the compilation of extensive efforts to combat this disease, the product development processes, commercial products along with patents in this regard, numerous options for each step of computer-aided drug design, including in silico pharmacokinetics, pharmacodynamics, and toxicity screening or predictions that are important in finding the drug-like compounds.

Graphical Abstract

[1]
Parekh, K.; Mehta, T.A.; Dhas, N.; Kumar, P.; Popat, A. Emerging nanomedicines for the treatment of atopic dermatitis. AAPS Pharm. Sci. Tech, 2021, 22(2), 55.
[http://dx.doi.org/10.1208/s12249-021-01920-3] [PMID: 33486609]
[2]
Boguniewicz, M.; Leung, D.Y.M. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol. Rev., 2011, 242(1), 233-246.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01027.x] [PMID: 21682749]
[3]
Schmitt, J.; Schwarz, K.; Baurecht, H.; Hotze, M.; Fölster-Holst, R.; Rodríguez, E.; Lee, Y.A.E.; Franke, A.; Degenhardt, F.; Lieb, W.; Gieger, C.; Kabesch, M.; Nöthen, M.M.; Irvine, A.D.; McLean, W.H.I.; Deckert, S.; Stephan, V.; Schwarz, P.; Aringer, M.; Novak, N.; Weidinger, S. Atopic dermatitis is associated with an increased risk for rheumatoid arthritis and inflammatory bowel disease, and a decreased risk for type 1 diabetes. J. Allergy Clin. Immunol., 2016, 137(1), 130-136.
[http://dx.doi.org/10.1016/j.jaci.2015.06.029] [PMID: 26253344]
[4]
Tofte, S. Atopic dermatitis. Nurs. Clin. North Am., 2007, 42(3), 407-419, vi.
[http://dx.doi.org/10.1016/j.cnur.2007.06.002] [PMID: 17825662]
[5]
Zellweger, F.; Eggel, A. IgE-associated allergic disorders: Recent advances in etiology, diagnosis, and treatment. Allergy, 2016, 71(12), 1652-1661.
[http://dx.doi.org/10.1111/all.13059] [PMID: 27709638]
[6]
Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; Czarnecka-Operacz, M.; Schäfer, T.; Schmid-Grendelmeier, P.; Simon, D.; Szalai, Z.; Szepietowski, J.C.; Taïeb, A.; Torrelo, A.; Werfel, T.; Ring, J. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part I. J. Eur. Acad. Dermatol. Venereol., 2018, 32(5), 657-682.
[http://dx.doi.org/10.1111/jdv.14891] [PMID: 29676534]
[7]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[8]
Hemrajani, C.; Negi, P.; Parashar, A.; Gupta, G.; Jha, N.K.; Singh, S.K.; Chellappan, D.K.; Dua, K. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed. Pharmacother., 2022, 147, 112633.
[http://dx.doi.org/10.1016/j.biopha.2022.112633] [PMID: 35030434]
[9]
Eichenfield, L.F.; Ellis, C.N.; Mancini, A.J.; Paller, A.S.; Simpson, E.L. Atopic dermatitis: Epidemiology and pathogenesis update. Semin. Cutan. Med. Surg., 2012, 31(S3), S3-S5.
[http://dx.doi.org/10.1016/j.sder.2012.07.002] [PMID: 23021783]
[10]
Nutten, S. Atopic dermatitis: Global epidemiology and risk factors. Ann. Nutr. Metab., 2015, 66(S2), 8-16.
[http://dx.doi.org/10.1159/000370220] [PMID: 25925336]
[11]
Saini, S.; Pansare, M. New insights and treatments in atopic dermatitis. Immunol. Allergy Clin. North Am., 2021, 41(4), 653-665.
[http://dx.doi.org/10.1016/j.iac.2021.07.005] [PMID: 34602235]
[12]
Saini, S.; Pansare, M. New insights and treatments in atopic dermatitis. Pediatr. Clin. North Am., 2019, 66(5), 1021-1033.
[http://dx.doi.org/10.1016/j.pcl.2019.06.008] [PMID: 31466677]
[13]
Saeki, H.; Furue, M.; Furukawa, F.; Hide, M.; Ohtsuki, M.; Katayama, I.; Sasaki, R.; Suto, H.; Takehara, K. Guidelines for management of atopic dermatitis. J. Dermatol., 2009, 36(10), 563-577.
[http://dx.doi.org/10.1111/j.1346-8138.2009.00706.x] [PMID: 19785716]
[14]
National Library of Medicine. Clinical Trials. https://clinicaltrials.gov/ (Accessed August 04, 2022).
[15]
Peng, G.; Niyonsaba, F. Atopic Dermatitis; From to Treatment; Nova Science Publishers, Inc.: New York, United States, 2020, pp. 132-179.
[16]
Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Rudman Spergel, A.K.; Johnson, K.; Jepson, B.; Calatroni, A.; David, G.; Ramirez-Gama, M.; Taylor, P.; Leung, D.Y.M.; Gallo, R.L. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med., 2021, 27(4), 700-709.
[http://dx.doi.org/10.1038/s41591-021-01256-2] [PMID: 33619370]
[17]
Yue, H.; Umehara, Y.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Chieosilapatham, P.; Kiatsurayanon, C.; Song, P.; Okumura, K.; Ogawa, H.; Ikeda, S.; Niyonsaba, F. Exogenous factors in the pathogenesis of atopic dermatitis: Irritants and cutaneous infections. Clin. Exp. Allergy, 2021, 51(3), 382-392.
[http://dx.doi.org/10.1111/cea.13820] [PMID: 33394511]
[18]
Egawa, G. Weninger, WJCB Pathogenesis of atopic dermatitis: A short review. Indian J. Exp. Biol., 2015, 1(1), 1103459.
[19]
Bhalaria, M.K.; Naik, S.; Misra, A.N. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J. Exp. Biol., 2009, 47(5), 368-375.
[PMID: 19579803]
[20]
Morganti, P.; Ruocco, E.; Wolf, R.; Ruocco, V. Percutaneous absorption and delivery systems33The opinions expressed herein are solely those of the writers and do not necessarily reflect the opinions of the institutions with which the writers are associated. Clin. Dermatol., 2001, 19(4), 489-501.
[http://dx.doi.org/10.1016/S0738-081X(01)00183-3] [PMID: 11535394]
[21]
Goyal, G.; Garg, T.; Malik, B.; Chauhan, G.; Rath, G.; Goyal, A.K. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv., 2015, 22(8), 1027-1042.
[http://dx.doi.org/10.3109/10717544.2013.855277] [PMID: 24251352]
[22]
Benson, H.A.E.; Grice, J.E.; Mohammed, Y.; Namjoshi, S.; Roberts, M.S. Topical and transdermal drug delivery: From simple potions to smart technologies. Curr. Drug Deliv., 2019, 16(5), 444-460.
[http://dx.doi.org/10.2174/1567201816666190201143457] [PMID: 30714524]
[23]
Zeb, A.; Arif, S.T.; Malik, M. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2019, 49(5), 485-517.
[http://dx.doi.org/10.1007/s40005-018-00418-8]
[24]
Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J., 2013, 4(4), 267-272.
[http://dx.doi.org/10.4103/2229-5178.120635] [PMID: 24350003]
[25]
Chiranjeevi, C.; Muthukumaran, M.; Krishnamoorthy, B. A review on potency of vesicular systems in targeting drug delivery. RJPBCS, 2013, 4, 156-170.
[26]
Sinico, C.; Fadda, A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv., 2009, 6(8), 813-825.
[http://dx.doi.org/10.1517/17425240903071029] [PMID: 19569979]
[27]
Pierre, M.B.R.; dos Santos, M.C.I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res., 2011, 303(9), 607-621.
[http://dx.doi.org/10.1007/s00403-011-1166-4] [PMID: 21805180]
[28]
Dhamecha, D.L.; Rathi, A.A.; Saifee, M.; Lahoti, S.; Dehghan, M. Drug vehicle based approaches of penetration enhancement. Int. J. Pharma Sci., 2009, 1(1), 24-46.
[29]
Lee, Y.S.; Jeon, S.H.; Ham, H.J.; Lee, H.P.; Song, M.J.; Hong, J.T. Improved anti-inflammatory effects of liposomal astaxanthin on a phthalic anhydride-induced atopic dermatitis model. Front. Immunol., 2020, 11, 565285.
[http://dx.doi.org/10.3389/fimmu.2020.565285] [PMID: 33335525]
[30]
Javia, A.; Misra, A.; Thakkar, H. Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. Int. J. Pharm., 2022, 624, 122045.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122045] [PMID: 35878872]
[31]
Manconi, M.; Sinico, C.; Valenti, D.; Lai, F.; Fadda, A.M. Niosomes as carriers for tretinoin. Int. J. Pharm., 2006, 311(1-2), 11-19.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.045] [PMID: 16439071]
[32]
Kuotsu, K.; Karim, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[33]
Wichayapreechar, P.; Anuchapreeda, S.; Phongpradist, R.; Rungseevijitprapa, W.; Ampasavate, C. Dermal targeting of Centella asiatica extract using hyaluronic acid surface modified niosomes. J. Liposome Res., 2020, 30(2), 197-207.
[http://dx.doi.org/10.1080/08982104.2019.1614952] [PMID: 31060402]
[34]
a) Bhardwaj, P.; Tripathi, P.; Pandey, S.; Gupta, R.; Ramchandra Patil, P. Cyclosporine and Pentoxifylline laden tailored niosomes for the effective management of psoriasis: In-vitro optimization, Ex-vivo and animal study. Int. J. Pharm., 2022, 626, 122143.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122143] [PMID: 36037986];
b) Touitou, E.; Alkabes, M.; Dayan, N.; Eliaz, M. Ethosomes: the novel vesicular carriers for enhanced skin delivery. Pharm. Res., 1997, 14, 305-306.
[35]
Garg, U.; Jain, K. Dermal and transdermal drug delivery through vesicles and particles: Preparation and applications. Adv. Pharm. Bull., 2022, 12(1), 45-57.
[PMID: 35517881]
[36]
Negi, P.; Sharma, I.; Hemrajani, C.; Rathore, C.; Bisht, A.; Raza, K.; Katare, O.P. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis. BMC Complement. Altern. Med., 2019, 19(1), 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[37]
Kumar, B.; Sahoo, P.K.; Manchanda, S. Curcumin loaded ethosomal gel for improved topical delivery: Formulation, characterization and ex-vivo studies. Pharm. Nanotechnol., 2021, 9(4), 281-287.
[http://dx.doi.org/10.2174/2211738509666210208225826] [PMID: 33563166]
[38]
Sasindran, S.; Easwaran, M.; Shyamala, G.; Karuppaiah, A.; Siram, K.; Veintramuthu, S. Phytochemical screening and cytotoxicity evaluation of crude extracts: Toxicity comparison of crude extracts and its ethosomal formulations. J. Cosmet. Dermatol., 2020, 19(7), 1794-1803.
[http://dx.doi.org/10.1111/jocd.13234] [PMID: 31808269]
[39]
Cevc, G.; Richardsen, H.; Weiland-Waibel, A. Method for the improvement of transport across adaptable semi-permeable barriers; Google Patents, 2008.
[40]
Bhardwaj, V.; Shukla, V.; Singh, A.; Malviya, R.; Sharma, P. Transfersomes ultra flexible vesicles for transdermal delivery. IJPSR, 2010, 1(3), 12-20.
[41]
Uwaezuoke, O.; Du Toit, L.C.; Kumar, P.; Ally, N.; Choonara, Y.E. Linoleic acid-based transferosomes for topical ocular delivery of cyclosporine A. Pharmaceutics, 2022, 14(8), 1695.
[http://dx.doi.org/10.3390/pharmaceutics14081695] [PMID: 36015321]
[42]
Maji, R.; Omolo, C.A.; Jaglal, Y.; Singh, S.; Devnarain, N.; Mocktar, C.; Govender, T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int. J. Pharm., 2021, 607, 120990.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120990] [PMID: 34389419]
[43]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: An overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[44]
Abourehab, M.A.S.; Ansari, M.J.; Singh, A.; Hassan, A.; Abdelgawad, M.A.; Shrivastav, P.; Abualsoud, B.M.; Amaral, L.S.; Pramanik, S. Cubosomes as an emerging platform for drug delivery: A review of the state of the art. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(15), 2781-2819.
[http://dx.doi.org/10.1039/D2TB00031H] [PMID: 35315858]
[45]
Shalaby, R.A.; El-Gazayerly, O.; Abdallah, M. Cubosomal betamethasone-salicylic acid nano drug delivery system for enhanced management of scalp psoriasis. Int. J. Nanomed., 2022, 17, 1659-1677.
[http://dx.doi.org/10.2147/IJN.S345430] [PMID: 35444415]
[46]
Duong, V.A.; Nguyen, T.T.L.; Maeng, H.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules, 2020, 25(20), 4781.
[http://dx.doi.org/10.3390/molecules25204781] [PMID: 33081021]
[47]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[48]
El-Telbany, D.F.A.; El-Telbany, R.F.A.; Zakaria, S.; Ahmed, K.A.; El-Feky, Y.A. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed. Pharmacother., 2021, 143, 112130.
[http://dx.doi.org/10.1016/j.biopha.2021.112130] [PMID: 34560549]
[49]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[50]
Zhuang, C.Y.; Li, N.; Wang, M.; Zhang, X.N.; Pan, W.S.; Peng, J.J.; Pan, Y.S.; Tang, X. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int. J. Pharm., 2010, 394(1-2), 179-185.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.005] [PMID: 20471464]
[51]
Javia, A.; Misra, A.; Thakkar, H. Design and pharmacodynamic evaluation of DPK-060 loaded Nanostructured lipid carrier embedded gel for dermal delivery: A novel approach in the treatment of atopic dermatitis. Colloids Surf. B Biointerfaces, 2022, 217, 112658.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112658] [PMID: 35810608]
[52]
Sabale, V.; Vora, S. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int. J. Pharm. Investig., 2012, 2(3), 140-149.
[http://dx.doi.org/10.4103/2230-973X.104397] [PMID: 23373005]
[53]
Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2000, 45(1), 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[54]
Zhang, Y.; Cao, Y.; Meng, X.; Li, C.; Wang, H.; Zhang, S. Enhancement of transdermal delivery of artemisinin using microemulsion vehicle based on ionic liquid and lidocaine ibuprofen. Colloids Surf. B Biointerfaces, 2020, 189, 110886.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110886] [PMID: 32109824]
[55]
Subongkot, T.; Sirirak, T. Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. Colloids Surf. B Biointerfaces, 2020, 193, 111103.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111103] [PMID: 32438237]
[56]
Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech., 2015, 5(2), 123-127.
[57]
Zhang, J.; Yao, Y.; Liu, H.; Ma, Q.; Huang, L.; Chen, Y.; Lin, H. Desonide nanoemulsion gel for transdermal absorption drug delivery: Pharmacodynamic and safety evaluation. Curr. Drug Deliv., 2022, 20(10), 1525-1532.
[http://dx.doi.org/10.2174/1567201819666220819110128] [PMID: 35986531]
[58]
Jurišić Dukovski, B.; Juretić, M.; Bračko, D.; Randjelović, D.; Savić, S.; Crespo, M.M.; Diebold, Y.; Filipović-Grčić, J.; Pepić, I.; Lovrić, J. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. Int. J. Pharm., 2020, 576, 118979.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118979] [PMID: 31870964]
[59]
Gothwal, A.; Khan, I.; Gupta, U. Polymeric micelles: Recent advancements in the delivery of anticancer drugs. Pharm. Res., 2016, 33(1), 18-39.
[http://dx.doi.org/10.1007/s11095-015-1784-1] [PMID: 26381278]
[60]
Atanase, L.I. Micellar drug delivery systems based on natural biopolymers. Polymers, 2021, 13(3), 477.
[http://dx.doi.org/10.3390/polym13030477] [PMID: 33540922]
[61]
Shen, C.; Shen, B.; Zhu, J.; Yuan, H.; Hu, J. Topical delivery of pluronic F127/TPGS mixed micelles-based hydrogel loaded with glycyrrhizic acid for atopic dermatitis treatment. Drug Dev. Ind. Pharm., 2021, 47(12), 1975-1985.
[http://dx.doi.org/10.1080/03639045.2022.2077957] [PMID: 35579672]
[62]
a) Wang, Y.; Tang, Z.; Guo, X.; Zhao, Y.; Ren, S.; Zhang, Z.; Lv, H. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int. J. Pharm., 2022, 623, 121916.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121916] [PMID: 35714817];
b) Vogtle, F.; Buhleier, E.W.; Wehner, W. Cascade and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis, 1997, 2, 155-158.
[63]
Maysinger, D.; Zhang, Q.; Kakkar, A. Dendrimers as modulators of brain cells. Molecules, 2020, 25(19), 4489.
[http://dx.doi.org/10.3390/molecules25194489] [PMID: 33007959]
[64]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[65]
Gökçe, B.B.; Boran, T.; Emlik Çalık, F.; Özhan, G.; Sanyal, R.; Güngör, S. Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv. Transl. Res., 2021, 11(2), 626-646.
[http://dx.doi.org/10.1007/s13346-021-00933-6] [PMID: 33666878]
[66]
Wu, M.X.; Yang, Y.W. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1606134.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[67]
Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J. Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem., 2019, 26(18), 3341-3369.
[http://dx.doi.org/10.2174/0929867325666180214123500] [PMID: 29446726]
[68]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[69]
Li, Z.; Peng, Y.; Pang, X.; Tang, B. Potential therapeutic effects of Mg/HCOOH metal organic framework on relieving osteoarthritis. ChemMedChem, 2020, 15(1), 13-16.
[http://dx.doi.org/10.1002/cmdc.201900546] [PMID: 31691487]
[70]
Sipai, A; Vandana, Y; Mamatha, Y Prasanth, VJJPSI Liposomes: An overview. 2012, 1(1), 13-21.
[71]
Bhaskaran, S.; Lakshmi, P. Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharmaceut. Sci., 2009, 51(1), 27-32.
[72]
Sankar, V.; Ramesh, S.; Siram, K. Ethosomes: An exciting and promising alcoholic carrier system for treating androgenic alopecia. In: Alopecia; Intechopen: London, 2018.
[http://dx.doi.org/10.5772/intechopen.79807]
[73]
Akhtar, N. Vesicles: A recently developed novel carrier for enhanced topical drug delivery. Curr. Drug Deliv., 2014, 11(1), 87-97.
[http://dx.doi.org/10.2174/15672018113106660064] [PMID: 24533724]
[74]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed., 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[75]
Ong, S.; Chitneni, M.; Lee, K.; Ming, L.; Yuen, K. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics, 2016, 8(4), 36.
[http://dx.doi.org/10.3390/pharmaceutics8040036] [PMID: 28009829]
[76]
Cannon, J.B.; Shi, Y.; Gupta, P. Emulsions, microemulsions, and lipid-based drug delivery systems for drug solubilization and delivery—Part I: Parenteral applications. In: Water-insoluble drug formulation; CRC Press: Boca Raton, Florida, 2018; pp. 211-245.
[77]
Lombardo, D.; Kiselev, M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics, 2022, 14(3), 543.
[http://dx.doi.org/10.3390/pharmaceutics14030543] [PMID: 35335920]
[78]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[79]
Hasan, M.M.; Hamiduzzaman, M.; Jahan, I.; Hasan, A.N.; Zaman, M.A. Formulation development, characterization and in vitro evaluation of tamoxifen loaded liposomes. Int. J. Pharm. Res., 2020, (May), 64-82.
[80]
Patil, R.; Patil, S.; Patil, S.; Patil, S.; Patil, S. Ethosome: A versatile tool for novel drug delivery system. J. Curr. Pharma. Res., 2014, 4(2), 1172.
[81]
Jain, S.; Umamaheshwari, R.; Bhadra, D.; Jain, N. Ethosomes: A novel vesicular carrier for enhanced transdermal delivery of an antiHIV agent. Indian J. Pharm. Sci., 2004, 66(1), 72.
[82]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[PMID: 27199229]
[83]
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials, 2019, 13(1), 65.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[84]
Saviano, F.; Lovato, T.; Russo, A.; Russo, G.; Bouton, C.R.; Shattock, R.J.; Alexander, C.; Quaglia, F.; Blakney, A.K.; Gurnani, P.; Conte, C. Ornithine-derived oligomers and dendrimers for in vitro delivery of DNA and ex vivo transfection of skin cells via saRNA. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4940-4949.
[http://dx.doi.org/10.1039/D0TB00942C] [PMID: 32463058]
[85]
Pandita, D.; Madaan, K.; Kumar, S.; Poonia, N.; Lather, V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[86]
Agrahari, A.K.; Singh, A.S.; Mukherjee, R.; Tiwari, V.K. An expeditious click approach towards the synthesis of galactose coated novel glyco-dendrimers and dentromers utilizing a double stage convergent method. RSC Advances, 2020, 10(52), 31553-31562.
[http://dx.doi.org/10.1039/D0RA05289B] [PMID: 35520637]
[87]
Esposito, E.; Sguizzato, M.; Drechsler, M.; Mariani, P.; Carducci, F.; Nastruzzi, C.; Cortesi, R. Progesterone lipid nanoparticles: Scaling up and in vivo human study. Eur. J. Pharm. Biopharm., 2017, 119, 437-446.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.015] [PMID: 28760448]
[88]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[89]
Suter, F.; Schmid, D.; Wandrey, F.; Zülli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm., 2016, 108, 304-309.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.014] [PMID: 27343822]
[90]
Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release, 2008, 128(3), 185-199.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[91]
Akanda, M.; Getti, G.; Douroumis, D. In vivo evaluation of nanostructured lipid carrier systems (NLCs) in mice bearing prostate cancer tumours. Drug Deliv. Transl. Res., 2021.
[http://dx.doi.org/10.1007/s13346-021-01095-1] [PMID: 34845679]
[92]
Souto, E.B.; Doktorovova, S.; Zielinska, A.; Silva, A.M. Key production parameters for the development of solid lipid nanoparticles by high shear homogenization. Pharm. Dev. Technol., 2019, 24(9), 1181-1185.
[http://dx.doi.org/10.1080/10837450.2019.1647235] [PMID: 31354002]
[93]
Xie, S.; Zhu, L.; Dong, Z.; Wang, X.; Wang, Y.; Li, X.; Zhou, W. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: Influences of fatty acids. Colloids Surf. B Biointerfaces, 2011, 83(2), 382-387.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.014] [PMID: 21215599]
[94]
Sangsen, Y.; Wiwattanawongsa, K.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf. B Biointerfaces, 2015, 131, 182-190.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.055] [PMID: 25988282]
[95]
Joshi, M.D.; Prabhu, R.H.; Patravale, V.B. Fabrication of nanostructured lipid carriers (NLC)-based gels from microemulsion template for delivery through skin. Methods Mol. Biol., 2019, 2000, 279-292.
[http://dx.doi.org/10.1007/978-1-4939-9516-5_19] [PMID: 31148022]
[96]
Trotta, M.; Debernardi, F.; Caputo, O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm., 2003, 257(1-2), 153-160.
[http://dx.doi.org/10.1016/S0378-5173(03)00135-2] [PMID: 12711170]
[97]
Puri, D.; Mishra, A.; Singh, A.P.; Gaur, P.K.; Singh, M.; Yasir, M. Formulation development of topical preparation containing nanoparticles of povidone-iodine for wound healing. Assay Drug Dev. Technol., 2021, 19(2), 115-123.
[http://dx.doi.org/10.1089/adt.2020.1029] [PMID: 33535009]
[98]
Pooja, D.; Tunki, L.; Kulhari, H.; Reddy, B.B.; Sistla, R. Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of Rifampicin. Chem. Phys. Lipids, 2015, 193, 11-17.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.09.008] [PMID: 26409629]
[99]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[100]
SS Pindiprolu, S.K.; Krishnamurthy, P.T.; Ghanta, V.R.; Chintamaneni, P.K. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15(16), 1551-1565.
[http://dx.doi.org/10.2217/nnm-2020-0003] [PMID: 32618501]
[101]
Mazur, K.L.; Feuser, P.E.; Valério, A.; Poester Cordeiro, A.; de Oliveira, C.I.; Assolini, J.P.; Pavanelli, W.R.; Sayer, C.; Araújo, P.H.H. Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids Surf. B Biointerfaces, 2019, 176, 507-512.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.048] [PMID: 30711703]
[102]
Gallarate, M.; Trotta, M.; Battaglia, L.; Chirio, D. Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. J. Microencapsul., 2009, 26(5), 394-402.
[http://dx.doi.org/10.1080/02652040802390156] [PMID: 18785076]
[103]
Subroto, E.; Andoyo, R.; Indiarto, R.; Wulandari, E.; Wadhiah, E.F.N. Preparation of solid lipid nanoparticle-ferrous sulfate by double emulsion method based on fat rich in monolaurin and stearic acid. Nanomaterial, 2022, 12(17), 3054.
[http://dx.doi.org/10.3390/nano12173054] [PMID: 36080090]
[104]
Ali, H.; Singh, S.K. Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design. Particul. Sci. Technol., 2018, 36(6), 695-709.
[http://dx.doi.org/10.1080/02726351.2017.1295293]
[105]
Vinh, T.D.T.; Hien, L.T.M.; Dao, D.T.A. Formulation of black pepper (Piper nigrum L.) essential oil nano‐emulsion via phase inversion temperature method. Food Sci. Nutr., 2020, 8(4), 1741-1752.
[http://dx.doi.org/10.1002/fsn3.1422] [PMID: 32328240]
[106]
Battaglia, L.; Muntoni, E.; Chirio, D.; Peira, E.; Annovazzi, L.; Schiffer, D.; Mellai, M.; Riganti, C.; Salaroglio, I.C.; Lanotte, M.; Panciani, P.; Capucchio, M.T.; Valazza, A.; Biasibetti, E.; Gallarate, M. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment. Nanomedicine, 2017, 12(6), 639-656.
[http://dx.doi.org/10.2217/nnm-2016-0380] [PMID: 28186465]
[107]
Battaglia, L.; Gallarate, M.; Peira, E.; Chirio, D.; Solazzi, I.; Giordano, S.M.A.; Gigliotti, C.L.; Riganti, C.; Dianzani, C. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies. Nanotechnology, 2015, 26(25), 255102.
[http://dx.doi.org/10.1088/0957-4484/26/25/255102] [PMID: 26043866]
[108]
Muntoni, E.; Marini, E.; Ahmadi, N.; Milla, P.; Ghè, C.; Bargoni, A.; Capucchio, M.T.; Biasibetti, E.; Battaglia, L. Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: Preliminary ex vivo and in vivo studies. Acta Diabetol., 2019, 56(12), 1283-1292.
[http://dx.doi.org/10.1007/s00592-019-01403-9] [PMID: 31407113]
[109]
Barriga, H.M.G.; Holme, M.N.; Stevens, M.M. Cubosomes: The next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed., 2019, 58(10), 2958-2978.
[http://dx.doi.org/10.1002/anie.201804067] [PMID: 29926520]
[110]
Almoshari, Y. Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: An updated review. Pharmaceutics, 2022, 14(3), 600.
[http://dx.doi.org/10.3390/pharmaceutics14030600] [PMID: 35335975]
[111]
Gaballa, S.A.; El Garhy, O.H.; Moharram, H.; Abdelkader, H. Preparation and evaluation of cubosomes/cubosomal gels for ocular delivery of beclomethasone dipropionate for management of uveitis. Pharm. Res., 2020, 37(10), 198.
[http://dx.doi.org/10.1007/s11095-020-02857-1] [PMID: 32968868]
[112]
Bryant, S.J.; Bathke, E.K.; Edler, K.J. Bottom-up cubosome synthesis without organic solvents. J. Colloid Interface Sci., 2021, 601, 98-105.
[http://dx.doi.org/10.1016/j.jcis.2021.05.072] [PMID: 34058556]
[113]
Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release, 2007, 117(2), 227-237.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.017] [PMID: 17169459]
[114]
Jung, J.H.; Jin, S.G. Microneedle for transdermal drug delivery: Current trends and fabrication. J. Pharm. Investig., 2021, 51(5), 503-517.
[http://dx.doi.org/10.1007/s40005-021-00512-4] [PMID: 33686358]
[115]
Omatsu, T.; Chujo, K.; Miyamoto, K.; Okida, M.; Nakamura, K.; Aoki, N.; Morita, R. Metal microneedle fabrication using twisted light with spin. Opt. Express, 2010, 18(17), 17967-17973.
[http://dx.doi.org/10.1364/OE.18.017967] [PMID: 20721183]
[116]
Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release, 2014, 185, 130-138.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.052] [PMID: 24806483]
[117]
Dharadhar, S.; Majumdar, A.; Dhoble, S.; Patravale, V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev. Ind. Pharm., 2019, 45(2), 188-201.
[http://dx.doi.org/10.1080/03639045.2018.1539497] [PMID: 30348022]
[118]
Yoon, Y.; Lee, G.; Yoo, K.; Lee, J.B. Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors (Basel), 2013, 13(12), 16672-16681.
[http://dx.doi.org/10.3390/s131216672] [PMID: 24304643]
[119]
Dardano, P.; Caliò, A.; Di Palma, V.; Bevilacqua, M.; Di Matteo, A.; De Stefano, L. A photolithographic approach to polymeric microneedles array fabrication. Materials (Basel), 2015, 8(12), 8661-8673.
[http://dx.doi.org/10.3390/ma8125484] [PMID: 28793736]
[120]
Kim, J.D.; Kim, M.; Yang, H.; Lee, K.; Jung, H. Droplet-born air blowing: Novel dissolving microneedle fabrication. J. Control. Release, 2013, 170(3), 430-436.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.026] [PMID: 23742882]
[121]
Faraji Rad, Z.; Prewett, P.D.; Davies, G.J. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsyst. Nanoeng., 2021, 7(1), 71.
[http://dx.doi.org/10.1038/s41378-021-00298-3] [PMID: 34567783]
[122]
Balmert, S.C.; Carey, C.D.; Falo, G.D.; Sethi, S.K.; Erdos, G.; Korkmaz, E.; Falo, L.D., Jr Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J. Control. Release, 2020, 317, 336-346.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.023] [PMID: 31756393]
[123]
Prabhakar, D.; Sreekanth, J.; Jayaveera, K.N. Transdermal drug delivery patches: A review. J. Drug Deliv. Ther., 2013, 3(4), 231-21.
[http://dx.doi.org/10.22270/jddt.v3i4.590]
[124]
Keservani, R.K.; Bandopadhyay, S.; Bandyopadhyay, N.; Sharma, A.K. Design and fabrication of transdermal/skin drug-delivery system. In: Drug Delivery Systems; Academic Press: Cambridge, 2020; pp. 131-178.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00004-1]
[125]
Abdel-Mottaleb, M. Nanoparticles for treatment of atopic dermatitis. In: Nanoscience in Dermatology; Elsevier: Amsterdam, 2016; pp. 167-175.
[http://dx.doi.org/10.1016/B978-0-12-802926-8.00013-6]
[126]
Carbone, C.; Teixeira, M.C.; Sousa, M.C.; Martins-Gomes, C.; Silva, A.M.; Souto, E.M.B.; Musumeci, T. Clotrimazole-loaded mediterranean essential oils nlc: a synergic treatment of Candida skin infections. Pharmaceutics, 2019, 11(5), 231.
[http://dx.doi.org/10.3390/pharmaceutics11050231] [PMID: 31085997]
[127]
Yilmaz, A.H. Antibacterial activity of chitosan-based systems. In: Functional chitosan; Springer: Cham, 2019; pp. 457-489.
[128]
Ye, R.; Xu, H.; Wan, C.; Peng, S.; Wang, L.; Xu, H.; Aguilar, Z.P.; Xiong, Y.; Zeng, Z.; Wei, H. Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem. Biophys. Res. Commun., 2013, 439(1), 148-153.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.001] [PMID: 23939043]
[129]
Kotla, N.G.; Bonam, S.R.; Rasala, S.; Wankar, J.; Bohara, R.A.; Bayry, J.; Rochev, Y.; Pandit, A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J. Control. Release, 2021, 336, 598-620.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.002] [PMID: 34237401]
[130]
Akhtar, N.; Verma, A.; Pathak, K. Investigating the penetrating potential of nanocomposite β-cycloethosomes: Development using central composite design, in vitro and ex vivo characterization. J. Liposome Res., 2018, 28(1), 35-48.
[http://dx.doi.org/10.1080/08982104.2016.1254241] [PMID: 27788607]
[131]
Assem, M.; Khowessah, O.M.; Ghorab, D. Optimization and evaluation of beclomethasone dipropionate micelles incorporated into biocompatible hydrogel using a sub-chronic dermatitis animal model. AAPS Pharm. Sci. Tech., 2019, 20(4), 152.
[http://dx.doi.org/10.1208/s12249-019-1355-6] [PMID: 30911861]
[132]
Baspinar, Y.; Keck, C.M.; Borchert, H.H. Development of a positively charged prednicarbate nanoemulsion. Int. J. Pharm., 2010, 383(1-2), 201-208.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.002] [PMID: 19747968]
[133]
Goindi, S.; Kumar, G.; Kaur, A. Novel flexible vesicles based topical formulation of levocetirizine: in vivo evaluation using oxazolone-induced atopic dermatitis in murine model. J. Liposome Res., 2014, 24(3), 249-257.
[http://dx.doi.org/10.3109/08982104.2014.899365] [PMID: 24646413]
[134]
Guillot, A.J.; Jornet-Mollá, E.; Landsberg, N.; Milián-Guimerá, C.; Montesinos, M.C.; Garrigues, T.M.; Melero, A. Cyanocobalamin ultraflexible lipid vesicles: Characterization and in vitro evaluation of drug-skin depth profiles. Pharmaceutics, 2021, 13(3), 418.
[http://dx.doi.org/10.3390/pharmaceutics13030418] [PMID: 33804652]
[135]
Ibaraki, H.; Kanazawa, T.; Kurano, T.; Oogi, C.; Takashima, Y.; Seta, Y. Anti-RelA siRNA-encapsulated flexible liposome with tight junction-opening peptide as a non-invasive topical therapeutic for atopic dermatitis. Biol. Pharm. Bull., 2019, 42(7), 1216-1225.
[http://dx.doi.org/10.1248/bpb.b19-00259] [PMID: 31257297]
[136]
Espinoza, L.C.; Vera-García, R.; Silva-Abreu, M.; Domènech, Ò.; Badia, J.; Rodríguez-Lagunas, M.J.; Clares, B.; Calpena, A.C. Topical pioglitazone nanoformulation for the treatment of atopic dermatitis: Design, characterization and efficacy in hairless mouse model. Pharmaceutics, 2020, 12(3), 255.
[http://dx.doi.org/10.3390/pharmaceutics12030255] [PMID: 32178278]
[137]
Jahn, A.; Song, C.K.; Balakrishnan, P.; Hong, S.S.; Lee, J.H.; Chung, S.J.; Kim, D.D. AAPE proliposomes for topical atopic dermatitis treatment. J. Microencapsul., 2014, 31(8), 768-773.
[http://dx.doi.org/10.3109/02652048.2014.932027] [PMID: 25090594]
[138]
Kumar, P.; Sharma, D.K.; Ashawat, M.S. Topical creams of piperine loaded lipid nanocarriers for management of atopic dermatitis: Development, characterization, and in vivo investigation using BALB/c mice model. J. Liposome Res., 2022, 32(1), 62-73.
[http://dx.doi.org/10.1080/08982104.2021.1880436] [PMID: 33944670]
[139]
Kwon, T.K.; Kim, J.C. In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of Houttuynia cordata. Drug Dev. Ind. Pharm., 2014, 40(10), 1350-1357.
[http://dx.doi.org/10.3109/03639045.2013.819883] [PMID: 23886304]
[140]
Saini, K.; Modgill, N.; Singh, K.K.; Kakkar, V. Tetrahydrocurcumin lipid nanoparticle based gel promotes penetration into deeper skin layers and alleviates atopic dermatitis in 2,4-dinitrochlorobenzene (DNCB) mouse model. Nanomaterials, 2022, 12(4)
[141]
Carreras, J.J.; Tapia-Ramirez, W.E.; Sala, A.; Guillot, A.J.; Garrigues, T.M.; Melero, A. Ultraflexible lipid vesicles allow topical absorption of cyclosporin A. Drug Deliv. Transl. Res., 2020, 10(2), 486-497.
[http://dx.doi.org/10.1007/s13346-019-00693-4] [PMID: 31811620]
[142]
Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[143]
De Leo, V.; Milano, F.; Agostiano, A.; Catucci, L. Recent advancements in polymer/liposome assembly for drug delivery: From surface modifications to hybrid vesicles. Polymers, 2021, 13(7), 1027.
[http://dx.doi.org/10.3390/polym13071027] [PMID: 33810273]
[144]
Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol., 2020, 60, 102046.
[http://dx.doi.org/10.1016/j.jddst.2020.102046] [PMID: 32905026]
[145]
Gaaz, T.; Sulong, A.; Akhtar, M.; Kadhum, A.; Mohamad, A.; Al-Amiery, A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules, 2015, 20(12), 22833-22847.
[http://dx.doi.org/10.3390/molecules201219884] [PMID: 26703542]
[146]
Thong, C.C.; Teo, D.C.L.; Ng, C.K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Constr. Build. Mater., 2016, 107, 172-180.
[http://dx.doi.org/10.1016/j.conbuildmat.2015.12.188]
[147]
Mirtič, A.; Grdadolnik, J. The structure of poly-l-lysine in different solvents. Biophys. Chem., 2013, 175-176, 47-53.
[http://dx.doi.org/10.1016/j.bpc.2013.02.004] [PMID: 23524291]
[148]
Zarrintaj, P.; Ghorbani, S.; Barani, M.; Singh Chauhan, N.P.; Khodadadi, Y.M.; Saeb, M.R.; Ramsey, J.D.; Hamblin, M.R.; Mozafari, M.; Mostafavi, E. Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioeng. Transl. Med., 2021, 7(1), e10261.
[PMID: 35111953]
[149]
Diniz, I.M.A.; Chen, C.; Xu, X.; Ansari, S.; Zadeh, H.H.; Marques, M.M.; Shi, S.; Moshaverinia, A. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med., 2015, 26(3), 153.
[http://dx.doi.org/10.1007/s10856-015-5493-4] [PMID: 25773231]
[150]
de Vries, R.; Stell, A.; Mohammed, S. Bioengineering, biomaterials, and β-cell replacement therapy. In: Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas; Elsevier: Amsterdam, 2020; pp. 461-486.
[http://dx.doi.org/10.1016/B978-0-12-814831-0.00033-6]
[151]
Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules, 2021, 26(15), 4429.
[http://dx.doi.org/10.3390/molecules26154429] [PMID: 34361586]
[152]
Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Expert Opin. Drug Deliv., 2013, 10(1), 131-149.
[http://dx.doi.org/10.1517/17425247.2013.736962] [PMID: 23102011]
[153]
Alconcel, S.N.S.; Baas, A.S.; Maynard, H.D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem., 2011, 2(7), 1442-1448.
[http://dx.doi.org/10.1039/c1py00034a]
[154]
Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[155]
Deshmukh, K.; Ahamed, M.B.; Deshmukh, R.; Pasha, S.K.; Bhagat, P.; Chidambaram, K. Biopolymer composites with high dielectric performance: interface engineering. In: Biopolymer composites in electronics; Elsevier: Amsterdam, 2017; pp. 27-128.
[156]
Manoukian, O.S.; Sardashti, N.; Stedman, T. Biomaterials for tissue engineering and regenerative medicine. J. Funct. Biomater., 2019.
[157]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[158]
Dürig, T.; Karan, K. Binders in wet granulation. In: Handbook of pharmaceutical wet granulation; Elsevier: Amsterdam, 2019; pp. 317-349.
[159]
Kapoor, D.; Maheshwari, R.; Verma, K.; Sharma, S.; Ghode, P.; Tekade, R.K. Coating technologies in pharmaceutical product development. In: Drug Delivery Systems; Elsevier: Amsterdam, 2020; pp. 665-719.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00014-4]
[160]
FDA. Highlights of prescribing information on EXPAREL (Bupivacaine Liposome Injectable Suspension) Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022496s000lbl.pdf
[161]
Starpharma. VivaGel® Products. Available from: https://www.starpharma.com/vivagel
[162]
Jamkhande, P.G.; Ghante, M.H.; Ajgunde, B.R. Software based approaches for drug designing and development: A systematic review on commonly used software and its applications. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 203-210.
[http://dx.doi.org/10.1016/j.bfopcu.2017.10.001]
[163]
Kore, P.P.; Mutha, M.M.; Antre, R.V.; Oswal, R.J.; Kshirsagar, S.S. Computer-aided drug design: An innovative tool for modeling. Open J. Med. Chem., 2012, 2(4), 139-148.
[http://dx.doi.org/10.4236/ojmc.2012.24017]
[164]
Usha, T.; Shanmugarajan, D.; Goyal, A.K.; Kumar, C.S.; Middha, S.K. Recent updates on computer-aided drug discovery: Time for a paradigm shift. Curr. Top. Med. Chem., 2018, 17(30), 3296-3307.
[http://dx.doi.org/10.2174/1568026618666180101163651] [PMID: 29295698]
[165]
Usha, T.; Tripathi, P.; Pande, V.; Middha, S.K. Molecular docking and quantum mechanical studies on pelargonidin-3-glucoside as renoprotective ACE inhibitor. Int. Sch. Res. Notices, 2013, 2013, 428378.
[http://dx.doi.org/10.1155/2013/428378]
[166]
Durakovic, B. Design of experiments application, concepts, examples: State of the art. Period. Eng. Nat. Sci. (PEN), 2017, 5(3), 421-439.
[http://dx.doi.org/10.21533/pen.v5i3.145]
[167]
Granato, D.; de Araújo Calado, V.M.; Jarvis, B. Observations on the use of statistical methods in Food Science and Technology. Food Res. Int., 2014, 55, 137-149.
[http://dx.doi.org/10.1016/j.foodres.2013.10.024]
[168]
Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, 2020.
[169]
Ait-Amir, B.; Pougnet, P.; El Hami, A. Meta-model development. In: Embedded mechatronic systems 2; Elsevier, 2020; pp. 157-187.
[170]
Rakić, T.; Jančić-Stojanović, B.; Malenović, A.; Ivanović, D.; Medenica, M. Demasking large dummy effects approach in revealing important interactions in Plackett-Burman experimental design. J. Chemometr., 2012, 26(10), 518-525.
[http://dx.doi.org/10.1002/cem.2461]
[171]
Patents G. Patents. Available from: https://patents.google.com/advanced

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy